

CHARACTERIZATION OF AN IMPROVED TIME REFERENCE PLANE AND DEVELOPMENT OF A NEW TRIGGER SYSTEM FOR AN EUDET-TYPE BEAM TELESCOPE

MASTER COLLOQUIUM

Rasmus Partzsch

03.13.24

Introduction EUDET-Type Beam Telescope

- Reference tracking detector
- Characterization and development of detectors (DUT)
- Multiple EUDET-type beam telescopes are in use, providing a common hardware
- Flexible testing setup
- Tracking detector consists of semiconductor pixel detectors
- Precise spatial and temporal tracking through device under test (DUT)

UNIVERSITÄT BONN

[4]

Introduction Test Beam Areas

ELSA test beam area:

- Primary beam
- Variable beam spot
- Particle rate (~kHz MHz)
- Energy (< 3.4 GeV)</p>

DESY test beam areas:

- Tertiary beam
- Full control over tertiary beam
- Energy and particle rate variable (1 GeV - 6 GeV) and (≤ 5 kHz)

[2, 3]

UNIVERSITÄT BONN

- The test beam telescope ANEMONE
 - The MIMOSA26 high resolution detector
- Trigger logic unit (TLU) of ANEMONE
 - AIDA-TLU
- Python based control software for the AIDA-TLU
 - Dynamic tests
 - Integration in the ANEMONE readout
- The time reference plane
- Track reconstruction efficiency
- Test beam studies

The Test Beam Telescope ANEMONE

- 6x MIMOSA26 high spatial resolution planes (ANEMONE)
- 1x Time reference plane for time resolution
- Scintillator(s) for trigger generation

The MIMOSA26 High Resolution Detector

- 18.4 x 18.4 μ m² pixel size
- 576 x 1172 pixel matrix
- 10.51 x 21.45 mm² active area
- 115.2 µs readout time
- Rolling shutter readout
 - Columns are read in parallel where rows are read one after the other
- One Readout frame takes 115.2 μs
 - Hits occurring in one readout frame can be placed into next readout frame

 \rightarrow an effective time resolution of 2 x 115.2 μs

[5]

Hardware Components of ANEMONE

Scintillator trigger signals distributed to devices

- Each device has its own readout board
- Readout boards are connected to a PC
- Control of devices using Python based Software
- Upgrades to the test beam telescope
 - TLU
 - Time reference plane

Trigger Logic Unit of ANEMONE

The Trigger Logic Unit of ANEMONE

EUDET-TLU

UNIVERSITÄT BONN

- TLU distributes trigger signals to different devices
- Hit synchronization of individual devices to create events
- Upgrade of EUDET-TLU to AIDA-TLU
- EUDET-TLU → AIDA-TLU
 - Different communication protocols, to multiple individual devices
 - Faster trigger sampling
 - Scintillator threshold setting in software

[6, 7]

- 6x Trigger inputs
- 4x PMT power supply
- 4x HDMI DUT interfaces (Trigger Output, Clock Output...)

- Discriminator for trigger input threshold
- Stretch and delay of trigger pulses
- Trigger forming logic between trigger inputs using Boolean logic (AND, OR, NOT...)

EUDET Mode

 Synchronization between devices using trigger number which is sent in addition to trigger

AIDA Mode

- TLU distributes clock to DAQ and a reset for timestamps
- DAQ runs with common clock / time stamp
- Synchronization of hit using common time stamp (useful for untriggered devices)

Operating Modes of the AIDA-TLU

EUDET Mode (Handshake)

- DUT accepts TRIGGER from TLU and answers by asserting BUSY
- DUT clocks out TLU trigger number (external trigger number)

AIDA Mode (No Handshake)

- TRIGGER are sent continuously
- DUT can veto new trigger by asserting BUSY

[5]

Python Based Control Software for the AIDA-TLU

The AIDA-TLU Control Software

- Development of new custom Software
- Inputs configuration file to set trigger logic, operation modes...
- Outputs compressed .h5 files with trigger number, trigger timestamp...
- The TLU hardware is controlled with a PC using IPbus as the register read/writing protocol
- I²C is the serial communication bus between hardware components
- Control over terminal command lines

[8]

Dynamic Tests of the AIDA-TLU and the Control Software

UNIVERSITÄT BONN

Repetition of tests at DESY test beam

Threshold EUDET Mode Electron beam and scintillator _ together wit BDAQ board 2500 Telescope planes 2000 Trigger Rate [Hz] 12000 12000 1000 Scintillator Time Reference -0.20VDUT -0.13V-0.04 VBeam 500 Scintillator Trigger Pulse 0 BDAO Trigger/ 100 200 300 400500 600 0 Clock Time [s] Data Data

Integration of the AIDA-TLU Control Software into the ANEMONE Readout Infrastructure

- Existing ANEMONE test beam infrastructure has a modular software framework
- Each device is connected to a readout board, controlled using a Python based control software
- Outputs are individual h5 data Software files
- Data files are merged in Analysis

• Data files from AIDA-TLU allow additional method of event matching

The Time Reference Plane

The Time Reference Plane

New time reference plane

- Chip availability
- Software support

ATLAS FE-I4 (currently used)

- $250x50 \ \mu m^2$ pixel size
- 80 x 336 pixel matrix
- 20 x 16.8 mm² active area
- 25 ns time stamping capabilities

ITkPix (upgraded)

- 50x50 μm² pixel size
- 400 x 384 pixel matrix
- 20 x 19.2 mm² active area
- 25 ns time stamping capabilities

[11, 12]

Time Reference Plane

- Readout frame of MIMOSA26 planes: 115.2 μs
- Assignment of hits to track is not always possible
- Multiple tracks (trigger) in one readout frame
- Time reference plane for spatial assignment of track to time reference

Track Reconstruction Efficiency

- Characterize performance of time reference planes
- Quality of tracks through residuals:

 $X_{res} = X_{track} - X_{hit}$

 $\mathbf{Y}_{res} = \mathbf{Y}_{track} - \mathbf{Y}_{hit}$

- Parameter to estimate the percentage of correctly reconstructed tracks:
 Track reconstruction efficiency
- Ratio of correctly reconstructed tracks to wrongly reconstructed tracks

UNIVERSITÄT BONN Determination of the Track Reconstruction Efficiency

- Residuals are calculated for each track in row and column direction and fitted using Gaussian functions
- Cut row residuals using column residuals
- Determine cut distances from fits: Gauss function for ITkPix: $\Gamma_{cut} = \mu \pm (FWHM/2 + \sigma)$

- Remaining residuals fit: Fit = Gauss + Gauss + linear
 Fit = Signal + Tail + Pedestal
- Signal: correct reconstructed tracks
- Tail: track with larger residuals due to multiple scattering
- Pedestal: wrongly reconstructed tracks
- $\Gamma_{cut} = \mu \pm (FWHM/2 + \sigma)$ of signal function

- Larger residuals of FE-I4 in column direction required a Gauss-Box fit with cut: $\Gamma_{cut} = \mu \pm (d_{box}/2 + \sigma)$
- Same cut in row directions as ITkPix: $\Gamma_{cut} = \mu \pm (FWHM/2 + \sigma)$

Track reconstruction efficiency is calculated from the integral over the signal and pedestal functions:

$$TRE = \frac{\int_{\Gamma} f_{Sig} dX_{Res}}{\int_{\Gamma} f_{Sig} + f_{Ped} dX_{Res}}$$

Using track reconstruction efficiency the quality of tracks between FE-I4 and ITkPix is compared:

FE-I4: TRE = (99.79 ± 0.05) % ITkPix: TRE = (99.94 ± 0.03) %

Small improvement of ITkPix over FE-I4 during a test beam at DESY with particle rates ~ 2 kHz

- Measured at test beam ELSA
- Accepted trigger rate from the TLU to devices
- No clear dependency of track reconstruction on particle rate
- ITkPix performs better at all measured particle rates

Test Beam Studies

Two TJ-Monopix2 in AIDA Mode

- Test beam setup at ELSA using two TJ-Monopix2 as DUTs
- TJ-Monopix2 in AIDA operating mode
- No trigger information needed, pure time stamp correlation

Region of Interest Trigger

ITkPix

326.5

P6

266.1

P4

239.2

• Three runs @1 GeV, @3.8 GeV and @5 GeV at DESY

P3

53.1

• Mean scattering angle: $\theta_0 \sim 1/p$

P2

25.5

P1

z [mm]

Beam

3.8 GeV

Rasmus Partzsch - s6rapart@uni-bonn.de

- Integration of the AIDA-TLU in the ANEMONE test beam infrastructure
 - Verified custom Python based control software
 - Provides multiple operating modes
 - Complex trigger logic (for example ROI)
 - Successfully, tested during test beam campaigns
- Replacement of FE-I4 with ITkPix as time reference plane for the test beam telescope ANEMONE
 - Slightly increased
 - track reconstruction efficiency
 - Consistent for higher particle rates

- Output of the discriminated scintillator signal from the TLU as timing reference
- Characterization of ROI-trigger using (multiple) scintillators
- Reduce material budget of the cooling setup for the ITkPix time reference plane

Thank you for your attention!

The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF)

[2] Nikolas Heurich, Die externe Strahlführung für Detektortests X3ED an der Elektronen-Stretcher-Anlage ELSA, PhD thesis: Rheinische Friedrich-Wilhelms-Universität Bonn, 2017, url: https://hdl.handle.net/20.500.11811/7310

[3] R. Diener et al., The DESY II test beam facility, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 922 (2019) 265, issn: 0168-9002, url: http://dx.doi.org/10.1016/j.nima.2018.11.133

[4] H. Jansen et al., Performance of the EUDET-type beam telescopes, en, EPJ Tech. Instrum. 3 (2016)

[5] MIMOSA26 User Manual, March 2011 V.1.5,

url: https://indico.cern.ch/event/231527/contributions/488098/

attachments/384366/534629/M26_UserManual_light.pdf (visited on 02/02/2024).

[6] Top level repository for the AIDA-2020 trigger logic unit,

url: https://ohwr.org/project/fmc-mtlu

- [7] Description of the JRA1 Trigger Logic Unit (TLU), v0.2c,
 - url: https://www.eudet.org/e26/e28/e42441/e57298/EUDET-MEMO-2009-04.pdf (visited on 12/02/2024)
- [8] C. G. Larrea et al., IPbus: a flexible Ethernet-based control system for xTCA hardware, Journal of Instrumentation 10 (2015) C02019.
- [9] P. Wolf, Testing and extending a Python-based readout system for a high-resolution pixel detector telescope, Bachelor Thesis: Universität Bonn, 2016 (cit. on p. 13).
- [9] Y. Dieter, Setup and Characterization of the Beam Area for Pixel Detector Tests at ELSA,
 - Master Thesis: Universität Bonn, 2017
- [11] L. Meng, ATLAS ITk Pixel Detector Overview, 2021,
 - arXiv: 2105.10367 [physics.ins-det].
- [12] The FE-I4B Integrated Circuit Guide, Version 2.3 December 30, 2012,
 - url: https://indico.cern.ch/event/261840/contributions/1594374/
 - attachments/462649/641213/FE-I4B_V2.3.pdf (visited on 02/02/2024).

Backup

DEC	I5	I4	I3	I2	I1	IO	PATTERN	CONFIG. WORD
0	0	0	0	0	0	0	0	
1	0	0	0	0	0	1	1	OvE
2	0	0	0	0	1	0	1	UAL
3	0	0	0	0	1	1	1	
4	0	0	0	1	0	0	0	
5	0	0	0	1	0	1	0	0x0
6	0	0	0	1	1	0	0	0.00
7	0	0	0	1	1	1	0	
8	0	0	1	0	0	0	0	
9	0	0	1	0	0	1	0	0×0
10	0	0	1	0	1	0	0	0.00
:								
61	1	1	1	1	1	0	0]
62	1	1	1	1	1	0	0	0x0
63	1	1	1	1	1	1	0	

- 6 trigger inputs each in a binary state (HIGH or LOW)
 - 2⁶ = 64 possible trigger patterns
- To set trigger configuration
 - Set a 1 in the pattern row for all valid trigger patterns
 - Configuration word is the hexadecimal representation of the valid trigger patterns.

Online Monitor AIDA-TLU

