

Triangle singularity

Qiang Zhao

Division of Theoretical Physics

Institute of High Energy Physics, CAS

zhaoq@ihep.ac.cn

(On behalf of B3 PIs)

CRC110 "Symmetries and the Emergence of Structure in QCD" Program Closing Meeting, Bonn, June 3-5, 2024

Outline

- **1.** B3: Hadronic molecules
- **2.** Open threshold phenomena and threshold dynamics
- **3.** Triangle singularity mechanism and its manifestations
- 4. Brief summary

1. B3: Hadron molecules with heavy meson loops

- Pls of the 1st term:
 - PD Dr. **Ch. Hanhart**, FZJ; Prof. Dr. **Q. Zhao**, IHEP-CAS; Dr. **F.-K. Guo**, HISKP-UB
- Pls of the 2nd term:
 - Prof. Dr. **Ch. Hanhart**, FZJ; Dr. **Q. Wang**, HISKP-UB; Prof. Dr. **Q. Zhao**, IHEP-CAS
- Pls of the 3rd term:

Prof. Dr. **Ch. Hanhart**, FZJ; Prof. Dr. **Q. Wang**, IHEP-CAS/SCNU; Prof. Dr. **Q. Zhao**, IHEP-CAS

- In the 2nd term Feng-Kun joined A1, A5 as a PI from ITP-CAS; Qian, who was a Postdoc in the 1st term, becomes a PI as a senior Postdoc from HISKP-UB
- In the 3rd term Feng-Kun continued as a PI in A1 and A5; Qian moved to SCNU as a faculty and held a joint position in IHEP-CAS

2. Open threshold phenomena and threshold dynamics

Hadrons beyond the conventional quark model

Exotics of Type-I:

 J^{PC} are not allowed by Q \overline{Q} configurations, e.g. $0^{-}, 1^{+} \dots$

Direct observation

Exotics of Type-II:

 J^{PC} are the same as Q \overline{Q} configurations

- Outnumbering of conventional QM states?
- Peculiar properties?

"Exotics" of Type-III:

Leading kinematic singularity can cause measurable effects, e.g. the triangle singularity.

- What's the impact?
- How to distinguish a genuine state from kinematic effects?

Chart plotted by Fengkun Guo

Genuine color-singlet multiquark states vs. hadron molecules

Tetraquark vs. hadronic molecule

Pentaquark vs. hadronic molecule

Status rating	
****	$X(3872), Z_c(3900)$
***	Y(4260)/Y(4230), $P_c(4440), P_c(4457), P_c(4312), T_{cc}(3876),$ X(6900)
**	$ \psi_2(3823), X(4140), X(4274), \\ X(4500), X(4700), Z_c(4360), Z_c(4430), \\ Z_{c1}(4050), Z_{c2}(4250), Z_c(4200), Z_c(4020), \\ Z_b(10610), Z_b(10650), Y(4660), \\ X(6200), X(7200) \dots $
*	$Y(4008), Z_{cs}(3985), Z_{cs}(4000) \dots$

- Why we do not see rich spectra arising from genuine color-singlet multiquark states?
- What is the manifestation of the threshold dynamics?
- What is the role played by the triangle singularity mechanism?
- •

Manifestations of the hadron loop effects and the TS mechanism in various threshold dynamics

$$\begin{split} \psi(3770) &\rightarrow nonD\bar{D} & \text{Y.J. Zhang, G. Li, Q. Zhao, PRL(2009);} \\ \text{``ppt puzzle''} & \text{X. Liu, B. Zhang, X.Q. Li, PLB(2009)} \\ \chi_{c1} &\rightarrow VV, \ \chi_{c2} &\rightarrow VP & \text{X.-H. Liu et al, PRD81,} \\ \eta_{c}(\eta_{c}') &\rightarrow VV & \text{Q. Wang et al, PRD81, 074006(2010)} \\ \end{split}$$

$$\psi' \to J/\psi \pi^0, \psi' \to J/\psi \eta$$

 $\psi' \to \gamma \eta_c, J/\psi \to \gamma \eta_c$

G. Li and Q. Zhao, PRD(2011)074005

F.K. Guo, C. Hanhart, G. Li, U.-G. Meißner and Q. Zhao, PRD82, 034025 (2010); PRD83, 034013 (2011)

F.K. Guo and Ulf-G Mei β ner, PRL108(2012)112002

 $D_{s1}(2460) - D_{s1}(2536)$

The mass shift in charmonia and charmed mesons, E.Eichten et al., PRD17(1987)3090 X.-G. Wu and Q. Zhao, PRD85, 034040 (2012) The open channel couplings introduce NOT ONLY additional dynamics (add. effective DOF) into the hadron structures, BUT ALSO novel kinematic effects, i.e. triangle singularity ...

"Exotics" of Type-III: Peak structures caused by kinematic effects, in particular, by triangle singularity.

$$\begin{split} \Gamma_3(s_1, s_2, s_3) &= \frac{1}{i(2\pi)^4} \int \frac{d^4 q_1}{(q_1^2 - m_1^2 + i\epsilon)(q_2^2 - m_2^2 + i\epsilon)(q_3^2 - m_3^2 + i\epsilon)} \\ &= \frac{-1}{16\pi^2} \int_0^1 \int_0^1 \int_0^1 da_1 \, da_2 \, da_3 \, \frac{\delta(1 - a_1 - a_2 - a_3)}{D - i\epsilon} \,, \\ D &\equiv \sum_{i,j=1}^3 a_i a_j Y_{ij}, \ Y_{ij} &= \frac{1}{2} \left[m_i^2 + m_j^2 - (q_i - q_j)^2 \right] \end{split}$$

The TS occurs when all the three internal particles can approach their on-shell condition simultaneously:

$$\partial D/\partial a_j = 0$$
 for all $j = 1,2,3$. \longrightarrow det $[Y_{ij}] = 0$

L. D. Landau, Nucl. Phys. 13, 181 (1959);

J.J. Wu, X.-H. Liu, Q. Zhao, B.-S. Zou, Phys. Rev. Lett. 108, 081003 (2012);

Q. Wang, C. Hanhart, Q. Zhao, Phys. Rev. Lett. 111, 132003 (2013); Phys. Lett. B 725, 106 (2013)

X.-H. Liu, M. Oka and Q. Zhao, PLB753, 297(2016);

F.-K. Guo, C. Hanhart, U.-G. Meissner, Q. Wang, Q. Zhao, B.-S. Zou, arXiv:1705.00141[hep-ph], Rev. Mod. Phys. 90, 015004 (2018); F.K. Guo, X.-H. Liu, S. Sakai, Prog.Part.Nucl.Phys. 112 (2020) 103757, arXiv:1912.07030[hep-ph]

Kinematics :

The ATS condition for fixed s_1 , m_j , and s_3 is:

$$s_{2}^{\pm} = (m_{1} + m_{3})^{2} + \frac{1}{2m_{2}^{2}} [(m_{1}^{2} + m_{2}^{2} - s_{3})(s_{1} - m_{2}^{2} - m_{3}^{2}) - 4m_{2}^{2}m_{1}m_{3} \\ \pm \lambda^{1/2}(s_{1}, m_{2}^{2}, m_{3}^{2})\lambda^{1/2}(s_{3}, m_{1}^{2}, m_{2}^{2})],$$

Or for fixed s_2 , m_j , and s_3 :

$$s_1^{\pm} = (m_2 + m_3)^2 + \frac{1}{2m_1^2} [(m_1^2 + m_2^2 - s_3)(s_2 - m_1^2 - m_3^2) - 4m_1^2 m_2 m_3 \\ \pm \lambda^{1/2} (s_2, m_1^2, m_3^2) \lambda^{1/2} (s_3, m_1^2, m_2^2)].$$

with $\lambda(x, y, z) \equiv (x - y - z)^2 - 4yz$.

X.-H. Liu, M. Oka and Q. Zhao, PLB (2016); arXiv:1507.01674 [hep-ph]

Single dispersion relation in s_2 :

$$\Gamma_3(s_1, s_2, s_3) = \frac{1}{\pi} \int_{(m_1 + m_3)^2}^{\infty} \frac{ds'_2}{s'_2 - s_2 - i\epsilon} \sigma(s_1, s'_2, s_3)$$

For a typical scalar loop integral the spectral function $\sigma(s_1, s_2, s_3)$ can be obtained by either the Cutkosky's rules (absorptive part of the loop amplitude) or the following formula

$$\sigma(s_1, s_2, s_3) = \frac{-1}{16\pi} \int_0^1 \int_0^1 \int_0^1 da_1 \, da_2 \, da_3 \, \delta(1 - a_1 - a_2 - a_3) \delta(D).$$

which reads

$$\begin{aligned} \sigma(s_1, s_2, s_3) &= \sigma_+ - \sigma_-, \\ \sigma_\pm(s_1, s_2, s_3) &= \frac{-1}{16\pi\lambda^{1/2}(s_1, s_2, s_3)} \log[-s_2(s_1 + s_3 - s_2 + m_1^2 + m_3^2 - 2m_2^2) \\ &- (s_1 - s_3)(m_1^2 - m_3^2) \pm \lambda^{1/2}(s_1, s_2, s_3)\lambda^{1/2}(s_2, m_1^2, m_3^2)]. \end{aligned}$$

For fixed s_1 , s_3 and m_i , the spectral function $\sigma(s_1, s_2, s_3)$ has logarithmic branch points s_2^{\pm} , which correspond to the anomalous thresholds by solving the Landau equation.

How the logarithmic branch points s_2^{\pm} move as s_1 increases from the threshold of $(m_2 + m_3)^2$, with s_3 and m_i fixed?

Substituting $s_1 \rightarrow s_1 + i\epsilon$, s_2^{\pm} in the s'-plane are then located at

$$s_2^{\pm}(s_1 + i\epsilon) = s_2^{\pm}(s_1) + i\epsilon \frac{\partial s_2^{\pm}}{\partial s_1},$$

The normal thresholds and critical values for s_1 and s_2 as follows,

$$s_{1N} = (m_2 + m_3)^2, \ s_{1C} = (m_2 + m_3)^2 + \frac{m_3}{m_1} [(m_2 - m_1)^2 - s_3],$$

$$s_{2N} = (m_1 + m_3)^2, \ s_{2C} = (m_1 + m_3)^2 + \frac{m_3}{m_2} [(m_2 - m_1)^2 - s_3],$$

With $\partial s_2^{\pm} / \partial s_1 = 0 \ (\partial s_1^{\pm} / \partial s_2 = 0).$

Trajectory of s_{2}^{\pm} in the complex s_{2}^{\prime} -plane with s_{1} increasing from s_{1N} to ∞ .

 $(m_1 + m_3)^2$

The difference between the normal and anomalous thresholds:

When $s_2 = s_{2N}$ ($s_1 = s_{1N}$), we will obtain the maximum value of Δs_1 (Δs_2),

$$\Delta_{s_1}^{\max} = \sqrt{s_{1C}} - \sqrt{s_{1N}} \approx \frac{m_3}{2m_1(m_2 + m_3)} [(m_2 - m_1)^2 - s_3],$$

$$\Delta_{s_2}^{\max} = \sqrt{s_{2C}} - \sqrt{s_{2N}} \approx \frac{m_3}{2m_2(m_1 + m_3)} [(m_2 - m_1)^2 - s_3].$$

- The larger Δs_1 (Δs_2), the more importance of the TS mechanism!
- For a specific transition process which fulfills the TS kinematic the detailed dynamics, such as the widths and coupling vertices, will affect the behavior of the TS mechanism.

3. Triangle singularity mechanism and its manifestations

Case-I: The first evidence for the observable effects from the TS mechanism

Isoscalar pseudoscalar states $J^{PC} = 0^{-+}$ around 1.2~1.5 GeV found in experiment

 $I^{G}(J^{PC}) = 0^{+}(0^{-+})$

See also the $\eta(1475)$.

WEIGHTED AVERAGE

η(1405) MASS

VALUE (MeV)

DOCUMENT ID

1408.7+2.0 **OUR AVERAGE** Includes data from the 2 datablocks that follow this one. Error includes scale factor of 2.2. See the ideogram below.

1408.	7+2.0-1.2	Error scale	ed by 2.2)						
1		\downarrow						χ ²	
		+		ABLIKIM		12E	BES3	0.0	
				ABLIKIM		12E	BES3	0.2	
		+ · Λ		ABLIKIM		11J	BES3	6.2	
		/l	*****	AMSLEF	{	04B	CBAR		
	_			AMSLEF	{	04B	CBAR	3.4	
		-++-		MANAK		00A	MPS	0.6	
			$ \rightarrow$	ALDE		97B	GAM4	6.5	
				BOLTON	J	92B	MRK3	2.1	
	+		· ^ · · · ·	FUKUI		91C	SPEC	26.7	
			·/·	AUGUST	ΓIN	90	DM2	3.2	
			\/ \+ +- ·	ANDO		86	SPEC	5.1	
		+ J. ·		ABLIKIM		23M	BES3	2.2	
		\leftarrow	V .	NICHITI	J	02	OBLX		
		/	-++ · · ·	ADAMS		01B	B852	2.7	
		/		CICALO		99	OBLX	0.5	
				BERTIN		97	OBLX	0.1	
		/	$+ \cdot \cdot \cdot$	BERTIN		95	OBLX	13.4	
		./ -	-+	BAI		90C	MRK3	0.6	
		/~ _	$+ \cdot \cdot$	RATH		89	MPS	0.8	_
								74.4	
	/				(Conf	idence	Level <	0.0001))
	\checkmark			4					
1360	1380	1400	1420	1440	1460	0			

	Mode		Fraction (Γ_i/Γ)	
Г1	$K\overline{K}\pi$		seen	
Γ2	$\eta\pi\pi$		seen	
Γ ₃	<i>а</i> ₀ (980)π С	CB in J/psi decays	seen	
Γ4	$\eta(\pi\pi)_{S-wave}$		seen	
Γ ₅	$f_0(980)\pi^0 \rightarrow \pi^-$	$+\pi^{-}\pi^{0}$	not seen	
Г ₆	$f_0(980)\eta$		seen	
Г ₇	4π		seen	
Г ₈	ho ho		< 58 %	
Гg	$\gamma\gamma$			
Γ ₁₀	$ ho^{0}\gamma$		seen	
Г ₁₁	$\phi\gamma$			
Γ ₁₂	K*(892)K		seen	

 η (1405) DECAY MODES

PDG2024

$\Gamma(f_0(980)\pi^0 \rightarrow \pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$						
VALUE	DOCUMENT ID		TECN	COMMENT		
not seen	¹ ABLIKIM	17AJ	BES3	$\psi(2S) \rightarrow$	$\gamma \pi^+ \pi^- \pi^0$	
1 ABLIKIM 17AJ reports 5.0 $ imes$ 10 $^{-7}$.	$B(\psi(2S) \rightarrow \gamma \eta(1405))$	\rightarrow	γ f₀(980	$)\pi^{0} \rightarrow \gamma$	$\pi^{+}\pi^{-}\pi^{0}) <$	

But seen in $J/\psi \rightarrow \gamma \pi \pi \pi$ at BESIII. Why not included?

 $\eta(1475)$ mass (MeV)

$$I^{G}(J^{PC}) = 0^{+}(0^{-+})$$

18

BESII

Only one state is observed at BES-III in various channels except for $K_s \overline{K}_s \pi^0$

Anomalous lineshape in $J/\psi \rightarrow \gamma K_s \overline{K}_s \pi^0$

The abundance of 0⁻⁺ (I=0) states implies a glueball candidate?

Positive:

- Flux tube model favors $M_G \cong 1.4 \text{ GeV}$ [1]
- A dynamic model based on U_A(1) anomaly gives a similar mass [2].
 Disfavored:
- LQCD favors $M_G \approx 2.4 2.6 \text{ GeV}$ [3,4,5]
- Corrected version of [2] (see [6])
- Dynamic approach based on $U_A(1)$ [7]

How to understand the anomalous lineshape in the $K\overline{K}\pi$ invariant mass spectrum?

[1] Faddeev, Niemi, and Wiedner, PRD70, 114033 (2004)
[2] H. Y. Cheng, H. n. Li, and K. F. Liu, Phys. Rev. D 79, 014024 (2009)
[3] Morningstar and Peardon, PRD60, 034509 (1999); Y. Chen et al., PRD73, 014516(2006)
[4] Richards, Irving, Gregory, and McNeile (UKQCD), PRD82, 034501 (2010)
[5] W. Sun et al. [CLQCD], arXiv:1702.08174[hep-lat]
[6] W. Qin, Q.Zhao and X.H.Zhong, PRD97, 096002 (2018)
[7] V. Mathieu and V. Vento, PRD81, 034004(2010)

The presence of the "triangle singularity"

BES-III Collaboration, Phys. Rev. Lett. 108, 182001 (2012)

• $f_0(980)$ is extremely narrow: $\Gamma \cong 10 \text{ MeV}$!

PDG: $\Gamma \cong$ 40~100 MeV.

Anomalously large isospin violation!

 $\frac{Br(\eta(1405) \to f_0(980)\pi^0 \to \pi^+\pi^-\pi^0)}{Br(\eta(1405) \to a_0^0(980)\pi^0 \to \eta\pi^0\pi^0)} \cong (17.9 \pm 4.2)\%$

"a₀(980)-f₀(980) mixing" gives only ~1% isospin violation effects!

$$g(a_{0}K^{+}K^{-}) g(f_{0}K^{+}K^{-})$$

= -g(a_{0}K^{0} \overline{K}^{0}) g(f_{0}K^{0} \overline{K}^{0})
M(K⁰)-M(K[±]) = m_d-m_u

V. Baru, J. Haidenbauer, C. Hanhart, Y. Kalashnikova and A. E. Kudryavtsev, Phys. Lett. B586, 53-61 (2004)

V. Baru, J. Haidenbauer, C. Hanhart, A.E. Kudryavtsev and U.-G. Meissner, Eur. Phys. J. A23, 523-533 (2005)

Internal KK*(K) approach the on-shell condition simultaneously! Manifestation of the TS singularity!

J.J. Wu, X.H. Liu, Q.Z. and B.S. Zou, PRL(2012); X.G. Wu, J.-J. Wu, Q. Z., and B.-S. Zou, PRD87, 014023 (2013) 24

Understanding the width effects from the intermediate K* in $\eta(1405/1475) \rightarrow 3\pi$, K $\pi\pi$, $\eta\pi\pi$

 $a_0(980) - f_0(980)$ mixing is required to be enhanced.

However, experimental data do not support large b.r. for $\eta(1405)/\eta(1475) \rightarrow a_0(980)\pi$!

Updated study of $\eta(1405/1475) \rightarrow 3\pi$, K $\overline{K}\pi$, $\eta\pi\pi$ with width effects

• Direct isospin breaking via the TS mechanism

- a0-f0 mixing enhanced by the TS mechanism
- -- Unitarized treatment for a0 and f0;
- -- To separate (b) and (c) allows a self-contained evaluation of the TS and a0-f0 mixing contributions.

a0-f0 mixing at tree level

M.C. Du and Q.Z., PRD100, 036005 (2019). See also N.N. Achasov et al., PRD92, 036003 (2015)

Updated study of $\eta(1405/1475) \rightarrow 3\pi$, K $\bar{K}\pi$, $\eta\pi\pi$ with width effects

M.C. Du and Q.Z., PRD100, 036005 (2019).M.-C. Du, Y. Cheng, and Q. Zhao, Phys. Rev. D 106, no.5, 054019 (2022)Y. Chen and Q.Z., Phys. Rev. D 105, 076023 (2022)

Dynamical features arising from the coupling vertices in association with the TS mechanism

$$\begin{split} I &= -i \int \frac{d^4q}{(2\pi)^4} \frac{(2p_1 - q)_{\mu}(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2})(q - 2p_2)_{\nu}}{(q^2 - m_1^2 + im_1\Gamma)[(p_2 - q)^2 - m_2^2][(q - p_1)^2 - m_3^2]} \\ &= -i \int \frac{d^4q}{(2\pi)^4} \frac{(2p_1 - q)_{\mu}(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2})(q - 2p_2)_{\nu}}{D_1 D_2 D_3} \\ &= -i \left(s_1 - m_1^2 + im_1\Gamma_1 + s_2 - 2s_3 + 2m_K^2 - \frac{(s_1 - m_K^2)(s_2 - m_K^2)}{m_1^2 - im_1\Gamma_1} \right) \int \frac{d^4q}{(2\pi)^4} \frac{1}{D_1 D_2 D_3} \\ &- i \left(\frac{(s_1 - m_K^2)(s_2 - m_K^2)}{m_1^2 - im_1\Gamma_1} \right) \int \frac{d^4q}{(2\pi)^4} \frac{1}{q^2 D_2 D_3} - i \left(1 + \frac{s_1 - m_K^2}{m_1^2 - im_1\Gamma_1} \right) \int \frac{d^4q}{(2\pi)^4} \frac{1}{D_1 D_3} \\ &- i \left(1 + \frac{s_2 - m_K^2}{m_1^2 - im_1\Gamma_1} \right) \int \frac{d^4q}{(2\pi)^4} \frac{1}{D_1 D_2} + i \int \frac{d^4q}{(2\pi)^4} \frac{1}{q^2 D_1} - i \frac{m_K^2 - s_1}{m_1^2 - im_1\Gamma_1} \int \frac{d^4q}{(2\pi)^4} \frac{1}{q^2 D_3} \\ &- i \frac{m_K^2 - s_2}{m_1^2 - im_1\Gamma_1} \int \frac{d^4q}{(2\pi)^4} \frac{1}{q^2 D_2} + i \int \frac{d^4q}{(2\pi)^4} \frac{1}{D_2 D_3} \end{split}$$

M.C. Du and Q.Z., PRD100, 036005 (2019).

28

Understanding the recent PWA results from BESIII

J/psi → γ η(1405/1475) → γ Κ Kπ

- Manifestation of the TS mechanism, which violates the Schmidt theorem
- Partial waves can be accounted for in an isobar model with two-body unitarity [Y. Cheng et al., paper to be submitted]
- Coupled-channel approach with three-body unitarity is in progress [L. Qiu, and Q. Zhao, in progress]
- The $\eta\pi\pi$ channel can also be accounted for

See also S.X. Nakamura et al., PRD109, 014021; PRD107, L091505

Correlations between Y(4260) and Zc(3900)/X(3872) via the TS mechanism

See also Feng-Kun and Qian's talks

• Y(4260) could be a hadronic molecule made of DD₁(2420) with coupled channel effects.

• The production of Zc(3900) is strongly correlated with Y(4260) and enhanced by the triangle singularity kinematics.

Q. Wang, C. Hanhart, Q. Zhao, PRL111, 132003 (2013) Q. Wang, C. Hanhart, Q. Zhao, PLB725, 106 (2013)

• TS enhancements in $e^+e^- \rightarrow J/\psi\pi\pi$ for Zc(3900) and Zc(4020)

Q. Wang, C. Hanhart, Q. Zhao, PLB725, 106 (2013)

• Recent combined analysis of $e^+e^- \rightarrow J/\psi\pi\pi$, $h_c\pi\pi$, $DD^*\pi$ for Zc(3900) and Zc(4020)

On the topic of Y(4260) and Zc(3900):

- 1. Q. Wang, C. Hanhart, Q. Zhao, Phys. Rev. Lett. 111, 132003 (2013) [318 citations in INSPIRE]
- 2. Q. Wang, C. Hanhart, Q. Zhao, Phys. Lett. B725, 106 (2013)
- 3. F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang and Q. Zhao, Phys. Lett. B 725, 127 (2013)
- 4. Q. Wang, M. Cleven, F.K. Guo, C. Hanhart, U.-G. Meissner, X.G. Wu, and Q. Zhao, Phys. Rev. D89, 034001 (2014)
- 5. M. Cleven, Q. Wang, F.K. Guo, C. Hanhart, U.-G. Meissner, Q. Zhao, Phys. Rev. D90, 074039 (2014)
- 6. X.-G. Wu, C. Hanhart, Q. Wang and Q. Zhao, Phys. Rev. D 89, 054038 (2014)
- 7. W. Qin, S.R. Xue, Q. Zhao, Phys. Rev. D94, 054035 (2016)
- 8. X.-H. Liu, M. Oka and Q. Zhao, Phys. Lett. B 753, 297 (2016)
- 9. M. Cleven and Q. Zhao, Phys. Lett. B 768, 52 (2017)
- 10. L. von Detten, V. Baru, C. Hanhart, Q. Wang, D. Winney and Q. Zhao, Phys. Rev. D in press (2024)

• A milestone publication:

F.K. Guo, C. Hanhart, U. G. Meißner, Q. Wang, Q. Zhao and B.S. Zou, *Hadronic molecules*, **Rev. Mod. Phys. 90**, no. 1, 015004 (2018)

1132 citations in INSPIRE

• Tremendous papers in the literature on the TS mechanism since 2012

4. Brief summary

- The CRC110-B3 has turned out to be a success in many aspects, i.e. physics studies, young researcher cultivations, etc.
- We made progresses on the threshold dynamics in association with the TS mechanism.
- We have also identified more focused questions to proceed: e.g. How the color force makes it possible to form hadrons beyond the simplest conventional mesons (qq) and baryons (qqq)? (e.g. multiquarks, hadronic molecules, hadroquarkonia ...) And where to look for them?

Final remarks:

- Special thanks to DFG and NSFC for their support of the CRC110!
- Special thanks to Ulf and Bing-Song for their excellent leadership throughout the whole project!
- Special thanks to Christoph, Feng-Kun, Qian, and other colleagues for their selfless sharing of ideas and many enlightening discussions
- The CRC110 ends. But the efforts surely will continue.
- We anticipate that our collaborations will keep going and keep producing more high-quality joint works in the future!

FB23 Website

http://fb23.ihep.ac.cn/

FB223THE 23rd INTERNATIONAL CONFERENCE ON
FEW-BODY PROBLEMS IN PHYSICS (FB23)
Sept. 22 - 27, 2024Sept. 22 - 27, 2024Beijing, China

Host Institute of High Energy Physics, Chinese Academy of Sciences Tsinghua University University of Chinese Academy of Science China Center of Advanced Science and Technology Institute of Theoretical Physics, Chinese Academy of Sciences South China Normal University Co-host Chinese Physical Society (CPS) High Energy Physics Branch of CPS

month LL III

Overview

Welcome Message

Circulars

Registration

The 23rd International Conference on Few-Body Problems in Physics (FB23) will be held in Beijing, China on September 22-27, 2024, with Sept. 22 for registration. The registration website is <u>https://indico.ihep.ac.cn/event/21083/registrations/1689/</u>

Jointly organized by:

