Final Meeting (12th Anniversary) of CRC110

Hadronic molecules

Feng-Kun Guo

Institute of Theoretical Physics, Chinese Academy of Sciences

June 3-5, 2024 Bonn

Charmonia and charmonium-like structures

Mass (MeV)

- Abundance of new states from peak hunting
 - \square *b*-hadron (*B*, Λ_b) decays
 - □ Hadron/heavy-ion collisions
 - $\Box \gamma \gamma$ processes
 - $\Box e^+e^-$ collisions

- What are they?
 - $\square Nonperturbative QCD \Rightarrow difficult!$

Many thresholds above 4 GeV

~1/3 CRC110 publications mentioning hadronic molecules

Collaborating network on hadronic molecules among CRC110 nodes

Reviews since the 2nd funding period

● >>10 review articles:

- H.-X. Chen et al., *The hidden-charm pentaquark and tetraquark states*, Phys. Rept. 639 (2016) 1
- A. Hosaka et al., Exotic hadrons with heavy flavors: X, Y, Z, and related states, PTEP 2016 (2016) 062C01
- J.-M. Richard, *Exotic hadrons: review and perspectives*, Few Body Syst. 57 (2016) 1185
- R. F. Lebed, R. E. Mitchell, E. Swanson, *Heavy-quark QCD exotica*, PPNP 93 (2017)143
- A. Esposito, A. Pilloni, A. D. Polosa, *Multiquark resonances*, Phys. Rept. 668 (2017) 1
- FKG, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, B.-S. Zou, Hadronic molecules, RMP 90 (2018) 015004
- A. Ali, J. S. Lange, S. Stone, Exotics: Heavy pentaguarks and tetraguarks, PPNP 97 (2017) 123
- S. L. Olsen, T. Skwarnicki, Nonstandard heavy mesons and baryons: Experimental evidence, RMP 90 (2018) 015003
- □ Y.-R. Liu et al., Pentaquark and tetraquark states, PPNP107 (2019) 237
- N. Brambilla et al., The XYZ states: experimental and theoretical status and perspectives, Phys. Rept. 873 (2020) 154
- Y. Yamaguchi et al., Heavy hadronic molecules with pion exchange and quark core couplings: a guide for practitioners, JPG 47 (2020) 053001
- **FKG**, X.-H. Liu, S. Sakai, *Threshold cusps and triangle singularities in hadronic reactions*, PPNP 112 (2020) 103757
- G. Yang, J. Ping, J. Segovia, Tetra- and penta-quark structures in the constituent quark model, Symmetry 12 (2020) 1869
- C.-Z. Yuan, Charmonium and charmoniumlike states at the BESIII experiment, Natl. Sci. Rev. 8 (2021) nwab182
- H.-X. Chen, W. Chen, X. Liu, Y.-R. Liu, S.-L. Zhu, An updated review of the new hadron states, RPP 86 (2023) 026201
- L. Meng, B. Wang, G.-J. Wang, S.-L. Zhu, Chiral perturbation theory for heavy hadrons and chiral effective field theory for heavy hadronic molecules, Phys. Rept. 1019 (2023) 2266;

□

+ a book:

A. Ali, L. Maiani, A. D. Polosa, *Multiquark Hadrons*, Cambridge University Press (2019)

Compositeness

Composite systems of hadrons

 \square analogues of the deuteron ($\approx pn$ bound state)

 \blacksquare bound by the residual strong force, more extended than $1/\Lambda_{QCD}$

• Compositeness 1 - Z

S. Weinberg (1965); V. Baru et al. (2004); T. Hyodo et al. (2012); F. Aceti, E. Oset (2012); Z.-H. Guo, J. Oller (2016); I. Matuschek et al. (2021); J. Song et al. (2022); M. Albaladejo, J. Nieves (2022) ; for reviews, see T. Hyodo, IJMPA 28 (2013) 1330045; FKG, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, B.-S. Zou, RMP 90 (2018) 015004

Different confinement pictures

D probability of finding the physical state in two-hadron component (S-wave loosely bound)

Can be expressed in terms of low-energy observables

coupling constant

 $g_{\rm NR}^2 \approx (1-Z) \frac{2\pi}{\mu^2} \sqrt{2\mu E_B}$

 E_B : binding energy; μ : reduced mass

> ERE parameters (scattering length, effective range) S. Weinberg (1965)

$$a \approx -\frac{2(1-Z)}{(2-Z)\sqrt{2\mu E_B}}, \quad r_e \approx -\frac{Z}{(1-Z)\sqrt{2\mu E_B}}$$

Problematic for $r_e > 0$ I. Matuschek, V. Baru, FKG, C. Hanhart, EPJA 57 (2021) 101

Compositeness: beyond Weinberg

• Weinberg's assumptions

□ Neglecting the non-pole term from the Low equation

D Approximating the form factor $g(q) \equiv \langle q | \hat{V} | B \rangle$ by a constant

$$T_{p,k} = V_{p,k} + \frac{g(p) g^*(k)}{h_k - E_B} + \int_0^\infty \frac{q^2 dq}{(2\pi)^3} \frac{T_{p,q} T_{k,q}^*}{h_k + i\varepsilon - h_q} \qquad \text{w/} \ h_k \equiv k^2 / (2\mu)$$

Question: for ERE up to $\mathcal{O}(p^2)$, is a constant g(p) a consistent approximation?

• Improvement: replacing the constant form factor by a more general separable ansatz

$$T_{p,k} = t_k g(p) g^*(k)$$

Y. Li, FKG, J.-Y. Pang, J.-J. Wu, PRD 105 (2022) L071502

Unitarity: Im $t^{-1}(W) = \frac{k\mu}{8\pi^2} |g(k)|^2 \theta(W) \Rightarrow$ twice-subtracted dispersion relation

$$t^{-1}(W) = (W - E_B) + (W - E_B)^2 \int_0^\infty \frac{q^2 dq}{(2\pi)^3} \frac{|g(q)|^2}{(h_q - E_B)^2 (h_q - W)}$$

Then, we get

$$t(W) = \frac{1}{1 - F(W)} \frac{1}{W - E_B}, \qquad F(W) \equiv (W - E_B) \int_0^\infty \frac{q^2 dq}{(2\pi)^3} \frac{|g(q)|^2}{(h_q - E_B)^2 (W - h_q)}$$

Compositeness: beyond Weinberg

Y. Li, FKG, J.-Y. Pang, J.-J. Wu, PRD 105 (2022) L071502

• Compositeness $X \equiv 1 - Z$ emerges

$$F(\infty) = \int_0^\infty \frac{q^2 dq}{(2\pi)^3} \frac{|\langle q | \hat{V} | B \rangle|^2}{(h_q - E_B)^2} = \int_0^\infty \frac{q^2 dq}{(2\pi)^3} |\langle q | B \rangle|^2 = X$$

• Phase shift δ_B with the nonpole term neglected (convention: $\delta_B(0) = 0$)

$$\delta_B(E = h_p) \equiv \arg T_{p,p} = -\arg \left(1 - F(E + i\varepsilon)\right) \qquad F(0) \le 0, \quad \operatorname{Im} F(E + i\varepsilon) \le 0 \text{ for } E \ge 0$$

Introducing

$$F_1(W) \equiv \frac{\ln\left[1 - F(W)\right]}{W - E_B}, \quad \operatorname{Im} F_1(E + i\varepsilon) = -\frac{\delta_B(E)}{E - E_B}\theta(E) \qquad \qquad \delta_B \in [-\pi, 0]$$

• From the dispersion relation for $F_1(W)$, we obtain a solution:

$$F(W) = 1 - \exp\left(\frac{W - E_B}{\pi} \int_0^\infty dE \frac{-\delta_B(E)}{(E - W)(E - E_B)}\right)$$

and an expression for the compositeness

$$X = 1 - \exp\left(\frac{1}{\pi} \int_0^\infty dE \frac{\delta_B(E)}{E - E_B}\right) \in [0, 1]$$

Compositeness: beyond Weinberg

• Using Im $F(h_p + i\epsilon) = -\frac{\pi p\mu}{(2\pi)^3} \frac{|g(p)|^2}{h_p - E_p}$, we get

Y. Li, FKG, J.-Y. Pang, J.-J. Wu, PRD 105 (2022) L071502

$$|g(p)|^{2} = -\frac{(2\pi)^{3}}{\pi p\mu}(h_{p} - E_{B}) \sin \delta_{B}(E) \exp \left[\frac{h_{p} - E_{B}}{\pi} \oint_{0}^{\infty} dE \frac{-\delta_{B}(E)}{(E - h_{p})(E - E_{B})}\right]$$

• Consider ERE $p \cot \delta_B \approx -\frac{8\pi^2}{\mu} \operatorname{Re} T^{-1}(h_p) = \frac{1}{a} + \frac{r}{2}p^2 + \mathcal{O}(p^4)$, we finally get $g^2(p) = \frac{8\pi^2}{\mu^2 R} \times \begin{cases} X_W + \mathcal{O}(p^4) & \text{for } a \in [-R, 0] \& r \leq 0 \\ \frac{a^2}{R^2} \frac{1}{1 + (a+R)^2 p^2} + \mathcal{O}(p^4) & \text{for } a < -R \& r > 0 \\ \text{for } a < -R \& r > 0 \end{cases}$ contains $\mathcal{O}(p^2)$ terms, thus not self-consistent if using a

Poles of the T-matrix with ERE up to $\mathcal{O}(p^2)$:

constant q^2 but still work up to $\mathcal{O}(p^2)$ in ERE. Weinberg's relations do not hold in this case

$$\frac{1}{a} + \frac{r}{2}p^2 - ip = \frac{r}{2}(p - p_+)(p - p_-)$$

For $a \in [-R, 0]$, then r < 0, one bound state and one virtual state pole

$$g^2(p) = \frac{8\pi^2}{\mu^2 R} X_W + \mathcal{O}(p^4), \qquad X = X_W \simeq \sqrt{\frac{1}{1 + 2r/a}}$$

For a < -R, then r > 0, two bound state poles (the remote one $\sim i/\beta$ is unphysical)

$$g^{2}(p) = \frac{8\pi^{2}}{\mu^{2}R} \frac{a^{2}}{R^{2}} \frac{1}{1 + (a+R)^{2}p^{2}} + \mathcal{O}(p^{4}), \qquad X \simeq 1 - e^{-\infty} = 1 \qquad \qquad \text{For the deuteron, } R = 4.31 \text{ fm, } a = -5.42 \text{ fm,} a = -5.42 \text{ fm}, a =$$

Uncertainty of the new relation

• The uncertainty was usually assumed to be $\mathcal{O}\left(\frac{\gamma}{\beta}\right)$, with $\gamma = \sqrt{2\mu|E_B|}$ the binding momentum. This comes

from approximating the form factor by a constant $g(p^2) = 1 + rac{p^2}{\Lambda^2} + \cdots$, $\Lambda \sim eta$

$$\Delta X = \frac{1}{\Lambda^2} \int_0^{\Lambda} \frac{q^2 dq}{(2\pi)^3} \frac{q^2}{\left(h_q - E_B\right)^2} = \mathcal{O}\left(\frac{\gamma}{\Lambda}\right)$$

• This approximation has been lifted, the uncertainty should be of $\mathcal{O}\left(\frac{\gamma^2}{\beta^2}\right)$!

Hadronic molecules in a NREFT at leading order

• Consider two hadrons in S-wave, near-threshold region \Rightarrow nonrelativistic EFT

 $T_{\rm NR}(E) = C_0 + C_0 G_{\rm NR}(E) C_0 + C_0 G_{\rm NR}(E) C_0 G_{\rm NR}(E) C_0 + \dots$ = $\frac{1}{C_0^{-1} - G_{\rm NR}(E)} = \frac{2\pi/\mu}{2\pi/(\mu C_0^r) - \sqrt{-2\mu E - i\epsilon}}$

 $\square \text{ Effective coupling: } g_{\rm NR}^2 = \lim_{E \to -E_B} (E + E_B) T_{\rm NR}(E) = \frac{2\pi}{\mu^2} \sqrt{2\mu E_B}$

□ Recall $g_{NR}^2 \approx (1 - Z) \frac{2\pi}{\mu^2} \sqrt{2\mu E_B}$, the pole obtained at LO NREFT with a constant contact term is purely composite

Range corrections: other components at shorter distances

 \diamond coupling to additional states/channels

energy/momentum-dependent interactions: higher order

Molecular line shapes at LO

• Poles at LO NREFT: bound or virtual state

D Bound and virtual state can hardly be distinguished above threshold (E > 0)

$$|T_{\rm NR}(E)|^2 \propto \left|\frac{1}{\pm\kappa + i\sqrt{2\mu E}}\right|^2 = \frac{1}{\kappa^2 + 2\mu E}$$

- **\Box** Different below threshold (E < 0)
 - bound state: peaked below threshold

$$|T_{\rm NR}(E)|^2 \propto rac{1}{(\kappa - \sqrt{-2\mu E})^2}$$

virtual state: sharp cusp at threshold

$$|T_{\rm NR}(E)|^2 \propto rac{1}{(\kappa + \sqrt{-2\mu E})^2}$$

E [MeV]

Im k k bound state pole $k = i \kappa$ thr. virtual state pole $k = -i \kappa$

Molecular line shapes at LO

Poles at LO NREFT: bound or virtual state

D Bound and virtual state can hardly be distinguished above threshold (E > 0)

$$|T_{\rm NR}(E)|^2 \propto \left|\frac{1}{\pm \kappa + i\sqrt{2\mu E}}\right|^2 = \frac{1}{\kappa^2 + 2\mu E}$$

- \square Different below threshold (E < 0)
 - bound state: peaked below threshold

$$|T_{
m NR}(E)|^2 \propto rac{1}{(\kappa - \sqrt{-2\mu E})^2}$$

virtual state: sharp cusp at threshold

$$|T_{\rm NR}(E)|^2 \propto rac{1}{(\kappa + \sqrt{-2\mu E})^2}$$

E [MeV]

thr.

NREFT at LO for coupled channels

- Full threshold structure needs to be measured in a lower channel (ch-1) \Rightarrow coupled channels
- Consider a two-channel system, construct a "nonrelativistic" effective field theory (NREFT)
 - \succ Energy region around the higher threshold (ch-2), Σ_2
 - > Expansion in powers of $E = \sqrt{s} \Sigma_2$
 - > Momentum in the lower channel can also be expanded

$$T(E) = 8\pi\Sigma_2 \begin{pmatrix} -\frac{1}{a_{11}} + ik_1 & \frac{1}{a_{12}} \\ \frac{1}{a_{12}} & -\frac{1}{a_{22}} - \sqrt{-2\mu_2 E - i\epsilon} \end{pmatrix}^{-1} = -\frac{8\pi\Sigma_2}{\det} \begin{pmatrix} \frac{1}{a_{22}} + \sqrt{-2\mu_2 E - i\epsilon} & \frac{1}{a_{12}} \\ \frac{1}{a_{12}} & \frac{1}{a_{11}} - ik \end{pmatrix}$$
$$\det = \left(\frac{1}{a_{11}} - ik_1\right) \left(\frac{1}{a_{22}} + \sqrt{-2\mu_2 E - i\epsilon}\right) - \frac{1}{a_{12}^2}$$

- a₂₂: single-ch. scattering length of ch-2
 a₁₁: single-ch. interaction
 - strength of ch-1 at Σ_2

Effective scattering length with open-channel effects becomes complex, $\text{Im} \frac{1}{q} \leq 0$ $T_{22}(E) = -\frac{8\pi}{\Sigma_2} \left[\frac{1}{a_{22,\text{eff}}} - i\sqrt{2\mu_2 E} + \mathcal{O}(E) \right]^{-1} \qquad \frac{1}{a_{22,\text{eff}}} = \frac{1}{a_{22}} - \frac{a_{11}}{a_{12}^2(1 + a_{11}^2 k_1^2)} - i\frac{a_{11}^2 k_1}{a_{12}^2(1 + a_{11}^2 k_1^2)}.$

Distinct line shapes of the same pole

Line shapes of the same pole depend on the production mechanism. Consider production of particles in ch-1

- Dominated by ch-2
 Maximal at threshold
 - for positive $\text{Re}(a_{22,\text{eff}})$ (attraction), FWHM \propto $1/\mu$
 - more pronounced for heavier hadrons and stronger
 - interactions
 - Peaking at pole for negative $\operatorname{Re}(a_{22,eff})$

- Dominated by ch-1
 One pole and one zero
 - Universality for large scattering length: for large $|a_{22}|$, there must be a dip around threshold (zero close to threshold)

Distinct line shapes of the same pole

• Example-2: direct production of X(3872) in e^+e^-

Baru, FKG, Hanhart, Nefediev, PRD (Letter), in print (2024) [2404.12003]

> Driving channel:

Prediction: dip around
 D^{*} \overline{D}^* threshold

 \sqrt{s} (MeV)

 $\Box J/\psi \to \omega \pi^+ \pi^-$

Driving channel: $\pi\pi$

$$J/\psi \to \omega \pi \pi \to \omega \pi^+ \pi^-$$

 $M(\pi^+\pi^-)$ (GeV/c²)

BES, PLB 607 (2005) 243

Binding mechanism

• One-boson exchange Vector + scalar exchanges: M. Voloshin, L. Okun, JETP Lett. 23 (1976) 333

One-pion exchange

N.A. Tönqvist, ZPC 61 (1994) 525; ...

➤ systems like $D\overline{D}$, $Σ_c\overline{D}$ unbound

Composite	J ^{PC}	Deuson		
$D\bar{D}^*$	0-+	$\eta_c (\approx 3870)$		
$Dar{D}^*$	1++	$\chi_{c1} (\approx 3870)$		
$D^*ar{D}^*$	0++	$\chi_{c0} (\approx 4015)$		
$D^*ar{D}^*$	0-+	$\eta_c (\approx 4015)$		
$D^*ar{D}^*$	1+-	$h_{c0} (\approx 4015)$		
$D^*ar{D}^*$	2++	$\chi_{c2} (\approx 4015)$		
$Bar{B}^*$	0-+	$\eta_b (\approx 10545)$		
$Bar{B}^*$	1++	$\chi_{b1} (\approx 10562)$		
$B^*ar{B}^*$	0++	$\chi_{b0} (\approx 10582)$		
$B^*\bar{B}^*$	0++	$\eta_b (\approx 10590)$		
$B^*ar{B}^*$	1+-	$h_b (\approx 10608)$		
$B^*\bar{B}^*$	2++	$\chi_{b2} (\approx 10602)$		

□ One-vector exchange S. Krewald, R. Lemmer, F. Sassen, PRD 69 (2004) 016003; ... $\triangleright D\overline{D}$ bound state predicted

Y.-J. Zhang, H.-C. Chiang, P.-N. Shen, B.-S. Zou, PRD 74 (2006) 014013; D. Gamermann et al., PRD 76 (2007) 074016; ...

♦ Lattice QCD S. Prelovsek et al., JHEP06 (2021) 035

Conflict: not in D.J. Wilson et al., arXiv:2309.14070. solution?

> Hidden-charm pentaquarks >4 GeV (including $\Sigma_c \overline{D}$) predicted

J.-J. Wu, R. Molina, E. Oset, B.-S. Zou, PRL 105 (2010) 232001; ...

• Soft-gluon exchanges: equivalent to OZI breaking $\pi\pi$, $K\overline{K}$, ...

X.-K. Dong et al., Sci. Bull. 66 (2021) 1577

Survey of the molecular spectrum in a simple model

- light-vector-meson exchanges
- single channel

 \succ neglecting mixing

X.-K. Dong, FKG, B.-S. Zou, Progr. Phys. 41 (2021) 65; CTP 73 (2021) 015201

Extension of the survey including vector+scalar meson exchanges:

F.-Z. Peng, M. Sanchez-Sanchez, M.-J. Yan, M. Pavon Valderrama, PRD 105 (2022) 034028; M.-J. Yan, F.-Z. Peng, M. Pavon Valderrama, PRD 109 (2024) 014023

For a list of the literature on one-boson exchange models, see, e.g., Y.-R. Liu et al., PPNP 107 (2019) 237

Survey of hadronic molecules: hidden-charm mesons w/ P = +

X.-K. Dong, FKG, B.-S. Zou, Progr. Phys. 41 (2021) 65

- \checkmark > 200 hidden-charm hadronic molecules
- ✓ X(3872) as a $\overline{D}D^*$ bound state
- $\checkmark \tilde{X}(3872)$ COMPASS, PLB 783 (2018) 334
- ✓ $\overline{D}D$ bound state from lattice S. Prelovsek et al., JHEP06 (2021) 035
 - & other models C.-Y. Wong, PRC 69 (2004) 055202; Y.-J. Zhang et al., PRD 74 (2006) 014013; D. Gamermann et al., PRD 76 (2007) 074016; J. Nieves et al., PRD 86 (2012) 056004; ...

 $\checkmark X(3960) \text{ in } B^+ \rightarrow D_s^+ D_s^- K^+$

Survey of hadronic molecules: hidden-charm mesons w/ P = +

X.-K. Dong, FKG, B.-S. Zou, Progr. Phys. 41 (2021) 65

✓ $D_s \overline{D}_s^*$, $D_s^* \overline{D}_s^*$ virtual states?

Virtual poles found from the fit in X. Luo, S.X. Nakamura, PRD 107 (2023) L011504

Hidden-charm mesons w/ P = -

- ✓ $Y(4260)/\psi(4230)$ as a $\overline{D}D_1$ bound state ✓ $\psi(4360), \psi(4415): D^*\overline{D}_1, D^*\overline{D}_2$?
- ✓ Evidence for $1^{--} \Lambda_c \overline{\Lambda}_c$ molecular state in BESIII data
 - Sommerfeld factor
 - near-threshold pole
 - different from $Y(4630)_{\odot}$

Data from BESIII, PRL 120 (2018) 132001; see also Q.-F. Cao et al., PRD 100 (2019) 054040

✓ Numerous states with exotic quantum numbers

 $0^{--} [\psi_0], 1^{-+} [\eta_{c1}], 3^{-+} [\eta_{c3}]$

e.g., $e^+e^- \rightarrow \gamma \eta_{c1,3}$, $\omega \eta_{c1,3}$; $\eta_{c1,3} \rightarrow D\overline{D}^*\pi$, $J/\psi \omega$, ...

 ✓ Many 1⁻⁻ states in [4.8, 5.6] GeV: BEPC-II-Upgrade, Belle-II, LHCb, STCF, PANDA, ...

Hidden-charm pentaquarks

X.-K. Dong, FKG, B.-S. Zou, Progr. Phys. 41 (2021) 65

- ✓ P_c states as $\overline{D}^{(*)}\Sigma_c^{(*)}$ molecules
- ✓ The LHCb data can be well described in a pionful EET

✓ $P_{cs}(4459)$: 2 $\overline{D}^*\Xi_c$ molecular states ✓ $P_{cs}(4338)$: $\overline{D}\Xi_c$ molecular state

Double-charm tetraquarks and dibaryons

\checkmark *T_{cc}*(3875) as *D*^{*}*D* molecule

X.-K. Dong, FKG, B.-S. Zou, CTP 73 (2021) 125201

✓ The LHCb data can be well described in a pionful EFT w/ 3-body effects

M.-L. Du et al., PRD 105 (2022) 014024

- \checkmark isoscalar DD^* molecular state
- ✓ It has a spin partner $1^+ D^*D^*$ state
- \checkmark Many (> 100) other similar double-charm molecular states

Closer look at the 0^{--} state

• $\psi(4230), \psi(4360), \psi(4415)$ as $D\overline{D}_1, D^*\overline{D}_1, D^*\overline{D}_2$ hadronic molecules

Q. Wang, C. Hanhart, Q. Zhao, PRL 111 (2013) 132002; Cleven et al. (2015); L. Ma et al. (2015); ...

• 0^{--} spin partner $\psi_0(4360) [D^*\overline{D}_1]$

T. Ji, X.-K. Dong, FKG, B.-S. Zou, PRL 129 (2022) 102002

• Robust against the inclusion of coupled channels and three-body effects

Molecul e	Components	J ^{PC}	Threshold	E_B
ψ(4230)	$\frac{1}{\sqrt{2}}(D\bar{D}_1 - \bar{D}D_1)$	1	4287	67 <u>±</u> 15
$\psi(4360)$	$\frac{1}{\sqrt{2}}(D^*\bar{D}_1 - \bar{D}^*D_1)$	1	4429	62 ± 14
$\psi(4415)$	$\frac{1}{\sqrt{2}}(D^*\bar{D}_2 - \bar{D}^*D_2)$	1	4472	49 ± 4
ψ_0	$\frac{1}{\sqrt{2}}(D^*\bar{D}_1+\bar{D}^*D_1)$	0	4429	63 ± 18

0.5

1.0

1.5

0.0

0.0

 D_1

• May be searched for using $e^+e^- \rightarrow \psi_0 \eta$, $\psi_0 \rightarrow J/\psi \eta$, $D\overline{D}^*$, $D^*\overline{D}^*\pi$, ...

 $M = (4366 \pm 18)$ MeV,

 $\Gamma < 10 \text{ MeV}$

2.5

3.0

2.0

Prediction of an isospin vector partner of X(3872)

Z.-H. Zhang, T. Ji, X.-K. Dong, FKG, C. Hanhart, U.-G. Meißner, A. Rusetsky, arXiv:2404.11215

• Isospin-1 partner of X(3872) was predicted in the compact tetraquark model

L. Maiani, F. Piccinini, A.D. Polosa, V. Riquer, PRD 71 (2004) 014028

Prediction of an isospin vector partner of X(3872)

Z.-H. Zhang, T. Ji, X.-K. Dong, FKG, U.-G. Meißner, A. Rusetsky, arXiv:2404.11215

- How about the $D\overline{D}^*$ hadronic molecular scenario?
- $D^0 \overline{D}^{*0}$, $D^+ D^{*-}$ coupled channels: I = 0, 1

 \Box Interactions at leading order: two LECs (I = 0, 1) C_{0X}, C_{1X}

\Box Two inputs from *X*(3872) properties

> Mass

 $M_X = 3871.69^{+0.00+0.05}_{-0.04-0.13}$ MeV LHCb, PRD 102 (2020) 092005 $M_{D^0} + M_{D^{*0}} = 3871.69(7)$ MeV PDG 2023

Isospin breaking in decays
LHCb, PRD 108 (2023) L011103

$$R_X = \left| \frac{\mathcal{M}_{X(3872) \to J/\psi\rho^0}}{\mathcal{M}_{X(3872) \to J/\psi\omega}} \right| = 0.29 \pm 0.04 = \left| \frac{g_0 - g_{\pm}}{g_0 + g_{\pm}} \right|$$

 $\mathcal{B}_X \equiv M_{D^0} + M_{D^{*0}} - M_{X(3872)}$

Prediction of an isospin vector partner of X(3872)

• There must be an isospin vector partner W_{c1}

 \Box Virtual state pole in the stable D^* limit \Rightarrow explains why it has not observed so far!

 $\gg W_{c1}^0$ in $D^0 \overline{D}^{*0} - D^+ D^{*-}$ scattering amplitudes $\gg W_{c1}^+$ in $D^+ \overline{D}^{*0}$ scattering amplitude

Z.-H. Zhang, T. Ji, X.-K. Dong, FKG, C.Hanhart, U.-G. Meißner, A. Rusetsky, arXiv:2404.11215

Summary

CRC 110 has significantly advanced the knowledge of hadronic molecules

Selected works that I was involved:

- Generalization of Weinberg's compositeness relations
- A rich spectrum of hadronic molecules is expected
- General rules for (near-)threshold structures
 - > S-wave attraction, more prominent for heavier particles and stronger attraction
 - > Pole behavior: distinct line shapes depending on reaction mechanism
 - > Universality: a dip (for large $|a_{22}|$) at the higher channel threshold in T_{11}
- Robust prediction of a ψ_0 with exotic $J^{PC} = 0^{--}$ as spin partner of $\psi(4230), \psi(4360), \psi(4415)$ \Rightarrow extension to more spin partners ongoing
- Robust prediction of an isovector partner of X(3872): $W_{c1}^{\pm,0}$

Thank you for your attention!