Collaborative Research Center CRC 110 "Symmetries and the emergence of structure in QCD"

Two CRC periods of project B.11 (FP 2 and 3) "Coupled-channel dynamics"

CRC 110 Final Meeting, Bonn, June 2024

| PL's: Bing-Song Zou , Deborah Rönchen

In collaboration with: M. Döring, J. Hergenrather, M. Mai, T. Mart, Ulf-G. Meißner, S. Rawat, C. Schneider, C.-W. Shen, Y.-F. Wang, Z.-L. Wang, R. Workman |

Member of the Helmholtz Association

The excited baryon spectrum:

Connection between experiment and QCD in the non-perturbative regime

Theoretical predictions of excited hadrons e.g. from relativistic quark models:

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000

Goals:

- Extraction of N*, Δ* and Y* resonances in pion-, kaon-, photon- and electron induced reactions using a dynamical coupled-channel (DCC) approach
- Analysis of states in the hidden-charm (-beauty) sector, P_c states

Methods:

Jülich-Bonn dynamical coupled-channels model ("JüBo DCC")

EPJ A 49, 44 (2013)

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial-wave basis

$$\begin{split} L'S'p'|T^{IJ}_{\mu\nu}|LSp\rangle &= \langle L'S'p'|V^{IJ}_{\mu\nu}|LSp\rangle + \\ \sum_{\gamma,L''S''} \int_{0}^{\infty} dq \quad q^{2} \quad \langle L'S'p'|V^{IJ}_{\mu\gamma}|L''S''q\rangle \frac{1}{E - E_{\gamma}(q) + i\epsilon} \langle L''S''q|T^{IJ}_{\gamma\nu}|LSp\rangle \end{split}$$

- theoretical constraints on the S matrix: unitarity and analyticity
- resonances = poles on the 2nd
 Riemann sheet of T
- hadronic reactions: potentials V constructed from effective L
- s-channel diagrams: T^P genuine resonance states
- t- and u-channel: T^{NP} (dynamical generation of poles)

EPJ A 49, 44 (2013)

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial-wave basis

$$\begin{split} L'S'p'|T^{IJ}_{\mu\nu}|LSp\rangle &= \langle L'S'p'|V^{IJ}_{\mu\nu}|LSp\rangle + \\ &\sum_{\gamma,L''S''} \int_{0}^{\infty} dq \quad q^{2} \quad \langle L'S'p'|V^{IJ}_{\mu\gamma}|L''S''q\rangle \frac{1}{E - E_{\gamma}(q) + i\epsilon} \langle L''S''q|T^{IJ}_{\gamma\nu}|LSp\rangle \end{split}$$

hadronic channels ν , μ , γ :

EPJ A 49, 44 (2013)

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial-wave basis

$$\begin{split} L'S'p'|T^{IJ}_{\mu\nu}|LSp\rangle &= \langle L'S'p'|V^{IJ}_{\mu\nu}|LSp\rangle + \\ \sum_{\gamma,L''S''} \int_{0}^{\infty} dq \quad q^{2} \quad \langle L'S'p'|V^{IJ}_{\mu\gamma}|L''S''q\rangle \frac{1}{E - E_{\gamma}(q) + i\epsilon} \langle L''S''q|T^{IJ}_{\gamma\nu}|LSp\rangle \end{split}$$

- theoretical constraints on the S matrix: unitarity and analyticity
- resonances = poles on the 2nd
 Riemann sheet of T
- hadronic reactions: potentials V constructed from effective L
- s-channel diagrams: T^P genuine resonance states
- t- and u-channel: T^{NP} (dynamical generation of poles)

EPJ A 49, 44 (2013)

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial-wave basis

$$\begin{split} L'S'p'|T^{IJ}_{\mu\nu}|LSp\rangle &= \langle L'S'p'|V^{IJ}_{\mu\nu}|LSp\rangle + \\ &\sum_{\gamma,L''S''} \int_{0}^{\infty} dq \quad q^{2} \quad \langle L'S'p'|V^{IJ}_{\mu\gamma}|L''S''q\rangle \frac{1}{E - E_{\gamma}(q) + i\epsilon} \langle L''S''q|T^{IJ}_{\gamma\nu}|LSp\rangle \end{split}$$

- theoretical constraints on the S matrix: unitarity and analyticity
- resonances = poles on the 2nd Riemann sheet of T
- photon/electron reactions: potentials V energy-dependent polynomials
 - $T_{\mu\kappa}$: full hadronic *T*-matrix → simultaneous fit of pion- and photon (electron) induced reactions

 $\langle L$

Progress during the CRC 110 FPs 2 and 3

Inclusion of the $\pi N \rightarrow \omega N$ channel (Yu-Fei Wang *et al.* PRD 106 (2022)) (ωN channel not yet included in photoproduction fits)

Extension of the JüBo model to $K\Lambda$ photoproduction on the proton (EPJA 54 (2018) 110):

- Simultaneous analysis of $\pi N \to \pi N, \eta N, K\Lambda, K\Sigma$ and $\gamma p \to \pi N, \eta N, K\Lambda$
- determination of the N^* and Δ^* states, e.g. confirmation of the $N(1900)3/2^+$

 Λ decay parameter α_{-} :

BESIII measurement ($e^+e^- \rightarrow J/\psi \rightarrow \Lambda\bar{\Lambda}$): $\alpha_- = 0.750 \pm 0.009 \pm 0.004$ (Ablikim, Nature (2019))

data: Paterson (CLAS) PRC 93, 065201

(2016)

Analysis of new CLAS eta photoproduction data, P. Collins et al. PLB 771, 213 (2017)

Extension to $K\Sigma$ photoproduction on the proton

JüBo2022 Eur.Phys.J.A 58 (2022) 229

Simultaneous analysis of $\pi N \to \pi N, \eta N, K\Lambda, K\Sigma$ and $\gamma p \to \pi N, \eta N, K\Lambda, K\Sigma$

■ almost 72,000 data points in total, $W_{max} = 2.4 \text{ GeV}$

$$\gamma p \to K^+ \Sigma^0: \, d\sigma/d\Omega, P, \Sigma, T, C_{x',z'}, O_{x,z} = 5,652$$
$$\gamma p \to K^0 \Sigma^+: \, d\sigma/d\Omega, P = 448$$

- **polarizations scaled by new** Λ decay constant α_{-} (Ireland PRL 123 (2019), 182301), if applicable
- χ² minimization with MINUIT on JURECA [Jülich Supercomputing Centre, JURECA: JLSRF 2, A62 (2016)]

Resonance analysis:

- all PDG 4-star N and Δ states up to J = 9/2 are seen (exception: $N(1895)1/2^{-}$) + some states rated less than 4 stars
- no additional s-channel diagram, but indications for new dyn. gen. poles

New data on $\gamma p \rightarrow K^0 \Sigma^+$ by CLAS L. Clark et al. 2404.19404 more (double) polarization observables \rightarrow JüBo2023-1 fit

Selected fit results

Elementary or composite state?

Weinberg's criterion (deuteron) for elementariness Z

from scattering length a and effective range r :

$$a = -\frac{2(1-Z)}{2-Z}R + O(L)$$
 $r = -\frac{Z}{1-Z}R + O(L);$

 $R = (2\mu B)^{-1/2} \simeq 4.3$ fm deuteron radius, $L = 1/M_{\pi} \simeq 1.4$ fm interaction range,

- experiment: a = -5.41 fm , r = 1.75 fm \rightarrow small $Z \rightarrow$ deuteron composed of two nucleons
- conditions: *S*-wave, near-threshold, stable

Modern generalizations:

- Higher partial waves, broad resonances, not close to thresholds
- among other approaches: spectral density functions [Baru et al., PLB 586, 53 (2004)]
- \blacksquare apply to comprehensive data driven models \rightarrow meaningful results

Coupled-channel formalisim

- coupled channels: elementariness Z disperses into a finite probability distribution $w(z) \sim$ "spectral density function"
- mathematically: w(z) projection of physical scattering state (with energy z) on bare elementary state

 $w_i(z) = -\frac{1}{\pi} \text{Im} D_{ii}(z)$ D_{ii} dressed propagator of bare *s*-channel state *i*, includes full coupled-channel *T* matrix

$$\mathcal{Z}_i \simeq \frac{\int_{M_R - \Gamma_R}^{M_R + \Gamma_R} w_i(z) dz}{\int_{M_R - \Gamma_R}^{M_R + \Gamma_R} BW(z) dz}, \qquad BW(z) \equiv \frac{1}{\pi} \frac{\Gamma_R/2}{(z - E_R)^2 + (\Gamma_R/2)^2}$$

more than one bare state in a PW: Total elementariness:

$$\mathcal{Z} = 1 - \prod_{i} (1 - \mathcal{Z}_{i})$$

Y.-F. Wang et al. PRC 109 (2024)

Application to the JüBo2022 resonances

Selected results for N^* states: spectral density functions

Blue solid line: BW denominator Orange dashed (green dash-dotted): 1st (2nd) spectral density function (model) Red dotted: locally constructed function

Vertical lines: the integral region

Y.-F. Wang et al. PRC 109 (2024)

Application to the JüBo2022 resonances

Selected results for N^* states: elementariness

State	Pole position (MeV)	\mathcal{Z}_1	\mathcal{Z}_2	\mathcal{Z}_{tot}	\mathcal{Z}^{lc}
$N(1535) \frac{1}{2}^{-}$	1504 — 37 <i>i</i>	24.8%	5.6%	29.0%	50.8%
$N(1650) \frac{1}{2}^{-}$	1678 — 64 <i>i</i>	13.4%	91.7%	92.8%	70.5%
$N(1440) \frac{1}{2}^+$	1353 — 102 <i>i</i>	48.7%	1.7%	49.5%	31.5%
$N(1710) \frac{1}{2}^+$	1605 — 58 <i>i</i>	11.5%	10.3%	20.6%	10.2%
$N(1720) \frac{3}{2}^+$	1726 — 93 <i>i</i>	34.1%	68.5%	79.3%	62.5%
$N(1900) \frac{3}{2}^+$	1905 — 47 <i>i</i>	19.9%	100%	100%	99.9%
$N(1520) \frac{3}{2}^{-}$	1482 — 63 <i>i</i>	29.4%		29.4%	7.2%
$N(1680) \frac{5}{2}^+$	1657 — 60 <i>i</i>	67.9%		67.9%	69.9%

Green: high compositeness, blue: high elementariness

Electroproduction

Experimental studies of electroproduction:

major progress in recent years, e.g., from JLab, MAMI, ...

- 10⁵ data points for πN , ηN , KY, $\pi \pi N$ electroproduction
- access the Q² dependence of the amplitude

 \rightarrow expected to provide a link between perturbative QCD and the region where quark confinement sets in

■ so far, no new N* or ∆* established from electroproduction: data not yet analyzed on the same level as photoproduction Reviews: Prog.Part.Nucl.Phys. 67 (2012); Few. Body Syst. 63 (2022) 3, 59

Single-channels analyses, e.g.:

- MAID: π, η, kaon electroproduction (EPJA 34, 69 (2007), NPA 700, 429 (2002),)
- JLab: π electroproduction covering the resonance region (PRC 80 (2009) 055203)

Figure and data from Markov et al. (CLAS) PRC 101 (2020), resonance contribution: JLab/YerPhI

Coupled-channels analyses:

- ANL-Osaka: extension of DCC analysis of pion electroproduction (PRC 80, 025207 (2009)) in progress (Few Body Syst. 59 (2018) 3, 24)
- **Jülich-Bonn-Washington approach** M. Mai *et al.* PRC 103 (2021): $\gamma^* p \rightarrow \pi^0 p$, $\pi^+ n$, ηp , $K\Lambda$

Jülich-Bonn-Washington (JBW) parametrization

- simultaneous fit to πN , ηN , $K \Lambda$ electroproduction off proton ($W < 1.8 \text{ GeV}, Q^2 < 8 \text{ GeV}^2$)
- 533 fit parameters, 110.281 data points
- Input from JüBo: $V_{\mu\gamma}(k, W, Q^2 = 0)$, $T_{\mu\kappa}(k, p, W)$, $G_{\kappa}(p, W)$

 \rightarrow universal pole positions and residues (fixed in this study)

 long-term goal: fit pion-, photo- and electron-induced reactions simultaneously

 $\gamma^* p \to K \Lambda$ at W = 1.7 GeV

based on most recent JBW, JüBo2022

 Q^2 dependence of transition form factors (TFFs) allows conclusions on the nature of resonances.

Here:

- for the first time determined from a coupled-channel study of πN , ηN , and $K\Lambda$ electroproduction (+ constraints from photon and pion-induced reactions)
- first estimation of TFFs for higher excited states
- from poles, not Breit-Wigner states

TFFs defined independently of the hadronic final state as Workman et al. PRC 87 (2013) :

$$H_h^{l\pm,l}(Q^2) = C_l \sqrt{\frac{p_{\pi N}}{\omega_0}} \frac{2\pi (2J+1)z_p}{m_N \widetilde{R}^{l\pm,l}} \widetilde{H}_h^{l\pm,l}(Q^2) \,,$$

h = 1/2, 3/2 helicity, H (=A or S) helicity amplitudes, $\widetilde{H}, \widetilde{R}$ residues, z_p pole position

Y.-F. Wang et al. 2404.17444 [nucl-th]

based on most recent JBW, JüBo2022

 Δ states:

[ANL/OSAKA: Kamano Few Body Syst. 59, 24 (2018), MAID: Tiator et al. PRC94 (2016)]

Member of the Helmholtz Association

Y.-F. Wang et al. 2404.17444 [nucl-th]

based on most recent JBW, JüBo2022

N^* states:

JÜLICH Forschungszentrum

Y.-F. Wang et al. 2404.17444 [nucl-th]

based on most recent JBW, JüBo2022

The Roper resonance $N(1440)1/2^+$:

- Zero crossing in ReA_{1/2} at smaller Q² than in Breit-Wigner determinations or in ANL/OSAKA [Kamano, Few Body Syst. 59, 24 (2018)]
- important for quark models, DSE: meson cloud contributions or radial excitation of the nucleon?

Transverse charge density ρ of $p \rightarrow N(1440)$ transition:

following Tiator et al. Chin. Phys. C 33 (2009)

study flavor decomposition, *u* and *d* quark distribution

Orange band: JBW, red line: MAID 2007. Insets: light/dark shades represent negative/positive values b: transverse position in xy-plane

Hidden charm reactions

Hidden charm reactions in JüBo wang, Shen, Rönchen, Meißner, Zou $\bar{D}^{(*)}\Lambda_c - \bar{D}^{(*)}\Sigma_c^{(*)}$ interactionsEPJ C 82, 497 (2022)

- 2017: exploratory study of only two channels, $\bar{D}\Lambda_c$ and $\bar{D}\Sigma_c$ Shen et al. CPC 42, 023106 (2018)
- 2022: extension to a more complete coupled-channel calculation: $\bar{D}\Lambda_c$, $\bar{D}\Sigma_c$, $\bar{D}^*\Lambda_c$, $\bar{D}^*\Sigma_c$, $\bar{D}\Sigma_c^*$
 - \rightarrow more comprehensive picture of the hidden-charm resonance spectrum
 - \rightarrow postdict LHCb pentaquarks by tuning free parameters, predict additional dyn. gen. states

Selected results:

$$J^P = 1/2^-, I = 1/2$$
:

- $z_0 = 4312.4 i2.9 \text{ MeV} (\overline{D}\Sigma_c \text{ bound state}) \rightarrow LHCb P_c(4312)$ Aaij et al. PRL 122, 222001 (2019)
- $z_0 = 4439.4 i2.8 \text{ MeV} (\bar{D}^* \Sigma_c \text{ bound state}) \rightarrow$ LHCb $P_c(4440)$ Aaij *et al.* PRL 122, 222001 (2019)

$$J^P = 3/2^-, I = 1/2$$
:

- $z_0 = 4375.9 i7.6$ MeV ($\overline{D}\Sigma_c^*$ bound state)
- $z_0 = 4460.0 i3.9 \text{ MeV} (\bar{D}^* \Sigma_c \text{ bound state}) \rightarrow$ LHCb $P_c(4457)$ Aaij et al. PRL 122, 222001 (2019)

 $J^P = 1/2^+, I = 1/2$:

- $z_0 = 4339.3 i106.3 \text{ MeV} \rightarrow \text{LHCb } P_c(4337)$? Aaij et al. PRL 128, 062001 (2022)
- + several resonances in higher PWs

P_c states from fit to LHCb data

C.-W Shen et al. 2405.02626 [hep-ph]

 $J/\psi p$ invariant mass distributions in the $\Lambda^0_b o J/\psi p K^-$ decay

- \rightarrow extend framework to $J/\psi N$ channel
 - $J/\psi p$ invariant mass distribution:

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}m_{J/\psi\rho}} = \frac{\tilde{q}_{J/\psi}q_K}{4(2\pi)^3m_{\Lambda_b}} \left(\sum_{J=1/2}^{5/2}|T^J|^2 + |T_{bg}|^2\right)$$

with

$$T^{1/2} = \sum_{\kappa} g_{\kappa}^{1/2} G_{\kappa} T_{\kappa J/\psi p}^{1/2}$$
$$T^{3/2} = \sum_{\kappa} g_{\kappa}^{3/2} G_{\kappa} T_{\kappa J/\psi p}^{3/2} q_{\kappa}$$
$$T^{5/2} = \sum_{\kappa} g_{\kappa}^{5/2} G_{\kappa} T_{\kappa J/\psi p}^{5/2} q_{\kappa}^{2}$$

 g^{J}_{κ} : free fit parameters $T^{J}_{\kappa\,J/\psi p},\,G_{\kappa}$: coupled-channel T -matrix and propagator

Polynomial background term:

$$T_{bq} = a + bs + cs^2$$

s: Mandelstam variable; *a*, *b*, *c*: free fit parameters

P_c states from fit to LHCb data

C.-W Shen et al. 2405.02626 [hep-ph]

Three fit results with different starting values

Fit parameters:

- g_{κ}^{J} in T^{J}
- cut-offs in form factors of coupled-channel *T*-matrix
- a, b, c: free fit parameters in T_{bg}
- ightarrow 33 fit parameters, 175 data points

Member of the Helmholtz Association

P_c states from fit to LHCb data

Resonance analysis: 4 prominent narrow states

Fit	z_R , J^P
А	$4312.3 - i2.4, \frac{1}{2}^{-1}$
В	$4314.0 - i0.74, \frac{1}{2}^{-1}$
С	$4312.9 - i2.6, \frac{1}{2}^{-1}$
Α	$4366.5 - i4.7, \frac{3}{2}^{-1}$
В	$4378.7 - i4.1, \frac{3}{2}^{-1}$
С	$4365.9 - i4.7, \frac{3}{2}^{-1}$
Α	$4433.0 - i9.3, \frac{1}{2}^{-1}$
В	$4433.4 - i3.2, \frac{1}{2}^{-1}$
С	4438.6 - $i10, \frac{1}{2}^{-}$
Α	4461.4 - $i9.7, \frac{3}{2}^{-}$
В	4461.5 - i 14, $\frac{3}{2}^{-}$
С	$4464.9 - i6.8, \frac{3}{2}^{-1}$

- just below $\overline{D}\Sigma_c$, strong coupling to $\overline{D}\Sigma_c$ $\rightarrow \overline{D}\Sigma_c$ boundstate
- *P*_c(4312)

• $\bar{D}\Sigma_c^*$ bound state

strong coupling to $\overline{D}^*\Sigma_c$, below $\overline{D}^*\Sigma_c$ threshold \rightarrow likely a $\overline{D}^*\Sigma_c$ bound state

■ *P*_c(4440)

- strong coupling to $\bar{D}^*\Sigma_c$
- below $\bar{D}^*\Sigma_c$ threshold in Fit A, B, above in Fit C
- *P_c*(4457)

, ,

C.-W Shen et al. 2405.02626 [hep-ph]

P_c states from fit to LHCb data

C.-W Shen et al. 2405.02626 [hep-ph]

Resonance analysis: poles in higher partial waves

				-
		z _R [MeV]		-
J^P	Fit A	Fit B	Fit C	-
$\frac{1}{2}^{-}$	4408.1 - <i>i</i> 181.5	4413.8 – <i>i</i> 182.4	4407.1 – <i>i</i> 178.1	-
$\frac{1}{2}^{-}$	4475.7 – <i>i</i> 143.6	4502.5 – <i>i</i> 140.7	4476.4 – <i>i</i> 143.9	-
$\frac{1}{2}^{+}$	4337.2 – <i>i</i> 76.3	4325.4 – <i>i</i> 85.4	4335.1 – <i>i</i> 75.3	$P_c(4337)$?
$\frac{3}{2}^{+}$	4413.0 - <i>i</i> 197.0	4410.9 – <i>i</i> 193.0	4413.3 – <i>i</i> 196.0	-
$\frac{3}{2}^{+}$	4387.9 – <i>i</i> 156.3	-	4387.4 – <i>i</i> 156.1	$P_c(4380)$?
$\frac{3}{2}^{-}$	4408.0 - <i>i</i> 168.9	4408.3 – <i>i</i> 175.9	4407.0 - <i>i</i> 167.6	,
$\frac{3}{2}^{-}$	4506.6 – <i>i</i> 136.2	4501.5 – <i>i</i> 132.3	4506.5 – <i>i</i> 133.9	-
$\frac{5}{2}^{-}$	4411.6 - <i>i</i> 180.1	-	4411.6 – <i>i</i> 179.9	-
$\frac{5}{2}^{+}$	4400.4 - <i>i</i> 100.6	4393.3 – <i>i</i> 101.6	4400.9 - <i>i</i> 100.5	-
$\frac{5}{2}^{+}$	4467.1 – <i>i</i> 100.3	4457.8 – <i>i</i> 140.4	4466.7 – <i>i</i> 103.2	-
$\frac{5}{2}^{+}$	4439.1 – <i>i</i> 122.6	-	4437.9 – <i>i</i> 121.9	🖉 🛦 . IÜI

Extension of JüBo to $\overline{K}N$ scattering: in progress PhD topic of S. Rawat (FZJ)

- use SU(3) to adapt $\pi N \to X$ model to $\overline{K}N \to X$
- goal: determine hyperon spectrum, i.e. Λ^* and Σ^* states

- Almost finished: coupled-channel fit to $\bar{K}N \rightarrow \bar{K}N, \pi\Lambda, \pi\Sigma$
- next step: resonance analysis (pole search)

Summary project B.11 "Coupled-channel dynamics"

Extension of JüBo to

- *K*Λ, *K*Σ photoproduction (EPJA 54 (2018) 110, EPJ A 58 (2022) 229, 2404.19404)
- $\pi N \rightarrow \omega N$ (Yu-Fei Wang *et al.* PRD 106 (2022))
- hidden-charm channels (Shen CPC 42 (2018), Wang EPJ C 82 (2022), Shen 2405.02626) → P_c states
- Electroproduction of pions, etas, KΛ: Jülich-Bonn-Washington collaboration (Mai PRC 103 (2021) 065204, PRC 106 (2022), EPJ A 59 (2023))

Further activities:

- Compositeness or elementariness of baryon resonances (Wang PRC 109 (2024))
- Baryon transition form factors beyond Roper and $\Delta(1232)$, many for the first time (Wang 2404.17444)
- **–** JüBo model for $\bar{K}N$ scattering (hyperon resonance spectrum): PhD project S. Rawat, almost finished
- Coupled channel study of *a*₀ resonances (Z.-L. Wang, B.-S. Zou EJP C 82 (2022) 509)

Thank you for you attention!

Appendix

Numerical results

Numerical details

Slide by Yu-Fei Wang

- Selection of the resonances
 - JüBo2022 solution (KΣ photoproduction, no ωN) [Rönchen et. al., EPJA 58, 229 (2022)]
 - For $N^* J \leq 5/2$, for $\Delta J \leq 3/2$
 - Width $\Gamma_R < 300 \text{ MeV}$
- Uncertainties → comparison of three results
 - spectral density functions directly from the model
 - locally constructed spectral density functions only by the pole position and residues (L_{κ} : loop functions)

$$w^{lc}(z) = -\frac{1}{\pi} Im \left[z - M_0 - \sum_{\kappa} g_{\kappa}^2 L_{\kappa}(z) \right]^{-1}$$

■ complex compositeness of the Gamow state, with naive measure [Sekihara, PRC 104, 035202 (2021)]

$$\tilde{X}_{\kappa} \equiv \frac{|X_{\kappa}|}{\sum_{\alpha} |X_{\alpha}| + |Z|}, \tilde{Z} \equiv \frac{|Z|}{\sum_{\alpha} |X_{\alpha}| + |Z|}$$

October 15, 2023

Slide 8

Numerical results

Spectral density functions – Δ states

Blue solid line: the Breit-Wigner denominator. Orange dashed (green dash-dotted) line: the 1st (2nd) spectral density function (model). Red dotted line: the locally constructed function. Vertical lines: the integral region.

Local construction of the spectral density functions

Local simulation of the amplitude

$$T^{\mathsf{lc}}_{\alpha\beta}(z) = \frac{cg_{\alpha}g_{\beta}f^{a}_{\alpha}(q_{\alpha z})f^{c}_{\beta}(q_{\beta z})}{z - M_{0} - \sum_{\kappa}g^{2}_{\kappa}L_{\kappa}(z)} + \cdots$$

Loop functions (f: vertex function in this model)

$$L_{\kappa}(z) \equiv \int_{0}^{\infty} p^{2} dp \, G_{\kappa}(p, z) f_{\alpha}^{a}(q_{\kappa z}) f_{\alpha}^{c}(q_{\kappa z})$$

Parameters

$$\begin{split} h_{\kappa} &\equiv \frac{g_{\kappa}^2}{g_1^2} = \left| \frac{r_{\kappa} f_1^{\sigma}}{r_{f\kappa} f_{\kappa}^{\sigma}} \right|^2, \\ g_1^2 &= -\frac{\Gamma_R}{2\sum_{\kappa} h_{\kappa} \text{Im}(L_{\kappa}^{\mu})}, \\ M_0 &= M_R - g_1^2 \sum_{\kappa} h_{\kappa} \text{Re}(L_{\kappa}^{\mu}), \\ c &= \frac{r_1^2}{g_1^2 f_1^{\sigma} f_1^{\sigma}} \left(1 - g_1^2 \sum_{\kappa} h_{\kappa} \frac{d}{dz} L_{\kappa}^{\mu} \right|_{z = M_R - i \Gamma_R/2} \right). \end{split}$$

g² < 0 \rightarrow construction fails. Estimation:

$$g_{\kappa}^{2} \rightarrow \left| \sqrt{\frac{2\pi \rho_{\kappa}}{\Gamma_{R}}} r_{\kappa} \right|^{2}, M_{0} \rightarrow M_{0} - i \frac{\Gamma_{0}}{2}$$

Slide by Yu-Fei Wang

Details hidden charm

TABLE I: The new	isospin	factors	used	$_{\mathrm{in}}$	this	work.
------------------	---------	---------	------	------------------	------	-------

Process	Exchanged Particle	$\operatorname{IF}\left(\frac{1}{2}\right)$	$\operatorname{IF}\left(\frac{3}{2}\right)$
$\bar{D}^{(*)}\Lambda_c \to J/\psi N$	D/D^*	1	0
	Λ_c	1	0
$\bar{D}^{(*)}\Sigma_c^{(*)} \to J/\psi N$	D/D^*	$-\sqrt{3}$	0
	Σ_c	$-\sqrt{3}$	0

Photoproduction in a semi-phenomenological approach

EPJ A 50, 101 (2015)

 $m = \pi, \eta, K, B = N, \Delta, \Lambda$

 $T_{\mu\kappa}$: full hadronic *T*-matrix as in pion-induced reactions

Photoproduction potential: approximated by energy-dependent polynomials (field-theoretical description numerically too expensive)

Combined analysis of pion- and photon-induced reactions Data base

Reaction	Observables (# data points)	p./channel
$\pi N \rightarrow \pi N$	PWA GW-SAID WI08 [?] (ED solution)	3,760
$\pi^- p \to \eta n$	$d\sigma/d\Omega$ (676), P (79)	755
$\pi^- p \to K^0 \Lambda$	$d\sigma/d\Omega$ (814), P (472), eta (72)	1,358
$\pi^- p \to K^0 \Sigma^0$	$d\sigma/d\Omega$ (470), P (120)	590
$\pi^- \rho \to K^+ \Sigma^-$	$d\sigma/d\Omega$ (150)	150
$\pi^+ p \to K^+ \Sigma^+$	$d\sigma/d\Omega$ (1124), P (551) , eta (7)	1,682
$\gamma p o \pi^0 p$	$d\sigma/d\Omega$ (18721), Σ (3287), P (768), T (1404), $\Delta\sigma_{31}$ (140),	
	G (393), H (225), E (1227), F (397), C _{x'} (74), C _{z'} (26)	26,662
$\gamma p \to \pi^+ n$	$d\sigma/d\Omega$ (5670), Σ (1456), P (265), T (718), $\Delta\sigma_{31}$ (231),	
	G (86), H (128), E (903)	9,457
$\gamma p ightarrow \eta p$	$d\sigma/d\Omega$ (9112), Σ (535), P (63), T (291), F (144), E (306), G (47), H (56)	10,554
$\gamma p \to K^+ \Lambda$	$d\sigma/d\Omega$ (2563), P (1663), Σ (459), T (383),	
	$C_{x'}$ (121), $C_{z'}$ (123), $O_{x'}$ (66), $O_{z'}$ (66), O_x (314), O_z (314),	6,072
$\gamma p \to K^+ \Sigma^0$	$d\sigma/d\Omega$ (4381), P (422), Σ (280), T (127), $C_{x'}$ (94), $C_{z'}$ (94,) O_x (127), O_z (127)	5,652
$\gamma p \to K^0 \Sigma^+$	$d\sigma/d\Omega$ (281), P (167)	448
	in total	67,008

Selected results $\gamma p \rightarrow K^0 \Sigma^+$

Selected fit results:

JüBo2022 Eur.Phys.J.A 58 (2022) 229

- much less data than for K⁺Σ⁰ (448 vs 5,652 data points)
- in parts inconsistent data very few polarization, no double polarization data
 - \rightarrow difficult to achieve a good fit result

 $(\chi^2 = 3.16 \ (K^0 \Sigma^+) \ \text{vs 1.66} \ (K^+ \Sigma^0))$

 cusp in σ_{tot} at ~ 2 GeV not reproduced (data not included in fit)

Data: open squares: SPAHIR 1999, cyan: SAPHIR 2005, orange: CBELSA/TAPS 2007, black squares: CBELSA/TAPS 2011, open circles: A2 2018, open triangles: A2 2013, black triangles: Hall B 2003, black circles: CLAS 2013

New data for $\gamma p \to K^0 \Sigma^+$

L. Clark et al. 2404.19404 [nucl-ex]

Fit JüBo2023-1, together with CLAS Collaboration

- 105 new data points, first ever for T, O_x , O_z
- simultaneous fit to full JüBo data base including new data

$$\chi^2 = 2.01 \, (K^0 \Sigma^+)$$

Member of the Helmholtz Association

New data for $\gamma p \to K^0 \Sigma^+$

Fit JüBo2023-1, together with CLAS Collaboration

Resonance analysis:

Δ (1910) 1/2 $^+$	Re E ₀	$-2 \text{Im } E_0$
2032-1	1745	433
2022	1802 (11)	550 (22)
N(2190) 7/2 [—]		
2032-1	1946	162
2022	1965 (12)	288 (66)
N(1900) 3/2 ⁺		
2032-1	1893	105
2022	1905 (3)	93 (4)

(all numbers in [MeV])

Partial wave content:

Slide 5113

- JüBo2022: dominant PW in $K^0\Sigma^+$: P_{13} , followed by P_{33}
- JüBo2023-1: order reversed

 \Rightarrow (Double) polarization data very important to determine the resonance spectrum!

Member of the Helmholtz Association

Slide 5113

Partial wave content:

New data for $\gamma p o K^0 \Sigma^+$ L. Clark et al. 2404.19404 [nucl-ex]

Fit JüBo2023-1, together with CLAS Collaboration

Resonance analysis:

 \Rightarrow (Double) polarization data very important to determine the resonance spectrum!

s-, t- and u-channel exchanges

- **21** *s*-channel states (resonances) coupling to πN , ηN , $K\Lambda$, $K\Sigma$, $\pi\Delta$, ρN .
- *t* and *u*-channel exchanges ("*background*", coupling constants fixed from SU(3)):

	πΝ	ρΝ	ηΝ	$\pi\Delta$	σΝ	ΚΛ	ΚΣ
πN	$N,\Delta,(\pi\pi)_{\sigma},$ $(\pi\pi)_{\rho}$	N, Δ, Ct., π, ω, a ₁	N, a ₀	Ν, Δ, ρ	Ν, π	Σ, Σ*, Κ*	$\begin{array}{l} \Lambda, \Sigma, \Sigma^*, \\ \mathrm{K}^* \end{array}$
ρΝ		N, Δ, Ct., ρ	-	Ν, π	-	-	-
ηΝ			N, f ₀	-	-	Κ*, Λ	$\Sigma, \Sigma^*, \mathrm{K}^*$
$\pi\Delta$				Ν, Δ, ρ	π	-	-
σΝ					Ν, σ	-	-
ΚΛ						Ξ, Ξ*, f ₀ , ω, φ	Ξ, Ξ*, ρ
ΚΣ							Ξ, Ξ*, f ₀ , ω, φ, ρ

Forschungszentrum

Excited states / Resonances

Points: SAID 2006 and CM12

Breit-Wigner parameterization:

$$\mathcal{M}_{ba}^{Res} = -rac{g_b g_a}{E^2 - M_{BW}^2 + iE\Gamma_{BW}}$$

- ${\cal M}_{BW},\, \Gamma_{BW}$ channel dependent - background? overlapping resonances? thresholds?

Excited states / Resonances

Points: SAID 2006 and CM12

Breit-Wigner parameterization:

$$\mathcal{M}_{ba}^{Res} = -rac{g_b g_a}{E^2 - M_{BW}^2 + iE\Gamma_{BW}}$$

- M_{BW} , Γ_{BW} channel dependent - background? overlapping resonances? thresholds?

Excited states / Resonances

Points: SAID 2006 and CM12

Breit-Wigner parameterization:

$$\mathcal{M}_{ba}^{Res} = -rac{g_b g_a}{E^2 - M_{BW}^2 + iE\Gamma_{BW}}$$

- M_{BW} , Γ_{BW} channel dependent - background? overlapping resonances? thresholds?

Resonances: poles in the T-matrix on the 2^{nd} Riemann sheet

- Pole position *E*₀ is the same in all channels
- thresholds: branch points

Details of the formalism

Polynomials:

$$P_{i}^{\mathsf{p}}(E) = \sum_{j=1}^{n} g_{i,j}^{\mathsf{p}} \left(\frac{E - E_{0}}{m_{N}}\right)^{j} e^{-g_{i,n+1}^{p}(E - E_{0})}$$

$$P_{\mu}^{\rm NP}(E) = \sum_{j=0}^{n} g_{\mu,j}^{\rm NP} \left(\frac{E-E_0}{m_N}\right)^j e^{-g_{\mu,n+1}^{\rm NP}(E-E_0)}$$

JÜLICH Forschungszentrum

The scattering potential: s-channel resonances

$$V^{\mathsf{P}} = \sum_{i=0}^{n} \frac{\gamma^{a}_{\mu;i} \gamma^{c}_{\nu;i}}{z - m^{b}_{i}}$$

- i: resonance number per PW

- $\gamma_{\mu;i}^{c}$ ($\gamma_{\mu;i}^{a}$): creation (annihilation) vertex function with **bare coupling** *f* (free parameter)
- z: center-of-mass energy
- m^b_i: bare mass (free parameter)

$J \le 3/2$:

 $\gamma^{\epsilon}_{\nu;i}$ ($\gamma^{a}_{\mu;i}$) from effective ${\cal L}$

Vertex	\mathcal{L}_{int}
$N^*(S_{11})N\pi$	$rac{f}{m_\pi} ar{\Psi}_{N^*} \gamma^\mu ec{ au} \partial_\mu ec{\pi} \Psi + ext{h.c.}$
$N^*(S_{11})N\eta$	$rac{f}{m_\pi} ar{\Psi}_{N^st} \gamma^\mu \partial_\mu \eta \ \Psi \ + \ { m h.c.}$
$N^*(S_{11})N\rho$	$f ar{\Psi}_{N^*} \gamma^5 \gamma^\mu ec{ au} ec{ ho}_\mu \Psi \; + \; { m h.c.}$
$N^*(S_{11})\Delta\pi$	$\frac{f}{m\pi}\bar{\Psi}_{N^*}\gamma^5\vec{S}\partial_\mu\vec{\pi}\Delta^\mu + \text{ h.c.}$

■ 5/2 ≤ J ≤ 9/2: correct dependence on L (centrifugal barrier)

$$\begin{split} & \left(\gamma^{a,c}\right)_{\frac{5}{2}-} &= \frac{k}{M} \left(\gamma^{a,c}\right)_{\frac{3}{2}+} \\ & \left(\gamma^{a,c}\right)_{\frac{7}{2}-} &= \frac{k^2}{M^2} \left(\gamma^{a,c}\right)_{\frac{3}{2}-} \\ & \left(\gamma^{a,c}\right)_{\frac{9}{2}-} &= \frac{k^3}{M^3} \left(\gamma^{a,c}\right)_{\frac{3}{2}+} \end{split}$$

Member of the Helmholtz Association

Interaction potential from effective Lagrangian

J. Wess and B. Zumino, Phys. Rev. 163, 1727 (1967); U.-G. Meißner, Phys. Rept. 161, 213 (1988); B. Borasoy and U.-G. Meißner, Int. J. Mod. Phys. A 11, 5183 (1996).

consistent with the approximate (broken) chiral $SU(2) \times SU(2)$ symmetry of QCD

Vertex	\mathcal{L}_{int}	Vertex	\mathcal{L}_{int}
$NN\pi$	$-rac{g_{NN\pi}}{m_\pi}\Psi\gamma^5\gamma^\muec au\cdot\partial_\muec \pi\Psi$	ΝΝω	$-g_{NN\omega} \bar{\Psi} [\gamma^{\mu} - rac{\kappa_{\omega}}{2m_N} \sigma^{\mu u} \partial_{ u}] \omega_{\mu} \Psi$
$N\Delta\pi$	$rac{g_{N\Delta\pi}}{m_{\pi}}ar{\Delta}^{\mu}ec{S}^{\dagger}\cdot\partial_{\mu}ec{\pi}\Psi~+$ h.c.	$\omega \pi \rho$	$rac{g_{\omega\pi ho}}{m_{\omega}}\epsilon_{lphaeta\mu u}\partial^{lpha}ec{ ho}^{eta}\cdot\partial^{\mu}ec{\pi}\omega^{ u}$
$\rho\pi\pi$	$-g_{ ho\pi\pi}(ec{\pi} imes\partial_\muec{\pi})\cdotec{ ho}^\mu$	$N\Delta\rho$	$-i \frac{g_{N\Delta\rho}}{m_{\rho}} \bar{\Delta}^{\mu} \gamma^{5} \gamma^{\mu} \vec{S}^{\dagger} \cdot \vec{\rho}_{\mu\nu} \Psi + \text{h.c.}$
$NN\rho$	$-g_{NN ho}\Psi[\gamma^{\mu}-rac{\kappa ho}{2m_{N}}\sigma^{\mu u}\partial_{ u}]ec{ au}\cdotec{ ho}_{\mu}\Psi$	ρρρ	$g_{NN ho}(ec{ ho}_{\mu} imesec{ ho}_{ u})\cdotec{ ho}^{\mu u}$
$NN\sigma$	$-g_{NN\sigma}ar{\Psi}\Psi\sigma$	ΝΝρρ	$\frac{\kappa_{\rho}g_{NN\rho}^{2}}{2m_{N}}\bar{\Psi}\sigma^{\mu\nu}\vec{\tau}\Psi(\vec{\rho}_{\mu}\times\vec{\rho}_{\nu})$
$\sigma\pi\pi$	$rac{g_{\sigma\pi\pi}}{2m_{\pi}}\partial_{\mu}ec{\pi}\cdot\partial^{\mu}ec{\pi}\sigma$	$\Delta\Delta\pi$	$\frac{g_{\Delta\Delta\pi}}{m_{\pi}}\bar{\Delta}_{\mu}\gamma^{5}\gamma^{\nu}\vec{T}\Delta^{\mu}\partial_{\nu}\vec{\pi}$
$\sigma\sigma\sigma$	$-g_{\sigma\sigma\sigma}m_{\sigma}\sigma\sigma\sigma$	$\Delta\Delta\rho$	$-g_{\Delta\Delta\rho}\bar{\Delta}_{\tau}(\gamma^{\mu}-i\frac{\kappa_{\Delta\Delta\rho}}{2m_{\Delta}}\sigma^{\mu\nu}\partial_{\nu})$
			$\cdot ec{ ho}_{\mu} \cdot ec{T} \Delta^{ au}$
$NN ho\pi$	$rac{g_{NN\pi}}{m_{\pi}} 2g_{NN ho} \bar{\Psi} \gamma^5 \gamma^{\mu} \vec{\tau} \Psi(\vec{ ho}_{\mu} imes \vec{\pi})$	NNη	$-rac{g_{NN\eta}}{m_\pi}ar{\Psi}\gamma^5\gamma^\mu\partial_\mu\eta\Psi$
NNa ₁	$-rac{g_{NN\pi}}{m_{\pi}}m_{a_1}ar{\Psi}\gamma^5\gamma^\muec{ au}\Psiec{a}_\mu$	NNa ₀	$g_{NNa_0} m_\pi \bar{\Psi} \vec{\tau} \Psi \vec{a_0}$
$a_1 \pi \rho$	$-\frac{2g\pi a_1\rho}{m_{a_1}}[\partial_\mu\vec{\pi}\times\vec{a}_\nu-\partial_\nu\vec{\pi}\times\vec{a}_\mu]\cdot[\partial^\mu\vec{\rho}^\nu-\partial^\nu\vec{\rho}^\mu]$	$\pi \eta a_0$	$g_{\pi\eta a_0} m_{\pi}\eta ec{\pi}\cdot ec{a}_0$
	$+\frac{2g_{\pi a_1}\rho}{2m_{a_1}}[\vec{\pi}\times(\partial_{\mu}\vec{\rho}_{\nu}-\partial_{\nu}\vec{\rho}_{\mu})]\cdot[\partial^{\mu}\vec{a}^{\nu}-\partial^{\nu}\vec{a}^{\mu}]$		

Generalization to SU(3)

to include KY final states

■ t- and u-channel exchange: T^{NP}

coupling constants fixed from SU(3) symmetry e.g. $g_{\Lambda NK} = -\frac{\sqrt{3}}{3}g_{NN\pi} (1 + 2\alpha_{BBP})$ J.J. de Swart, Rev. Mod. Phys. 35, 916 (1963) [Erratum-Ibid. 37, 326 (1965)].

s-channel: resonances

New free parameters: cutoffs Λ

Theoretical constraints of the S-matrix

Unitarity: probability conservation

- 2-body unitarity
- 3-body unitarity: discontinuities from t-channel exchanges
 - → Meson exchange from requirements of the *S*-matrix [Aaron, Almado, Young, Phys. Rev. 174, 2022 (1968)]

Analyticity: from unitarity and causality

- correct structure of branch point, right-hand cut (real, dispersive parts)
- to approximate left-hand cut \rightarrow Baryon *u*-channel exchange

Λ decay parameter α_-

Advantage in KY photoproduction: self-analysing decay of the hyperons \rightarrow measurement of recoil polarization easier

• A decays weakly to $\pi^- p$ with decay parameter α_- (PDG average: $\alpha_- = 0.642 \pm 0.013$)

- recent BESIII measurement ($e^+e^- \rightarrow J/\psi \rightarrow \Lambda \overline{\Lambda}$): $\alpha_- = 0.750 \pm 0.009 \pm 0.004$ (Ablikim, Nature (2019))
 - \rightarrow polarizations affected by α_{-} are \sim 17% too large!

■ independent estimation of α_{-} from $\gamma p \rightarrow K^{+}\Lambda$ CLAS data using Fierz identities $\Rightarrow \alpha_{-} = 0.721 \pm 0.006 \pm 0.005$ (Ireland et al. PRL 123 (2019))

data: Paterson (CLAS) PRC 93, 065201 (2016)

Has impact on

- observables P, T, C_x , C_z , O_x , O_z
- reactions $\gamma p \to K^+\Lambda$, $K^+\Sigma^0 (\to K^+\gamma\Lambda)$, $\pi^- p \to K^0\Lambda$, $K^0\Sigma^0$

-resonance spectrum? \Rightarrow JüBo re-fit to data scaled by new $\alpha_{-}^{\text{Slide 13}13}$

