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Normalizing Flows for LFT
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Input: 
• Action*   ✅ 
• Samples (HMC) ⚠

S[U]

*Here  should denote generalized field 
configurations e.g., scalar fields, gauge fields. 

U
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Input: 
• Action*   ✅ 
• Samples (HMC) ⚠

S[U]
ML black(-box) magic: 

• Train generative models 
•  Normalizing Flows 
•  Autoregressive Models 
•  Diffusion Models 

• Learn normalized densities

Generative 
Models

*Here  should denote generalized field 
configurations e.g., scalar fields, gauge fields. 

U
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Input: 
• Action*   ✅ 
• Samples (HMC) ⚠

S[U]
ML black(-box) magic: 

• Train generative models 
•  Normalizing Flows 
•  Autoregressive Models 
•  Diffusion Models 

• Learn normalized densities

Generative 
Models

qθ(U) ≈
e−S[U]

Z

Output: 
• Normalized density  

• Approximation of target  
• Embarrassingly parallel sampling

qθ(U)
p(U)

⚠ Not possible with standard HMC*Here  should denote generalized field 
configurations e.g., scalar fields, gauge fields. 

U
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Why Normalizing Flows for LFT?
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• Lattice configurations are sampled i.i.d., thus reducing autocorrelation. 

• Sampling is embarrassingly parallel, e.g., faster and more efficient. 

• Direct estimation of thermodynamic observables (partition function, free energy, etc.). 

• Inductive biases, e.g., symmetries, are easy to incorporate. 

• The trained models can be used for interpolation (extrapolation) in parameter space. 

• Transfer weights of flows trained on smaller systems to train on larger ones.  

• …
Plenary talk by Gurtej Kanwar (LATTICE 23)

https://indico.fnal.gov/event/57249/contributions/271106/
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What is NeuLat?
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• NeuLat is an ML-based software package for benchmarking and test models for LFT e.g.,    
• 1+1D -theory 
• 1+1D  gauge theory 

• No such effort was made yet to combine existing tools into one software. 

• NeuLat is meant to be a community-wide effort. 

• The core team of NeuLat: 

• Expertise in ML software development. 
• Expertise in LFT. 
• Various contributions to the field: asymptotically unbiased estimators (Nicoli K.A. et al.), thermodynamic 
observables (Nicoli K.A. et al.), mode-dropping estimators (Nicoli K.A. et al.), path gradients (Vaitl L. et al. 
(2022)), and trivializing maps with flows (Bacchio S. et al. (2023)).

ϕ4

U(1)

https://link.aps.org/accepted/10.1103/PhysRevE.101.023304
https://link.aps.org/pdf/10.1103/PhysRevLett.126.032001
https://arxiv.org/abs/2302.14082
https://iopscience.iop.org/article/10.1088/2632-2153/ac9455
https://iopscience.iop.org/article/10.1088/2632-2153/ac9455
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.107.L051504
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What are the benefits?
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• Faster development of new ideas. 

• Easier to reproduce newly published results (in the flow-based sampling community).  

• Easier for people to enter the community and experiment with state-of-the-art techniques. 

• Save the effort of re-implementing standard methods (e.g., architecture, estimators, etc.). 

• Allow for immediate extension to other fields in physics (e.g., condensed matter physics).  

• Similar examples for ML frameworks in other scientific communities: 
• SchNetPack - Deep Neural Networks for Atomistic Systems 

• BGFlow - Boltzmann Generators (BG) and other sampling methods 

https://github.com/atomistic-machine-learning/schnetpack
https://github.com/noegroup/bgflow
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Why NeuLat?
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• Many tools have been independently proposed.  

• No reference implementation exists. 
• Often needs to reimplement existing code.  
• Different ML libraries. 
• Different code styles and structures. 

• Big (unnecessary) overhead (often seen also in the ML community). 

• Excellent repositories are already available (though limited in scope). 
• fthmc: Field Transformation HMC 

• l2hmc-qcd  
• nflows 
• GomalizingFlow

👏 Shout-out to Sam Foreman et al., for the great work!}

Credits: xkcd.com/927

👏 Julia package from A. Tomiya and collaborators!

https://github.com/nftqcd/fthmc
https://github.com/saforem2/l2hmc-qcd
https://github.com/bayesiains/nflows
https://github.com/AtelierArith/GomalizingFlow.jl
https://xkcd.com/927/
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NeuLat
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Goal: incorporate as many contributions from 5 years of research progress into a 
single software framework.
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Software Overview
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• PyTorch backend 

• MCMC-based sampling 

• Flow-based sampling (e.g., nflows) 

• Observable estimation (e.g., py-uwerr)

https://github.com/bayesiains/nflows
https://github.com/dhesse/py-uwerr
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Basic Workflow
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Step 0: Define the action of the physical 
system to simulate.

Step 1: Build a Markov chain and a 
custom normalizing flow model.

Step 2: Specify loss and optimizer and 
train the flow model.

Step 3: Estimate observables using 
samples from HMC and trained flow.
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Key Features
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• Density Estimation: Learn approximations of targeted Boltzmann distributions . 

• Sampling: 

• MCMC implementations (HMC, Cluster algorithms, etc.). 

• Neural Importance Sampling (see  Albergo et al. (2019), Kanwar et al. (2020), Nicoli et al. (2021)+ refs. therein). 

• Neural HMC  (see same papers referenced above). 

• Estimation:  

• Asymptotically unbiased estimators for physical observables (see Nicoli et al. (2020)). 

• Direct estimation of thermodynamic observables with flows and HMC (see Nicoli et al. (2021)). 

• Sampling in the presence of mode-collapse (see Nicoli et al. (2023)). 

• Customizable: Easy to incorporate a new action/theory or customize new, equivariant flow-layers.

qθ ≈ p

… and more!

https://link.aps.org/pdf/10.1103/PhysRevD.100.034515
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.121601
https://link.aps.org/pdf/10.1103/PhysRevLett.126.032001
https://link.aps.org/accepted/10.1103/PhysRevE.101.023304
https://link.aps.org/pdf/10.1103/PhysRevLett.126.032001
https://arxiv.org/abs/2302.14082
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Conclusion
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• We presented NeuLat, a software for flow-based simulation of LFT. 

• The software is meant to be accessible, modular, and easy to extend and maintain. 

• This eliminates the overhead of re-implementing existing code between different formats.  

• The first release of the software is planned for the upcoming months. 

• NeuLat is aimed to be a community-wide effort. Get in touch if you would like to contribute. 


