

Deutsche Forschungsgemeinschaft DFG

CONTENTS

- Intro: NLEFT within the CRC 110
- Fundamentals of NLEFT
- Assorted results and high-lights
 - The minimal interaction
 - Chiral interactions at N3L0
- On-going projects
- Perspectives

NLEFT within the CRC 110

A bit of history

- Basic developments in NLEFT here at Bonn/FZJ in collaboration with Dean Lee (NCSU), later Bochum also joined
- Major funding sources:

TRR 16 "Subnuclear structure of matter" (Bonn, Bochum, Giessen) 2004-2016 HGF VH-VI-417 "Nuclear Astrophysics" (GSI, TU Darmstadt, Bonn,...) 2011-2017

• If you have a new method, you must do something the others could not do!

\hookrightarrow take-home message for the young people!

 $\cdot \circ \triangleleft < \land \lor > \triangleright \bullet$

NLEFT within the CRC 110

- In FP1, part of B7 "Chiral Dynamics of Nuclei and Hypernuclei" PLs: N. Kaiser, UGM, A. Nogga
 → very succesful, split into two projects in FP2
- In FP2, part of B9 "Lattice Nuclear Physics" PLs: T. Luu, UGM
 - \hookrightarrow LQCD part develops slowly, move into A2 in FP3
- In FP3, the whole B9 "Lattice Nuclear Physics" is NLEFT PLs: H. Krebs, UGM
 - \hookrightarrow seed for the ERC AdG "EXOTIC" (2021-2026)
 - \hookrightarrow seed for a Research Unit in Nuclear Physics (in preparation)

 \Rightarrow Impossible to review all results, just discuss selcted hi-lites

Fundamentals of NLEFT

Our goal: Ab initio nuclear structure & reactions

• Nuclear structure:

- ★ limits of stability
- ★ 3-nucleon forces
- * alpha-clustering
- ★ EoS & neutron stars

- Nuclear reactions, nuclear astrophysics:
 - * alpha-particle scattering
 - \star triple-alpha reaction
 - * alpha-capture on carbon
 - de Boer et al, Rev. Mod. Phys. 89 (2017) 035007

 \mathcal{N}

0

<

Chiral EFT on a lattice

Image: Declare Votes in Physics 957

Timo A. Lähde Uf-G. Meißner **Nuclease Laster Laster**

T. Lähde & UGM

Nuclear Lattice Effective Field Theory - An Introduction

Springer Lecture Notes in Physics 957 (2019) 1 - 396

Nuclear lattice effective field theory (NLEFT)

Frank, Brockmann (1992), Koonin, Müller, Seki, van Kolck (2000), Lee, Schäfer (2004), . . . Borasoy, Krebs, Lee, UGM, Nucl. Phys. **A768** (2006) 179; Borasoy, Epelbaum, Krebs, Lee, UGM, Eur. Phys. J. **A31** (2007) 105

- new method to tackle the nuclear many-body problem
- discretize space-time $V = L_s \times L_s \times L_s \times L_t$: nucleons are point-like particles on the sites
- discretized chiral potential w/ pion exchanges and contact interactions + Coulomb

 \rightarrow see Epelbaum, Hammer, UGM, Rev. Mod. Phys. **81** (2009) 1773

• typical lattice parameters

$$p_{
m max} = rac{\pi}{a} \simeq 315 - 630\,{
m MeV}\,[{
m UV}~{
m cutoff}]$$

• strong suppression of sign oscillations due to approximate Wigner SU(4) symmetry

E. Wigner, Phys. Rev. 51 (1937) 106; T. Mehen et al., Phys. Rev. Lett. 83 (1999) 931; J. W. Chen et al., Phys. Rev. Lett. 93 (2004) 242302

ullet physics independent of the lattice spacing for $a=1\dots 2$ fm

Alarcon, Du, Klein, Lähde, Lee, Li, Lu, Luu, UGM, EPJA 53 (2017) 83; Klein, Elhatisari, Lähde, Lee, UGM, EPJA 54 (2018) 121

Nuclear Lattice EFT – Ulf-G. Meißner – Bonn, June 3rd, 2024 \cdot O \triangleleft C \wedge ∇ > D \bullet

Transfer matrix method

- Correlation–function for A nucleons: $Z_A(\tau) = \langle \Psi_A | \exp(-\tau H) | \Psi_A \rangle$ with Ψ_A a Slater determinant for A free nucleons [or a more sophisticated (correlated) initial/final state]
- Transient energy

$$E_A(au) = -rac{d}{d au}\,\ln Z_A(au)$$

- \rightarrow ground state: $E_A^0 = \lim_{\tau \to \infty} E_A(\tau)$
- Exp. value of any normal–ordered operator \mathcal{O} $Z_A^{\mathcal{O}} = \langle \Psi_A | \exp(- au H/2) \, \mathcal{O} \, \exp(- au H/2) \, | \Psi_A
 angle$

$$\lim_{ au o \infty} \, rac{Z^{\mathcal{O}}_A(au)}{Z_A(au)} = \langle \Psi_A | \mathcal{O} \, | \Psi_A
angle$$

• Excited states: $Z_A(\tau) \rightarrow Z_A^{ij}(\tau)$, diagonalize, e.g. $0_1^+, 0_2^+, 0_3^+, \dots$ in ¹²C

Euclidean time

 \Rightarrow all *possible* configurations are sampled

- \Rightarrow preparation of *all possible* initial/final states
- ⇒ *clustering* emerges *naturally*

Auxiliary field method

• Represent interactions by auxiliary fields (Gaussian quadrature):

$$\exp\left[-rac{C}{2}\left(N^{\dagger}N
ight)^{2}
ight] = \sqrt{rac{1}{2\pi}}\,\int ds \exp\left[-rac{s^{2}}{2}+\sqrt{C}\,\,s\left(N^{\dagger}N
ight)
ight]$$

Comparison to lattice QCD

LQCD (quarks & gluons)	NLEFT (nucleons & pions)
relativistic fermions	non-relativistic fermions
renormalizable th'y	EFT
continuum limit	no continuum limit
(un)physical masses	physical masses
Coulomb - difficult	Coulomb - easy
high T/small $ ho$	small T/nuclear densities
sign problem severe	sign problem moderate

• For nuclear physics, NLEFT is the far better methodology!

Nuclear Lattice EFT – Ulf-G. Meißner – Bonn, June 3rd, 2024 \cdot O \triangleleft C \wedge ∇ > D

Computational equipment

• Present = JUWELS (modular system) + FRONTIER + ...

The minimal nuclear interaction

A minimal nuclear interaction

- Basic problem: Straightforward application of chiral EFT forces leads to problems when one goes beyond light nuclei (e.g. the radius problem)
- Main idea: Construct a minimal nuclear interactions that reproduces the ground state properties of light nuclei, medium-mass nuclei, and neutron matter simultaneously with no more than a few percent error in the energies and charge radii
- This can be achieved by making use of Wigner's SU(4) spin-isospin symmetry Wigner, Phys. Rev. C 51 (1937) 106
- If the nuclear Hamiltonian does not depend on spin and isospin, then it is obviously invariant under SU(4) transformations [really $U(4) = U(1) \times SU(4)$]:

$$N o UN \;, \quad U \in SU(4) \;, \quad N = egin{pmatrix} p \ n \end{pmatrix}$$

 $N o N + \delta N \ , \ \ \delta N = i \epsilon_{\mu
u} \sigma^\mu au^
u \, N \ , \ \ \sigma^\mu = (1, \sigma_i) \ , \ \ au^\mu = (1, au_i)$

Nuclear Lattice EFT – Ulf-G. Meißner – Bonn, June 3rd, 2024 \cdot O \triangleleft C \wedge ∇ > D \bullet

Remarks on Wigner's SU(4) symmetry

- Wigner SU(4) spin-isospin symmetry in the context of pionless nuclear EFT
 - → large scattering lengths Mehen, Stewart, Wise, Phys. Rev. Lett. 83 (1999) 931
- Wigner SU(4) spin-isospin symmetry is particularly beneficial for NLEFT
 - \hookrightarrow suppression of sign oscillations Chen, Lee, Schäfer, Phys. Rev. Lett. **93** (2004) 242302
 - ← provides a very much improved LO action when smearing is included Lu, Li, Elhatisari, Lee, Epelbaum, UGM, Phys. Lett. B **797** (2019) 134863
- Initimately related to α -clustering in nuclei
 - → cluster states in ¹²C like the famous Hoyle state
 Epelbaum, Krebs, Lee, UGM, Phys. Rev. Lett. **106** (2011) 192501

← nuclear physics is close to a quantum phase transition Elhatisari et al., Phys. Rev. Lett. **117** (2016) 132501

Essential elements for nuclear binding

0

• Highly SU(4) symmetric LO action without pions, only **four** parameters

$$\begin{split} H_{\rm SU(4)} &= H_{\rm free} + \frac{1}{2!} C_2 \sum_n \tilde{\rho}(n)^2 + \frac{1}{3!} C_3 \sum_n \tilde{\rho}(n)^3 \\ \tilde{\rho}(n) &= \sum_i \tilde{a}_i^{\dagger}(n) \tilde{a}_i(n) + \frac{s_L}{|n'-n|=1} \sum_i \sum_{i=1}^n \tilde{a}_i^{\dagger}(n') \tilde{a}_i(n') \\ \tilde{a}_i(n) &= a_i(n) + \frac{s_{NL}}{|n'-n|=1} a_i(n') \\ &|n'-n|=1 \end{split}$$

 s_L controls the locality of the interactions, s_{NL} the non-locality of the smearing

 \rightarrow describes binding energies, radii, charge densities and the EoS of neutron matter

Nuclear Lattice EFT – Ulf-G. Meißner – Bonn, June 3rd, 2024

Wigner's SU(4) symmetry and the carbon spectrum 19

- Study of the spectrum (and other properties) of ¹²C
 - → spin-orbit splittings are known to be weak Hayes, Navratil, Vary, Phys. Rev. Lett. **91** (2003) 012502 Johnson, Phys. Rev. C **91** (2015) 034313
 - \hookrightarrow start with cluster and shell-model configurations
- Fit the four parameters:
 - C_2, C_3 ground state energies of ⁴He and ¹²C
 - $s_{\rm L}$ radius of ¹²C around 2.4 fm
 - *s*_{NL} best overall description of the transition rates
- Calculation of em transitions
 requires coupled-channel approach
 e.g. 0⁺ and 2⁺ states

 \triangleleft < \land \lor > \triangleright

Spectrum of ¹²C

Shen, Elhatisari, Lähde, Lee, Lu, UGM, Nature Commun. 14 (2023) 2777

• Improved description when 3NFs are included, amazingly good

 \rightarrow solidifies earlier NLEFT statements about the structure of the 0^+_2 and 2^+_2 states

Nuclear Lattice EFT – Ulf-G. Meißner – Bonn, June 3rd, 2024 \cdot O \triangleleft C \wedge ∇ > D \bullet

Electromagnetic properties

Shen, Elhatisari, Lähde, Lee, Lu, UGM, Nature Commun. 14 (2023) 2777

- Radii, quadrupole moments & em transition rates agree wih experiment
- Form factors and transition ffs [essentially parameter-free]:

Sick, McCarthy, Nucl. Phys. A **150** (1970) 631 Strehl, Z. Phys. **234** (1970) 416 Crannell et al., Nucl. Phys. A **758** (2005) 399

Chernykh et al., Phys. Rev. Lett. 105 (2010) 022501

Emergence of geometry

• Use the pinhole algorithm to measure the distribution of α -clusters/matter:

• equilateral & obstuse triangles $\rightarrow 2^+$ states are excitations of the 0^+ states

Nuclear Lattice EFT – Ulf-G. Meißner – Bonn, June 3rd, 2024 \cdot O < \land \bigtriangledown \lor > \triangleright (

Emergence of duality

• ¹²C spectrum shows a cluster/shell-model duality

dashed triangles: strong 1p-1h admixture in the wave function

Nuclear Lattice EFT – Ulf-G. Meißner – Bonn, June 3rd, 2024 \cdot O < \land V > D \bullet

The ⁴He form factor puzzle

• Recent Mainz measurements of $F_{M0}(0^+_2 \rightarrow 0^+_1)$ appear to be in stark disagreement with *ab initio* nuclear theory Kegel et al., Phys. Rev. Lett. **130** (2023) 152502

Monopole transition ff

• low-momentum expansion

[calculations from 2013]

\Rightarrow A low-energy puzzle for nuclear forces?

Nuclear Lattice EFT – Ulf-G. Meißner – Bonn, June 3rd, 2024 \cdot O \triangleleft C \wedge ∇ > D \bullet

Ab initio calculation of the ⁴He transition form factor²⁵

UGM, Shen, Elhatisari, Lee, Phys. Rev. Lett. 132 (2024) 062501 [2309.01558 [nucl-th]]

- Use the essential elements action, all parameters fixed!
- Calculate the transition ff and its low-energy expansion form the transition density

$$egin{aligned} &
ho_{ ext{tr}}(r) = \langle 0_1^+ | \hat{
ho}(ec{r}) | 0_2^+
angle \ &F(q) = rac{4\pi}{Z} \int_0^\infty
ho_{ ext{tr}}(r) j_0(qr) r^2 dr = rac{1}{Z} \sum_{\lambda=1}^\infty rac{(-1)^\lambda}{(2\lambda+1)!} q^{2\lambda} \langle r^{2\lambda}
angle_{ ext{tr}} \ &rac{Z |F(q^2)|}{q^2} = rac{1}{6} \langle r^2
angle_{ ext{tr}} \left[1 - rac{q^2}{20} \mathcal{R}_{ ext{tr}}^2 + \mathcal{O}(q^4)
ight] \ &\mathcal{R}_{ ext{tr}}^2 = \langle r^4
angle_{ ext{tr}} / \langle r^2
angle_{ ext{tr}} \end{aligned}$$

• The first excited state sits in the continuum & close to the ${}^{3}H$ -p threshold

 \hookrightarrow use large volumes L = 10, 11, 12 or L = 13.2 fm, 14.5 fm, 15.7 fm

 \hookrightarrow the lattice spacing is fixed to a=1.32 fm, corresponding $\Lambda=\pi/a=465\,{
m MeV}$

The first excited state

- 3 coupled channels with 0⁺ q.n's \rightarrow accelerates convergence as $L_t \rightarrow \infty$
- Shell-model wave functions (4 nucleons in $1s_{1/2}$, twice 3 in $1s_{1/2}$ and 1 in $2s_{1/2}$)

<i>L</i> [fm]	$E(0_1^+)$ [MeV]	$E(0^+_2)$ [MeV]	ΔE [MeV]
13.2	-28.32(3)	-8.37(14)	0.28(14)
14.5	-28.30(3)	-8.02(14)	0.42(14)
15.7	-28.30(3)	-7.96(9)	0.40(9)

 \hookrightarrow statistical and large- L_t errors

 \hookrightarrow agreement w/ experiment: $E(0^+_1) = 28.3$ MeV, $\Delta E = 0.4$ MeV

 $\hookrightarrow \Delta E$ consistent w/ no-core Gamov shell model (no 3NFs)

Michel, Nazarewicz, Ploszajczak, Phys. Rev. Lett. 131 (2023) 242502

 \hookrightarrow consistent w/ the Efimov tetramer analysis $\Delta E = 0.38(2)$ MeV

von Stecher, D'Incao, Greene, Nat. Phys. 5 (2009) 417; Hammer, Platter, EPJA 32 (2007) 113

The transition form factor

• Transition form factor

• Low-momentum expansion

- \hookrightarrow Excellent description of the data
- \hookrightarrow **No puzzle** to the nuclear forces!
- \hookrightarrow Can be improved using N3LO action + wave function matching

Elhatisari et al., 2210.17488 [nucl-th]

 \hookrightarrow Now consider neutron stars and the "hyperon puzzle"

Towards hyper-neutron matter

- Densities in the interior of neutron stars up to $5 \cdot
 ho_0 \ [
 ho_0 = 0.17 \ {
 m fm}^{-3}]$
 - \hookrightarrow possible appearance of hyperons
 - \rightarrow "hyperon puzzle"
 - → many possible solutions
 (3-body forces, BSM physics, modifed gravity)
 - → Neutron matter EoS plays an important role
 in multimessenger astronomy [gravitational waves]
- Can we address this topic w/ NLEFT? If so, how?
 - $\hookrightarrow \text{large densities require a small lattice spacing}$
 - \hookrightarrow need to extend the minimal nuclear interaction to such densities
 - \hookrightarrow need to extend the minimal nuclear interaction to the strangeness sector

Tong, Elhatisari, UGM, 2405.01887 [nucl-th]

The minimal interaction with strangeness I

Tong, Elhatisari, UGM, 2405.01887 [nucl-th]

• Baryon-baryon interaction (consider nucleons and Λ 's plus non-local smearing):

$$\begin{split} & \left(V_{\Lambda N} = \mathbf{c}_{N\Lambda} \sum_{\vec{n}} \tilde{\rho}(\vec{n}) \tilde{\xi}(\vec{n}) + \mathbf{c}_{\Lambda\Lambda} \frac{1}{2} \sum_{\vec{n}} \left[\tilde{\xi}(\vec{n}) \right]^2 \right) \\ & \tilde{\rho}(\vec{n}) = \sum_{i,j=0,1} \tilde{a}_{i,j}^{\dagger}(\vec{n}) \, \tilde{a}_{i,j}(\vec{n}) + s_{\mathrm{L}} \sum_{|\vec{n} - \vec{n}'|^2 = 1} \sum_{i,j=0,1} \tilde{a}_{i,j}^{\dagger}(\vec{n}') \, \tilde{a}_{i,j}(\vec{n}') \\ & \tilde{\xi}(\vec{n}) = \sum_{i=0,1} \tilde{b}_{i}^{\dagger}(\vec{n}) \, \tilde{b}_{i}(\vec{n}) + s_{\mathrm{L}} \sum_{|\vec{n} - \vec{n}'|^2 = 1} \sum_{i=0,1} \tilde{b}_{i}^{\dagger}(\vec{n}') \, \tilde{b}_{i}(\vec{n}') \end{split}$$

• Three-baryon forces (consider nucleons and Λ 's, no non-local smearing):

Petschauer, Kaiser, Haidenbauer, UGM, Weise, Phys. Rev. C 93 (2016) 014001

$$\left(V_{NN\Lambda}=oldsymbol{c_{NN\Lambda}}{1\over 2}~\sum_{ec n}\left[
ho(ec n)
ight]^2 \xi(ec n)~,~~V_{N\Lambda\Lambda}=oldsymbol{c_{N\Lambda\Lambda}}{1\over 2}~\sum_{ec n}
ho(ec n)~\left[\xi(ec n)
ight]^2
ight)$$

 \hookrightarrow must determine 4 LECs! [smearing parameters from the nucleon sector]

 \hookrightarrow first time that the $\Lambda\Lambda N$ three-body force is included

The minimal interaction with strangeness II

Tong, Elhatisari, UGM, 2405.01887 [nucl-th]

 $\cdot \circ \triangleleft < \land \lor >$

• 3BF LECs from the separation energies of Λ and $\Lambda\Lambda$ hyper-nuclei [* prediction]:

Nuclear Lattice EFT - Ulf-G. Meißner - Bonn, June 3rd, 2024

$$B_{\Lambda}({}^{A}_{\Lambda}Z) = E({}^{A-1}Z) - E({}^{A}_{\Lambda}Z)$$

 $B_{\Lambda\Lambda}({}^{A}_{\Lambda\Lambda}Z) = E({}^{A-2}Z) - E({}^{A}_{\Lambda\Lambda}Z)$

Nucleus	NLEFT [MeV]	Exp. [MeV]
$^{5}_{\Lambda}$ He	3.40(1)(1)	3.10(3)
$^9_{\Lambda}$ Be	5.72(5)(4)	6.61(7)
$^{13}_{\Lambda}C$	$10.54(17)(29)^{st}$	11.80(16)
$^{6}_{\Lambda\Lambda}$ He	7.36(1)(4)	6.91(16)
$^{10}_{\Lambda\Lambda}$ Be	13.30(7)(12)	14.70(40)
$^{12}_{\Lambda\Lambda}$ Be	$21.22(56)(21)^{st}$	21.48(121)

 \hookrightarrow this defines our EoS of hyper-nuclear matter called **HMN(I)**

Pure neutron matter

- Input: S-wave phase shifts (2N)
 & symmetric nuclear matter (3N)
- Note: extension of the minimal interaction (leading SU(4) breaking)

Tong, Elhatisari, UGM, 2405.01887 [nucl-th]

\Rightarrow Output: Pure neutron matter (PNM) EoS

- comparable to the renowned APR EoS Akmal, Pandharipande, Ravenhall, Phys. Rev. C 58 (1998) 1804

less stiff than the recent AFDMC one

Gandolfi et al., Eur. Phys. J. A **50** (2014) 10

→ work out consequences for neutron stars based on this PNM EoS

Neutron star properties

Tong, Elhatisari, UGM, 2405.01887 [nucl-th]

• Now solve the TOV equations for the PNM and HNM(I) EoSs:

Mass-radius relation

• Max. neutron star mass: $M_{\rm max} = 2.19(1)(2) M_{\odot}$ for PNM

 $M_{\rm max} = 1.52(1)(1) M_{\odot}$ for HNM(I) \rightarrow need repulsion

 $\cdot \circ \triangleleft < \land \bigtriangledown >$ Nuclear Lattice EFT - Ulf-G. Meißner - Bonn, June 3rd, 2024

EoS of hyper-neutron matter

Tong, Elhatisari, UGM, 2405.01887 [nucl-th]

• Not surprisingly, we need more repulsion [as in the pure neutron matter case]

 \hookrightarrow this will move the threshold of $\mu_\Lambda=\mu_n$ up

 \hookrightarrow take $M_{
m max}$ as data point: $M_{
m max} = 1.93 M_{\odot}$ for HNM(II)

 $M_{
m max} = 2.12 M_{\odot}$ for HNM(III)

• EoS & speed of sound

Mass-radius relation

Finite temperature physics

• Just two teasers for finite T calculations

PHYSICAL REVIEW LETTERS 125, 192502 (2020)

Ab Initio Nuclear Thermodynamics

Bing-Nan Lu[®],¹ Ning Li[®],¹ Serdar Elhatisari[®],² Dean Lee[®],¹ Joaquín E. Drut[®],³ Timo A. Lähde[®],⁴ Evgeny Epelbaum⁹,⁵ and Ulf-G. Meißner[®],^{64,7}
 ¹Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
 ²Faculty of Engineering, Karamanoglu Mehmetbey University, Karaman 70100, Turkey
 ³Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599-3255, USA
 ⁴Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany
 ⁵Ruhr-Universität Bochum, Fakultät für Physik und Astronomie, Institut für Theoretische Physik II, D-44780 Bochum, Germany
 ⁶Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany

(Received 11 April 2020; revised 6 August 2020; accepted 29 September 2020; published 3 November 2020)

We propose a new Monte Carlo method called the pinhole trace algorithm for *ab initio* calculations of the thermodynamics of nuclear systems. For typical simulations of interest, the computational speedup relative to conventional grand-canonical ensemble calculations can be as large as a factor of one thousand. Using a leading-order effective interaction that reproduces the properties of many atomic nuclei and neutron matter to a few percent accuracy, we determine the location of the critical point and the liquid-vapor coexistence line for symmetric nuclear matter with equal numbers of protons and neutrons. We also present the first *ab initio* study of the density and temperature dependence of nuclear clustering.

	Contents lists available at ScienceDirect	PHYSICS LETTER
\$~\$~\$~	Physics Letters B	
ELSEVIER	journal homepage: www.elsevier.com/locate/physletb	Million Million
Letter		
Ab initio study of	nuclear clustering in hot dilute nuclear matter	Check for updates
Zhengyue Ben ^{a,b,D} ,*	Serdar Elhatisari ^{c,b} Timo A. Lähde ^{a,d} Dean Lee ^c Ulf-G. Meißner ^{b,a,f}	
a Institut für Kommbusik Institute for	Advanced Cinculation and Witch Contro for Hadron Division Franchismon Witch D 52405 Witch Communic	
^b Helmholtz-Institut f ür Strahlen- und	avanced simulation and Julich Center for Hadron Physics, Forschungszentrum Julich, D-52425 Julich, Germany. Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany.	
^c Faculty of Natural Sciences and Eng	neering, Gaziantep Islam Science and Technology University, Gaziantep 27010, Turkey	
^a Center for Advanced Simulation and ^c Facility for Rare Isotone Beams and	Analytics (CASA), Forschungszentrum Jülich, D-52425 Jülich, Germany Department of Physics and Astronomy, Michiean State University, East Lansing, MI 48824, USA	
^f Tbilisi State University, 0186 Tbilisi,	Georgia	
ARTICLE INFO	ABSTRACT	
Editor: A. Schwenk	We present a systematic <i>ab initio</i> study of clustering in hot dilute nuclear matter usi	ing nuclear lattice effe
	field theory with an SU(4)-symmetric interaction. We introduce a method called	light-cluster distillation
	lattice results are compared with an ideal gas model composed of free nucleons and cli	usters. Excellent agree
	is found at very low density, while deviations from ideal gas abundances appear at	t increasing density d
	cluster-nucleon and cluster-cluster interactions. In addition to determining the compo	osition of hot dilute nu
	matter as a function of density and temperature, the lattice calculations also serve	e as benchmarks for
	expansion calculations, statistical models, and transport models of fragmentation in nucleus collisions	and clustering in nuc

Phys. Lett. B 850 (2024) 138463

new pinhole trace algorithm
 → liquid-vapor phase transition
 → location of the critical point

- new light cluster distillation method
- \hookrightarrow abundances of dimers, trimers, tetramers
 - \hookrightarrow benchmark for virial calculations

Nuclear Lattice EFT – Ulf-G. Meißner – Bonn, June 3rd, 2024 \cdot O \triangleleft C \wedge ∇ > D

Chiral Interactions at N3LO

Nuclear Lattice EFT – Ulf-G. Meißner – Bonn, June 3rd, 2024 \cdot O \triangleleft < \land ∇ > \triangleright

One motivation: The puzzle of the nuclear radii

• Modern *ab initio* methods get correct energies, but incorrect radii

Cipollone et al., Phys. Rev. C 92 (2015) 014306, ...

• E.g. shell model with SRG evolved chiral NN and NNN interactions

LENPIC, Phys. Rev. C 106 (2022) 064002

Towards precision calculations of heavy nuclei

• Groundbreaking work (Hoyle state, α - α scattering, ...) done at N2LO

- \hookrightarrow precision limited, need to go to N3LO
- Two step procedure:
 - 1) Further improve the LO action

 \hookrightarrow minimize the sign oscillations

 \hookrightarrow minimize the higher-body forces

 \hookrightarrow essentially done \checkmark \rightarrow as just discussed

2) Work out the corrections to N3LO

 \hookrightarrow first on the level of the NN interaction \surd

 \hookrightarrow new important technique: wave function matching \checkmark

 \hookrightarrow second for the spectra/radii/... of nuclei (first results) \checkmark

 \hookrightarrow third for nuclear reactions/astrophysics (first results) \checkmark

NN interaction at N3LO

Li et al., Phys. Rev. C 98 (2018) 044002; Phys. Rev. C 99 (2019) 064001 • np phase shifts including uncertainties for a = 1.32 fm (cf. Nijmegen PWA)

Nuclear Lattice EFT – Ulf-G. Meißner – Bonn, June 3rd, 2024 \cdot O \triangleleft C \wedge ∇ > D

Wave function matching

Elhatisari et al., acc. for publication in Nature [arXiv:2210.17488 [nucl-th]]

• Graphical representation of w.f. matching

• W.F. matching is a "Hamiltonian translator": eigenenergies from H_1 but w.f. from $H_2 = U^{\dagger}H_1U$

Wave function matching for light nuclei

Elhatisari et al., acc. for publication in Nature [arXiv:2210.17488 [nucl-th]], L. Bovermann, PhD thesis

• W.F. matching for the light nuclei

Nucleus	$B_{ m LO}$ [MeV]	B _{N3LO} [MeV]	Exp. [MeV]	
$E_{oldsymbol{\chi},\mathbf{d}}$	1.79	2.21	2.22	
$\langle \psi_{ m soft}^{0} H_{\chi, m d} \psi_{ m soft}^{0} angle $	0.45	0.62		
$\langle \psi^0_{ m soft} H^{\prime}_{\chi, m d} \psi^0_{ m soft} angle $	1.65	2.01		
$ig \langle \psi_{ m soft}^0 H_{\chi, { m t}} \psi_{ m soft}^0 angle $	5.96(8)	5.91(9)	8.48	
$\langle \psi^0_{ m soft} H'_{m{\chi}, { m t}} \psi^0_{ m soft} angle$	7.97(8)	8.72(9)		
$ig \langle \psi_{ m soft}^0 H_{oldsymbol{\chi},oldsymbol{lpha}} \psi_{ m soft}^0 angle $	24.61(4)	23.84(14)	28.30	
$\langle \psi_{ m soft}^{0} H_{\chi,lpha}^{\prime} \psi_{ m soft}^{0} angle $	27.74(4)	29.21(14)		

- reasonable accuracy for the light nuclei
- Tjon-band recovered with H'_{γ}

Platter, Hammer, UGM, Phys. Lett. B 607 (2005) 254

 \hookrightarrow now let us go to larger nuclei....

Nuclei at N3LO

• Binding energies of nuclei for a = 1.32 fm: Determining the 3NF LECs

Elhatisari et al., acc. for publication in *Nature* [arXiv:2210.17488 [nucl-th]]

 \rightarrow excellent starting point for precision studies

Prediction: Charge radii at N3LO

Elhatisari et al., acc. for publication in Nature [arXiv:2210.17488 [nucl-th]]

• Charge radii (a = 1.32 fm, statistical errors can be reduced)

 \hookrightarrow no radius problem!

Nuclear Lattice EFT – Ulf-G. Meißner – Bonn, June 3rd, 2024 \cdot \circ < \land \bigtriangledown \checkmark > \triangleright \bullet

Prediction: Neutron & nuclear matter at N3LO

Elhatisari et al., acc. for publication in Nature [arXiv:2210.17488 [nucl-th]]

• EoS of pure neutron matter & nuclear matter (a = 1.32 fm)

 \hookrightarrow can be improved using average twisted b.c.'s (Lu et al. (2020)

Nuclear Lattice EFT – Ulf-G. Meißner – Bonn, June 3rd, 2024 \cdot O \triangleleft C \wedge ∇ > D \bullet

Prediction: Isotope chains of carbon & oxyen

NLEFT collaboration, in progress

• Towards the neutron drip-line in carbon and oxygen:

 \hookrightarrow 3NFs of utmost importance for the n-rich isotopes!

Chiral Interactions (at N3LO): Applications to scattering

Scattering: Methods I

- The time-honored Lüscher approach: Lüscher, Commun. Math. Phys. **105** (1986) 153; Nucl. Phys. B **354** (1991) 531 Phase shifts from the volume dependence of the energy levels
- \hookrightarrow works in many cases, problems w/ partial-wave mixing and cluster-cluster scattering
- Spherical wall technique: impose spherical b.c.'s on the lattice

Carlson et al., Nucl. Phys. A 424 (1984) 47; Borasoy et al., Eur. Phys. J. A 34 (2007) 185

- \hookrightarrow not too small lattices, partial-wave mixing under control
- Improved spherical wall method:
 - Lu, Lähde, Lee, UGM, Phys. Lett. B 760 (2016) 309
 - perform angular momentum projection
 - impose an auxiliary potential behind $R_{
 m wall}$
 - $\hookrightarrow \text{much improved precision}$

 $\cdot \circ \triangleleft < \land \bigtriangledown >$

Scattering: Methods II

• Adiabatic projection method :

Rupak, Lee, Phys. Rev. Lett. **111** (2013) 032502; Pine, Lee, Rupak, Eur. Phys. J. A **49** (2013) 151; Elhatisari et al., Eur. Phys. J. A **52** (2016) 174;

- Construct a low-energy effective theory for clusters
- Use initial states parameterized by the relative separation between clusters

$$ert ec{R}
angle = \sum_{ec{r}} ert ec{r} + ec{R}
angle \otimes ec{r}$$

project them in Euclidean time w/ chiral H

$$ert ec R
angle_{ au} = \exp(-H au) ert ec R
angle$$

- \rightarrow "dressed cluster states" (polarization, deformation, Pauli)
- Adiabatic Hamiltonian (requires norm matrices)

$$[H_{ au}]_{ec Rec R'}={}_{ au}\langleec Rec Her ec R'
angle_{ au}$$

• favorable scaling:

$$t_{
m CPU} \sim (A_1 + A_2)^2
ight)$$

 $\cdot \circ \triangleleft < \land \lor >$

Adiabatic Hamiltonian with Coulomb

Nuclear Lattice EFT – Ulf-G. Meißner – Bonn, June 3rd, 2024 \cdot O < \land \bigtriangledown > \triangleright \bullet

Breakthrough: Ab initio α - α scattering

Elhatisari, Lee, Rupak, Epelbaum, Krebs, Lähde, Luu, UGM, Nature **528** (2015) 111 Elhatisari, Lähde, Lee, UGM, Vonk, JHEP **02** (2022) 001

• Parameter-free S-wave and D-wave phase shifts at NNLO, updated in 2022

Afzal et al., Rev. Mod. Phys. 41 (1969) 247 [data]

Neutron-alpha scattering at N3LO

Elhatisari, Hildenbrand, UGM, in progress

• Use Lüscher's method to calculate n- α scattering

• R-matrix results from G. Hale, private communication

 \hookrightarrow Some fine-tuning of three-body forces for $^2P_{1/2}$ needed

Nuclear Lattice EFT – Ulf-G. Meißner – Bonn, June 3rd, 2024 \cdot O \triangleleft C \wedge ∇ > D \bullet

On-going projects

Nuclear Lattice EFT – Ulf-G. Meißner – Bonn, June 3rd, 2024 \cdot O \triangleleft C \wedge ∇ > D \bullet

Further directions

- Just discuss two important directions
 - 1) β and double- β decays:
 - \hookrightarrow probing the weak interactions in nuclei
 - \hookrightarrow providing precise nuclear M.E.s for $0\nu 2\beta$ decays (⁴⁸Ca, ⁷⁶Ge, ...)
 - \rightarrow show first result
 - 2) The "holy grail" of nuclear astrophysics: $\alpha + {}^{12}C \rightarrow {}^{16}O + \gamma$ at E_{Gamov}
 - \hookrightarrow consider first $\alpha + {}^{12}C$ elastic scattering
 - \hookrightarrow add the second channel to account for the photon in the final state
 - \rightarrow show first result

Prediction: Triton β **-decay at N3LO**

Elhatisari, Hildenbrand, UGM, in preparation

• Master formula:
$$(1 + \delta_R) t_{1/2} f_V = \frac{K/G_V^2}{\langle \mathsf{F} \rangle^2 + \frac{f_A}{f_V} g_A^2 \langle \mathsf{GT} \rangle^2}$$

Experiment:
$$\langle \mathsf{F} \rangle = \sum_{n=1}^{3} \langle {}^{3}\mathrm{He} \| au_{n,+} \| {}^{3}\mathrm{H} \rangle = 0.9998$$
 [theory!]
 $\langle \mathsf{GT} \rangle = \sum_{n=1}^{3} \langle {}^{3}\mathrm{He} \| \sigma_{n} au_{n,+} \| {}^{3}\mathrm{H} \rangle = 1.6474(23)$

• Larger *L* underway...

Scattering: Alpha-carbon scattering at N3LO

Elhatisari, Hildenbrand, UGM, ... NLEFT, in progress

- Use the APM, first step for the holy grail of nuclear astrophysics
 - \hookrightarrow different Euclidean times & different initial states

Plaga et al., Nucl. Phys. A 465 (1987) 291

54

Nuclear Lattice EFT – Ulf-G. Meißner – Bonn, June 3rd, 2024 · O < < / ∇ > D o

Perspectives

Nuclear Lattice EFT – Ulf-G. Meißner – Bonn, June 3rd, 2024 \cdot O \triangleleft < \land \bigtriangledown > \triangleright \bullet

Perspectives

- Established NLEFT as a precision quantum many-body approach $\sqrt{}$ \hookrightarrow CRC 110 instrumental in achieving this! \hookrightarrow ERC AdG
- Very successful within the CRC 110:

2 Nature, 1 Nat. Comm., 14 Phys. Rev. Lett., 1 Rev. Mod. Phys., $\sqrt{}$ plus 1 textbook!

- Also successful in terms of personal: 3 post-doc → professors
 Bing-Nan Lu (GSCAEP), Ning Li (SCNU), Shihang Shen (Beihang U.)
- On-going and future research:
 - proton and neutron drip lines towards heavy nuclei
 - precision low-energy scattering for BBN and stellar reactions
 - hypernuclear landscape
 - anthropics (fine-tunings in element generation)

Timo A. Lähde

IIIf_G Meißne

Theory

Nuclear Lattice

Deringer

Effective Field

Thank you for your attention !

Nuclear Lattice EFT – Ulf-G. Meißner – Bonn, June 3rd, 2024 \cdot O \triangleleft < \land ∇ >

Þ

SPARES

More on EFTs

• Much more details on EFTs in light quark physics:

Effective Field Theories

AUTHORS:

Ulf-G Meißner, Rheinische Friedrich-Wilhelms-Universität Bonn and Forschungszentrum Jülich Akaki Rusetsky, Rheinische Friedrich-Wilhelms-Universität Bonn DATE PUBLISHED: August 2022 AVAILABILITY: Available FORMAT: Hardback ISBN: 9781108476980 Rate & review

https://www.cambridge.org/de/academic/subjects/physics/theoretical-physics-and-mathematical-physics/effective-field-theories

Configurations

• Cluster and shell model configurations

Transient energies

• Transient energies from cluster and shell-model configurations

Nuclear Lattice EFT – Ulf-G. Meißner – Bonn, June 3rd, 2024

61

 $\land \nabla$

<

<

• 0

Electromagnetic properties

Shen, Elhatisari, Lähde, Lee, Lu, UGM, Nature Commun. 14 (2023) 2777

• Radii (be aware of excited states), quadrupole moments & transition rates

	NLEFT	FM	D α clus	ster B	BEC	RXMC	Exp.		
$r_c(0^+_1)$ [fm]	2.53(1)	2.5	3 2.54	4 2	.53	2.65	2.47(2	2)	
$r(0^+_2)$ [fm]	3.45(2)	3.3	8 3.7	1 3	.83	4.00	_		
$r(0^+_3)$ [fm]	3.47(1)	4.6	2 4.7	5	_	4.80	_		
$r(2^+_1)$ [fm]	2.42(1)	2.5	0 2.3	7 2	.38	_	_		
$r(2^+_2)$ [fm]	3.30(1)	4.4	3 4.43	3	_	_	_		
			NLEFT	FMD	α	cluster	NCSM		Exp.
$Q(2^+_1)$ [$e{ m fm}^2$	2]		6.8(3)	_		_	6.3(3)	8.	$\overline{1(2.3)}$
$Q(2^+_2)$ [$e{ m fm}^2$	²]		-35(1)	—		—	_		—
$M(E0,0^+_1$ –	$ ightarrow 0^+_2)$ [e fm	²]	4.8(3)	6.5		6.5	—	5	.4(2)
$M(E0,0^+_1$ –	$ ightarrow 0^+_3)$ [e fm	²]	0.4(3)	—		—	—		—
$M(E0,0^+_2$ –	$ ightarrow 0^+_3)$ [e fm	²]	7.4(4)	—		—	—		—
$B(E2,2^+_1-$	$ ightarrow 0^+_1)$ [e^2 fm	1^4]	11.4(1)	8.7		9.2	8.7(9)	7	.9(4)
$B(E2,2^+_1-$	$ ightarrow 0^+_2)$ [e^2 fm	$\mathfrak{h}^4]$	2.5(2)	3.8		0.8	_	2	.6(4)

Sanity check

- Repeat the calculations w/ the time-honored N2LO chiral interaction
 - \hookrightarrow better NN phase shifts than the SU(4) interaction
 - \hookrightarrow but calculations are much more difficult (sign problem)

- spectrum as before (good agreement w/ data)
- density distributions as before (more noisy, stronger sign problem)

Nuclear Lattice EFT – Ulf-G. Meißner – Bonn, June 3rd, 2024 \cdot O \triangleleft C \wedge ∇ > D

Wave function matching II

Elhatisari et al., acc. for publication in ... [arXiv:2210.17488 [nucl-th]]

- \bullet $H_{\rm soft}$ has tolerable sign oscillations, good for many-body observables
- H_{χ} has severe sign oscillations, derived from the underlying theory
- \hookrightarrow can we find a unitary trafo, that creates a chiral H_{χ} that is pert. th'y friendly?

$$H'_\chi = U^\dagger \, H_\chi \, U$$

 \Box Let $|\psi^0_{
m soft}
angle$ be the lowest eigenstate of $H_{
m soft}$

 \Box Let $|\psi^0_\chi
angle$ be the lowest eigenstate of H_χ

 \Box Let $|\phi_{
m soft}
angle$ be the projected and normalized lowest eigenstate of $H_{
m soft}$ $|\phi_{
m soft}
angle = \mathcal{P} |\psi_{
m soft}^0
angle / ||\psi_{
m soft}^0
angle||$

 \Box Let $|\phi_{\chi}
angle$ be the projected and normalized lowest eigenstate of H_{χ} $|\phi_{\chi}
angle = \mathcal{P} |\psi_{\chi}^0
angle / ||\psi_{\chi}^0
angle ||$

$$\hookrightarrow U_{R',R} = \theta(r-R)\delta_{R',R} + \theta(R'-r)\theta(R-r)|\phi_{\chi}^{\perp}\rangle\langle\phi_{\rm soft}^{\perp}|$$

Nuclear Lattice EFT – Ulf-G. Meißner – Bonn, June 3rd, 2024 \cdot O \triangleleft C \wedge ∇ > D \bullet