

EFFECTIVE (FIELD) THEORIES FOR LOW-DIMENSIONAL SYSTEMS

JUNE 5, 2024, CLOSING MEETING CRC110 "SYMMETRIES AND THE EMERGENCE OF STRUCTURE IN QCD"

THOMAS LUU, IAS-4/FZJ

EFFECTIVE (FIELD) THEORIES FOR LOW-DIMENSIONAL SYSTEMS

JUNE 5, 2024, CLOSING MEETING CRC110 "SYMMETRIES AND THE EMERGENCE OF STRUCTURE IN OD"

THOMAS LUU, IAS-4/FZJ

WHY LOW-D MATERIALS?

- At least one of the dimensions of the material is small (~ nanoscale)
- Quantum effects and strong correlations induce novel phenomena
- Novel quantum electronics
- Fault tolerant quantum computing

WHY DO WE EXPECT STRONG CORRELATIONS IN LOW -D? Isn't QED perturbative?

Let's first assume a quadratic dispersion relation:

Strength of electron correlations depends on density of electrons and dimensionality of system

Independent of electron density!

Let's plug in some numbers:

$$v_F \approx \frac{c}{300} \longrightarrow \Gamma \approx 2 - 3$$

The electrons in graphene are strongly interacting!

In general, lower dimensions enhance correlations.

SYMMETRIES RELEVANT FOR LOW-D MATERIALS

• Time-reversal symmetry $T: T^2 = \pm 1$

$$t \to -t \implies E(k) = E(-k)$$

• Charge conjugation symmetry (or *particle-hole* symmetry) $C: C^2 = \pm 1$

Spectrum symmetric about zero: $E_{+}(k) = -E_{-}(-k)$

• Chiral symmetry (or *sublattice* symmetry)

$$S: S^2 = S \qquad E_+(k) = -E_-(k)$$

Normally, different phases of matter are distinguished by their ground-state symmetries (and lack thereof)

SYMMETRY BREAKING AND PHASES OF MATTER

J. Ostmeyer, T.L., C. Urbach et al. [arXiv:2105.06936] Phys.Rev.B 104 (2021) 155142

 $V(\phi)$

PHASES OF MATTER THAT SHARE THE SAME SYMMETRIES

Classic example: liquid/gas transition

Phases are distinct, but the ground states do not break the symmetry of the system

Another example: BKT transition (XY-Model)

Phases classified by local topological invariant $\pi_1(S^1) = \mathbb{Z}$ (ie winding number)

MERMIN-WAGNER THEOREM

continuous symmetries cannot be spontaneously broken at *finite temperature* in systems with sufficiently short-range interactions in dimensions $d \le 2$

MERMIN-WAGNER THEOREM

continuous symmetries cannot be spontaneously broken at *finite temperature* in systems with sufficiently short-range interactions in dimensions $d \le 2$

no goldstone modes!

MERMIN-WAGNER THEOREM

continuous symmetries cannot be spontaneously broken at *finite temperature* in systems with sufficiently short-range interactions in dimensions $d \le 2$

no goldstone modes!

Phases of matter classified topologically

But what does "topology" mean in this case?

But what does "topology" mean in this case?

Topological Geometry

But what does "topology" mean in this case?

But what does "topology" mean in this case?

⁹ Topological invariants: \mathbb{Z}, \mathbb{Z}_2

CLASSIFICATION OF MATTER: *THE TEN-FOLD WAY*

... aka having 'particle-physics envy'...

Symmetry				Dimension							
AZ	Т	С	S	1	2	3	4	5	6	7	8
А	0	0	0	0	Z	0	Z	0	Z	0	Z
AIII	0	0	1	Z	0	Z	0	Z	0	Z	0
AI	1	0	0	0	0	0	Z	0	\mathbb{Z}_2	\mathbb{Z}_2	Z
BDI	1	1	1	Z	0	0	0	Z	0	\mathbb{Z}_2	\mathbb{Z}_2
D	0	1	0	\mathbb{Z}_2	Z	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2
DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0	Z	0
All	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0	Z
CII	-1	-1	1	Z	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
С	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
СІ	1	-1	1	0	0	Z	0	\mathbb{Z}_{2}	\mathbb{Z}_2	Z	0

Bott periodicity

Atland & Zirnbauer, arXiv:cond-mat/9602137, https://doi.org/10.48550/arXiv.cond-mat/9602137

Dyson, J.Math.Phys. 3 (1962) 1199

NOVEL FORMS OF EMERGENT PHENOMENA

TL & U. Meiβner, [arXiv:2007.10062] Found.Phys. **50**[(2020) 1140 **TL** & U. Meiβner, [arXiv:1910.13770] **Top-Down Causation & Emergence**, Springer Verlag (2021), pgs.101-114 CASCADE

TL & U. Meiβner, [<u>arXiv:2007.10062</u>] Found.Phys. **50** (2020) 1140

TL & U. Meiβner, [arXiv:1910.13770] Top-Down Causation & Emergence, Springer Verlag (2021), pgs.101-114

TOPOLOGICAL INSULATORS . . .

... and the bulk-boundary correspondence

Mong & Shivamoggi, https://doi.org/10.48550/arXiv.1010.2778

ANOTHER EXAMPLE OF LOCALIZATION

Hybrid nanoribbons

7-AGNR 9-AGNR 7-AGNR 1 mm

Rizzo, D.J., Veber, G., Cao, T. *et al.* Topological band engineering of graphene nanoribbons. *Nature* **560**, 204–208 (2018)

13/15 ribbon

LOWEST ENERGY STATE EXHIBITS "LOCALIZATION"

Cao et al., Phys. Rev. Lett. 119, 076401 (2017)

Experimental evidence

Rizzo et al., ACS Nano 2021, 15, 12, 20633-20642

Potential application: Topological Quantum Dots

... and fault-tolerant quantum computing (one day)

LOWEST ENERGY STATE EXHIBITS "LOCALIZATION"

Experimental evidence

Rizzo et al., ACS Nano 2021, 15, 12, 20633-20642

Potential application: Topological Quantum Dots

... and fault-tolerant quantum computing (one day)

HOW DOES INTERACTION CHANGE THINGS?

Simulations with Quantum Monte Carlo

U = 1

But energy depends on U!

U=2 U=3 U=3 U=4

Localizations persist with strong interactions

15 TL, U.-G. Meißner & L. Razmadze, [arXiv:2204.02742] Phys.Rev.B 106 (2022) 195422

DO SUCH LOCALISATIONS LOOK FAMILIAR?

Domain-Wall fermions in LQCD

Hybrid ribbons provide physical manifestation of domain wall fermions

D.B.Kaplan, A Method for simulating chiral fermions on the lattice, Phys. Lett. B 288, 342 (1992) D.B.Kaplan, Chiral gauge theory at the boundary between topological phases, [arXiv:2312.01494] Phys.Rev.Lett. **132** (2024) 141603

OUR INVESTIGATIONS LEAD US TO A NEW TYPE OF LOCALIZATION

Fuji vs Kilimanjaro J. Ostmeyer, L. Razmadze, E. Berkowitz, TL & U.-G. Meißner, [arXiv:2401.04715] Phys.Rev.B 109 (2024) 195135

7/9 hybrid

9/11 hybrid

Predicted from Cao *et al.,* Phys. Rev. Lett. **119**, 076401 (2017)

Our addition to Cao *et al.,* Phys. Rev. Lett. **119**, 076401 (2017)

SUCH LOCALIZATIONS ALLOW US TO SIMPLIFY OUR THEORY

1-D effective theory

SUCH LOCALIZATIONS ALLOW US TO SIMPLIFY OUR THEORY

1-D effective theory

SUCH LOCALIZATIONS ALLOW US TO SIMPLIFY OUR THEORY

1-D effective theory

3

2

TUNING LOW-ENERGY CONSTANTS (LECS)

$$H_{1D} = -\sum_{i} \left(t_A a_{2i}^{\dagger} a_{2i-1}^{\dagger} + t_B a_{2i+1}^{\dagger} a_{2i+2}^{\dagger} + \text{H.c.} \right) = -\sum_{k} a_k^{\dagger} \begin{pmatrix} 0 & t_A e^{ik} + t_B e^{-ik} \\ t_A e^{-ik} + t_B e^{ik} & 0 \end{pmatrix} a_k$$

- Match t_A and t_B to underlying theory with a particular geometry
- Predict low-energy spectrum of different geometries

INCLUDING INTERACTIONS WITHIN OUR ET

- Localization persists in the presence of interactions
- Energy gap is symmetric about Fermi energy
 - particle/hole & chiral symmetries
 - \implies Inclusion of staggered mass $m_s \sigma_3$ (LEC) into ET

$$H_{1D} = -\sum_{k} a_{k}^{\dagger} \begin{pmatrix} m_{s} & t_{A}e^{ik} + t_{B}e^{-ik} \\ t_{A}e^{-ik} + t_{B}e^{ik} & -m_{s} \end{pmatrix} a_{k}$$

INCLUDING INTERACTIONS WITHIN OUR ET

- Localization persists in the presence of interactions
- Energy gap is symmetric about Fermi energy
 - particle/hole & chiral symmetries
 - \implies Inclusion of staggered mass $m_s \sigma_3$ (LEC) into ET

INCLUDING INTERACTIONS WITHIN OUR ET

- Localization persists in the presence of interactions
- Energy gap is symmetric about Fermi energy
 - particle/hole & chiral symmetries
 - \implies Inclusion of staggered mass $m_s \sigma_3$ (LEC) into ET

 m_9

$$H_{1D} = -\sum_{k} a_{k}^{\dagger} \begin{pmatrix} m_{s} & t_{A}e^{ik} + t_{B}e^{-ik} \\ t_{A}e^{-ik} + t_{B}e^{ik} & -m_{s} \end{pmatrix} a_{k}$$

Predict spectrum of new geometries

INGREDIENTS FOR AN EFT

• Separation of scales (ie energy gap to bulk states)

 Identification of relevant low-energy degrees of freedom

 Interactions terms constrained by symmetries

ANOTHER EXAMPLE

Pure armchair nano ribbon (w/ width = 11)

Low-energy (non-interacting) dispersion $E(k) = \pm v_f k$

LOW-ENERGY EFT

... of a quantum wire ...

- Low-energy degrees of freedom in twocomponent form
- Lagrangian that captures correct low-energy dispersion

$$\psi = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix}$$

$$\mathscr{L}_{\text{EFT}} = \bar{\psi} \left(i\gamma_0 \partial_t + iv_f \gamma_1 \partial_x \right) \psi$$

$$\gamma_0 = \sigma_2 \quad \gamma_1 = i\sigma_1 \quad \bar{\psi} = \psi^{\dagger} \gamma_0$$

• States are electrically charged! Can include U(1) vector fields A_{μ} to describe interactions

$$\mathcal{L}_{\rm EFT} + \mathcal{L}_{\rm QED} = \bar{\psi} \left(i \gamma_0 (\partial_t - i e A_0(x)) + i v_f \gamma_1 (\partial_x - i e A_1(x)) \right) \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

Bazzanella, Faccioli, Lipparini, https://arxiv.org/pdf/1007.1316

LOW-ENERGY EFT

... of a quantum wire ...

- Low-energy degrees of freedom in twocomponent form
- Lagrangian that captures correct low-energy dispersion

$$\psi = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix}$$

$$\mathscr{L}_{\text{EFT}} = \bar{\psi} \left(i\gamma_0 \partial_t + iv_f \gamma_1 \partial_x \right) \psi$$

$$\gamma_0 = \sigma_2 \quad \gamma_1 = i\sigma_1 \quad \bar{\psi} = \psi^{\dagger} \gamma_0$$

 $m_s = \frac{ev_f}{\sqrt{2}}$

• States are electrically charged! Can include U(1) vector fields A_{μ} to describe interactions

$$\mathcal{L}_{\rm EFT} + \mathcal{L}_{\rm QED} = \bar{\psi} \left(i \gamma_0 (\partial_t - i e A_0(x)) + i v_f \gamma_1 (\partial_x - i e A_1(x)) \right) \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

ZO

QED in 1+1 dimensions: massless Schwinger model with fermi velocity v_f

OTHER EXAMPLES OF EMERGENT PHENOMENA

Superconductivity in bilayers with a twist

Andrei, E.Y., MacDonald, A.H. Graphene bilayers with a twist. *Nat. Mater.* **19**, 1265–1275 (2020). https://doi.org/10.1038/s41563-020-00840-0

Bound three-body (trion) state in doped systems

Matsunaga et al., PRL 106, 037404 (2011)

LOW-D SYSTEMS ARE PERFECT TESTBEDS FOR NOVEL ALGORITHMS

Tackling the sign problem

- Stochastic simulations at finite chemical potential
 - Suffer from numerical sign problem
 - Similar situation to LQCD
- Deform path integral contour integral into the complex plane
 - Manifolds comprising Lefschetz thimbles have significantly reduced sign problem
- Test Machine Learning (ML) algorithms to learn these manifolds and alleviate sign problem

J.-L. Wynen, **TL**, et al.,[<u>arXiv:2006.11221</u>] Phys.Rev.B **103** (2021) 125153 25 M. Rodekamp, **TL**, et al.[<u>arXiv:2203.00390</u>] Phys.Rev.B **106** (2022) 125139

WE CAN NOW PROBE SYSTEMS NOT AVAILABLE TO US BEFORE

Making predictions...

26

OTHER EXAMPLES OF ALGORITHMIC ADVANCEMENTS

10x speedup using Hasenbusch preconditioning (from LQCD)

J. Ostmeyer, TL, C. Urbach, et al., [arXiv:1804.07195] Comput.Phys.Commun. 236 (2019) 15-25

Circumventing ergodicity problems with, e.g. radial updates

F. Temmen, preliminary

J.-L. Wynen, TL, et al., [arXiv:1812.09268] Phys.Rev. B100 (2019) 075141

FAZIT

- Low-D materials offer fascinating novel phenomena, but require non-perturbative techniques due to strong correlation effects
- EFT methods applicable
 - Symmetries are well established
 - identification of low-energy degrees of freedom
 - separation of scales (energy gap to bulk states)
- Also great testbed for algorithmic testing and development, which already is leading to calculations in novel phase spaces

FAZIT

- Low-D materials offer fascinating novel phenomena, but require non-perturbative techniques due to strong correlation effects
- EFT methods applicable
 - Symmetries are well established
 - identification of low-energy degrees of freedom
 - separation of scales (energy gap to bulk states)
- Also great testbed for algorithmic testing and development, which already is leading to calculations in novel phase spaces

My perspectives on "Life after the CRC 110"

FAZIT

- Low-D materials offer fascinating novel phenomena, but require non-perturbative techniques due to strong correlation effects
- EFT methods applicable
 - Symmetries are well established
 - identification of low-energy degrees of freedom
 - separation of scales (energy gap to bulk states)
- Also great testbed for algorithmic testing and development, which already is leading to calculations in novel phase spaces

My perspectives on "Life after the CRC 110"

