

13.03.2024 MASTER COLLOQUIUM STUDY OF TID RADIATION EFFECTS AND CHARACTERIZATION OF THE ITKPIXV2 READOUT CHIP FOR THE ATLAS ITK PIXEL DETECTOR UPGRADE

KONSTANTIN MAUER

(KONSTANTIN.MAUER@CERN.CH)

1 2 3

4

OUTLINE

Introduction to ITkPixV2

Initial chip testing

Wafer probing

Irradiation

INTRODUCTION INTO THE ITKPIXV2 READOUT CHIP

- To cope with increased instantaneous luminosity of upcoming HL-LHC upgrade:
- Many parts of the ATLAS detector have to be developed from ground:
 - \circ New all-silicon tracking detector (ITk) with 5 barrel layers of pixel detectors
 - Features of new detector:
 - An increased spatial resolution
 - Higher bandwidth
 - Better radiation hardness

ightarrow New pixel readout chip was designed

HYBRID PIXEL DETECTOR

- Tracking detector consisting of two parts:
 - Charged particles cause ionizing radiation in silicon sensor
 - PN-junction gets depleted to build up a drift field
 - Drifting electrons and holes generate signal at pixel segment
 - These signal get processed in dedicated readout chip
 - Individual Front ends connected via "bumps"
 - Performs amplification, digitization, transmission
- R&D happens separately from another:
 - ightarrow development easier, but hybridization complicated

ITKPIXV2 READOUT CHIP

- The readout chip essential part of a hybrid pixel detector
- It has a size of 20mm x 21mm with 384 x 400 pixels (with a pixel bump pitch of 50 μ m)
- Mixed-signal chip with analog amplification, discrimination and digital data processing
- Internal data handling is central part of the chip:
 - \rightarrow Rated for hit rate of 3 GHz/cm², trigger rate 1 MHz⁴
- Its equipped with power regulators designed to be operated in a serial powering chain
 - → Cooling sets narrow power budget

- TIMELINE
- 2017/2018: Testing of prototype chip (RD53A) started
- 2020: First full-scale chip ITkPixV1 arrived, pre-production started
- 2023: Production chip ITkPixV2 submitted in April
 - In July first small batch arrived
 - \rightarrow First tests on wafer level / preparing probe routine
 - In September first production batch arrived
 - → Started **production on wafer level**
 - Oktober November: TID irradiation campaign
- 2024-2026: Module production

INITIAL CHIP TESTING

INITIAL RECEPTION

- Chip started up perfectly:
 - Good power consumption
 - Basic scans successful
- Confirmed bugfixes:
 - $\,\circ\,$ ToT and pToT working
 - Data Merging phase alignment
 - Many other small changes...
- No new major bugs found effecting detector operation

		Tested			
	Power consumption	\checkmark			
	Register R/W	\checkmark			
	Iref trim	\checkmark			
	Vref trim	1			
	Tuning	\checkmark			
	Digital scan	\checkmark			
	Analog scan	\checkmark			
	Threshold scan	\checkmark			
	Datamerging	\checkmark			
	Monotonic ToT at 80 MHz	\checkmark			
	PToT working	\checkmark			
	T/B RPOLY resistors	\checkmark			
∝E, ↑ ∧	Iref trim readback	\checkmark			
Datamerging auto phase alignment					
cator 1					
tor					
$\propto TOT_1$	$\simeq TOT_2$				

2011 Phys. Med. Biol. 56 1947

Preamplifi

Discrimina

Counter

CHARACTERIZATION

- The FEs can be characterized by performing threshold scans
 e.g. after tuning the pixel thresholds to a certain threshold like 1000 e⁻, 2000 e⁻
- Configuration of analog front end depends on the needs of each layer in detector
 - Compromise: performance <-> power consumption
- Register settings where specified for each layer
 - They control the preamplifier gain and reset current of the analog front ends of each pixel
- This was performed for each layer setting with nominal supply voltage VDD = 1.2 V and with reduced supply voltage of 1.1 V

Layer	Target Thr.	Thr. disp.	Noise
LO	1k e⁻	27 e⁻	38 e⁻
LO	2k e⁻	33 e⁻	38 e⁻
L1	1k e⁻	26 e⁻	39 e⁻
L1	2k e⁻	33 e⁻	41 e⁻
L2-4	1k e⁻	21 e⁻	32 e⁻
L2-4	2k e⁻	32 e⁻	34 e⁻

WAFER PROBING

INTRODUCTION OF WAFER PROBING

- To save unnecessary production cost:
 - $\,\circ\,$ All dies are first tested on wafer level in probe station
 - $_{\odot}$ Wafers send for hybridization with yield map \rightarrow
- Probing procedure:
 - $\,\circ\,$ Wafer position / height calibrated up to few μm
 - $\circ\,$ Probe card used to contact the 200 pads of chip
 - Each die individually tested: basic functionalities
 - $\,\circ\,$ Optimized to one day / wafer

STATUS OF WAFER PROBING

- Yield of predecessor chip: 80 %
- Problems on DAQ side solved: yield 60 % \rightarrow 90 %
- Probing time was reduced to 21 h
- Together with Glasgow we probed the first 100 wafers for the production of ATLAS ITk Pixel modules
- The remaining probing sites where also supported progress was shown towards qualifying as probing sites
- Together, up to 700 wafers will be probed for building ATLAS ITk Pixel tracker

IRRADIATION

- Total Ionizing Dose: measured in rad (100 rad = 1 Gy)
- Charged particles cause ionization also in the SiO₂ of readout chip
 - In: gate oxide + shallow trench isolation oxide between transistors
 - \circ The holes from the electron-hole pairs may get trapped \rightarrow positive charge in SiO₂
- Transistor properties affected (> 600M transistors)
 - E.g. threshold, but also gate delays in logical cells
- Innermost layers of ATLAS Pixel tracker will see up to 1 Grad of TID until end of lifetime (including 1.5 safety factor)
- Bulk damage only plays secondary roles for CMOS chip

IRRADIATION SETUP

- Confirm the radiation hardness of ITkPixV2
- Testing up to 1 Grad TID using X-Rays:
 - $\,\circ\,$ Tube: tungsten target, 40 kV, 50 mA, 150 μm Al filter
- Beam profile determined with calibrated diode
- Non-homogenous profile:
 - $\,\circ\,$ Chip bottom positioned into flat spot
 - Pixel matrix irradiated partially
 - High rate irradiation in 6.5 weeks
 - Incorporating losses in Al layers: 0.85 Mrad/h

IRRADIATION PROCEDURE

- During irradiation:

- \circ Chip powered (shunt mode), and cooled with chiller at maximal capacity
- Monitoring all voltages, currents, environmental data, ring oscillators
- Keep chip busy with analog scans in between
- Between Irradiation steps: (of increasing size)
 - Calibration of Regulators, ADCs, IV curves...
 - Threshold tuning and characterization
- Before / After:

Additional temperature calibration

IRRADIATION OVERVIEW

- After a rough preparation: irradiation ran almost without problems
 - \circ But: 942 Mrad \rightarrow reference ground got broken
 - Failure of SMU, effects some data, on backup slides
- Chip working perfectly after 1 Grad in chip bottom
- Further results divided into measurements related to:
 - Power regulator
 - Chip periphery
 - Pixel Matrix

REFERENCE CURRENTS

- Power regulators and chip periphery rely on references
- Main reference generated from band gap reference
 - $\,\circ\,$ TID effects cause main iref (blue) to drift up
- All other references derived using current mirrors
 - $\,\circ\,$ In tuning circuit: references get more unpredictable
- In case of VrefA and VrefD
 - $\circ\,$ Compensable with dedicated DACs $\,$

SLDO POWER REGULATORS

- Shunt Low Drop Out regulator
- Generates output voltage VDD based on reference Vref
- Input current split to load (chip) and shunt resistor (controlled)
- − Shunt load regulated to achieve input characteristics →
 - $\,\circ\,$ Given by offset Vofs and slope Rshunt/k
 - $\,\circ\,$ Vofs tuned to 1 V, k factor designed to be 1000
- In detector:

One current sourced to chain of such regulators

SLDO POWER REGULATORS

- Supply voltages trimmable to 1.2V within 2 %
- Current consumptions:
 - \circ Digital consumption relative constant
 - $\,\circ\,$ Analog consumption increased by around 20 $\,\%\,$
 - Compensable with FE configuration
- Additional current overhead is consumed:
 - o Designed overhead: 10 %
 - o Effective load variation: < 5%</p>

SLDO POWER REGULATORS

- Regulator input characteristics depends on:

○ Vofs:

- Generated from reference currents
- But shared on module
 - \rightarrow does not generate current imbalance

○ k-factor

- Property of each individual regulator (quad module: 8 regulators in parallel)
- Can generate current imbalance between chips
- But: < 10 % still in budget</p>

RING OSCILLATORS 1

- Ring oscillators as radiation monitors:
 - $\,\circ\,$ Chain of inverting logic cells
 - Frequency depends on supply voltage, length, gate delay
 - $\circ\,$ Gate delay depends on TID
- Different types (total: 42) monitored continuously
 - Frequencies need to be corrected for VDDD dependency
 - \circ Calibration performed between irradiation steps \rightarrow

RING OSCILLATORS 2

- From corrected data: increase of gate delay \rightarrow
- Results depend on driver strengths of logic cells:
 - $\,\circ\,$ Cells with strength of 4 only see increase by factor 1.4
 - Cells with strength 0:
 - Low power
 - Smallest footprint
 - Greatly affected from isolation oxide
- Still noticeably below gate delay increase of factor 3

RADIATION / TEMPERATURE SENSORS

- BPJ and CMOS transistors can be used as temp sensors
- Temp. from volt diff for two bias current with ratio R:

$$\Delta V_D = V_D(R \times I_{bias}) - V_D(I_{bias}) = N_f \times \frac{k_B T}{q} \times ln(R)$$

- BPJs very sensitive to TID / bulk damage: good rad sensors ightarrow
- TID also effects temperature readout:

OVERVIEW OVER PIXEL MATRIX RESULTS

- Between each irradiation step:
 - Threshold scan with untuned chip
 - $\,\circ\,$ Threshold scan with initial tuning
 - All pixels tuned to 1k e⁻ thr before irad

15.0

Ē 12.5

Ē ≻ 10.0

Chip Bottom

- $\,\circ\,$ Threshold scan after tuning
 - All pixels tuned to 1k e⁻ thr again
- Results based on threshold / noise map

Given for 3 groups
 based on final dose:

MEAN PIXEL THRESHOLD

- Global threshold almost not effected by TID: if pixel dose matches dose in chip bottom
 - Bias voltages generated in chip bottom → Threshold runs away for unirradiated pixels
- Threshold still re-trimmable up to few e⁻ for all doses

PIXEL THRESHOLD DISPERSION

- Threshold dispersion increased with dose in each individual pixel
- Threshold still re-trimmable → threshold dispersion after irradiation slightly increased
 - Range of trimming limited, also global threshold suboptimal (non-homogeneous irad)

- FE noise almost unaffected by TID
- Slight increase (10 %) after 100 Mrad
 - $\,\circ\,$ Could be related to increased global biases

CONCLUSION

CONCLUSION / OUTLOOK

- The production version of the ATLAS readout chip ITkPixV2 was successfully tested
- The readout chip shows a good tolerance for radiation damage up to 1 Grad of TID
 - $\,\circ\,$ On-chip regulators are still able to ensure stable operation
 - Digital logic continues to process the immense amount of data
 - Analog pixel circuitry can still keep up with the specs
- These measurements contributed to a final qualification of the readout chip
- This initiated the final production of pixel modules

THANK YOU FOR YOUR ATTENTION!

BACKUP

- Only few minor bugs where discovered in the ITkPixV2:
 - Default values of registers for the serial data transceivers yield unstable link
 - ightarrow Can simply be re-configure after a reset
 - $\,\circ\,$ Data Merging feature meant for reducing the number our readout channels:
 - There is a 5 % chance that the circuit will lock to the data
 - \rightarrow A changed reset scheme can prevent this problem
- For both issues there are simple work around, which do not effect detector operation

- Wafer Probing initially struggled with 3 yield drivers:
 - Power regulators not starting up correctly in some instances
 - Both power domains have to start up simultaneously
 - $\,\circ\,$ Data merging sometimes requiring a power cycle of the chip
 - Related to chip bug
 - Occasional corrupted / missing words in digital / analog scans
 - Related to instability of power railed: parasitic effects from probe card

- All fixed

ISSUES WITH GNDA REF

- At 942 Mrad: failure of SMU killed internal connection from GNDA REF to GNDA
- But all voltages measured relative to this voltage e.g. \rightarrow
- Can be corrected to some degree, but:
 - also VREF_ADC affected
 - IMUX mostly unusable
 - Analog monitoring board unhappy
- I had to continue irradiating:
 - Could only fix after irradiation

GNDA REF

REF TRIM par

IRFF TRIM

PreReg

Core

BGR

- Global threshold almost not effected by TID: if pixel dose matches dose in chip bottom
 - \circ Bias voltages generated in chip bottom \rightarrow Threshold runs away for unirradiated pixels
- Threshold still re-trimmable up to few e⁻ for all doses

- Threshold dispersion increased with dose in each individual pixel
- Threshold still re-trimmable → threshold dispersion after irradiation slightly increased
 - Range of trimming limited, also global threshold suboptimal (non-homogeneous irad)

PIXEL NOISE (LINEAR SCALE)

- FE noise almost unaffected by TID
- Slight increase (10 %) after 100 Mrad
 - $\,\circ\,$ Could be related to increased global biases

