A fresh look at $B \rightarrow D\pi \ell \nu$

Based on 2311.00864, in collaboration with Erik Gustafson, Ruth Van de Water, Raynette van Tonder & Michael Wagman

Universität Zürich

Semileptonic $B \rightarrow X_c \ell \nu$ decays

- Semileptonic decays comprise more than 10% of all B-meson decays
- Ideal laboratory to determine $|V_{cb}|$ with multiple complementary approaches
- Allows for precise tests of light lepton flavour universality
- $R(D^{(*)})$ anomalies
- Important background for $B \rightarrow X_{\mu} \ell \nu$ decays and other rare processes

Semileptonic $B \rightarrow D^{(*)} \ell \nu$ decays

D

 $D/D^*\pi$

- 75% made up by (quasi-)three-body modes
- Branching ratios known at few percent level
- Form factors from lattice QCD collaborations: Fermilab/MILC, HPQCD, JLQCD
- Model-independent (BGL) & HQET-based (Bernlochner et al.) FF parameterizations used
- D^* has narrow width and decays to $D\pi \& D\gamma$

Semileptonic $B \rightarrow D^{(*)} \pi \ell \nu$ decays

- I0% made up by (quasi)-four-body modes
- Thought to mostly proceed through the four IP D-Meson excitations: D_0^*, D_1', D_1, D_2^*
- Only a few, sometimes conflicting, BF measurements
- Even less measurements of differential spectra
- HQET-based FF parameterization (LLSW)
- Some recent LCSR computations of D^{**} FFs
- "Less hot topic than D^(*)" (Nico Gubernari, this morning)

"The heavier IP charmed mesons, collectively known as D^{**} , are a leading background in this measurement and their description in the simulation is thus a critical component "

- Belle II $R(D^*)$ <u>preprint</u>

Internal fit uncertainties	$\sigma_{\mathcal{R}(D^*)}(\times 10^{-2})$	$\sigma_{\mathcal{R}(D^0)}(\times 10^{-2})$	
Statistical uncertainty	1.8	6.0	
Simulated sample size	1.5	4.5	
$B \rightarrow D^{(*)}DX$ template shape	0.8	3.2	
$\overline{B} \to D^{(*)} \ell^- \overline{\nu}_{\ell}$ form-factors	0.7	2.1	
$\overline{B} \to D^{**} \mu^- \overline{\nu}_{\mu}$ form-factors	0.8	0.8 1.2	
$\mathcal{B}(\overline{B} \to D^* D^s (\to \tau^- \overline{\nu}_\tau) X)$	0.3	1.2	
MisID template	0.1	0.8	
$\mathcal{B} (\overline{B} \to D^{**} \tau^- \overline{\nu}_{\tau})$	0.5	0.5	
Combinatorial	< 0.1	0.1	
Resolution	< 0.1	0.1	
Additional model uncertainty	$\sigma_{\mathcal{R}(D^*)}(\times 10^{-2})$	$\sigma_{\mathcal{R}(D^0)}(\times 10^{-2})$	
$B \to D^{(*)}DX$ model uncertainty	0.6	0.7	
$\overline{B}{}^0_s \to D^{**}_s \mu^- \overline{\nu}_\mu \text{ model uncertainty}$	0.6	2.4	
Baryonic backgrounds	0.7	1.2	
Coulomb correction to $\mathcal{R}(D^{*+})/\mathcal{R}(D^{*0})$	0.2 0.3		
Data/simulation corrections	0.4 0.8		
MisID template unfolding	0.7	1.2	
Normalization uncertainties	$\sigma_{\mathcal{R}(D^*)}(\times 10^{-2})$	$\sigma_{\mathcal{R}(D^0)}(\times 10^{-2})$	
Data/simulation corrections	$0.4 \times \mathcal{R}(D^*)$	$0.6 imes \mathcal{R}(D^0)$	
$\tau^- \to \mu^- \nu \overline{\nu}$ branching fraction	$0.2 imes \mathcal{R}(D^*)$	$0.2 \times \mathcal{R}(D^0)$	
Total systematic uncertainty	2.4	6.6	
Total uncertainty	3.0	8.9	

LHCb Collaboration, PRL 131 111802 (2023)

- Background in $R(D^{(*)})$ measurements
- Background in inclusive $|V_{ub}|$ measurements
- Signal component in inclusive $B \to X_c \ell \nu$ & $B \to X \tau \nu$ measurements
- FEI calibration in Belle II

L. Cao et al. (Belle), PRD 104, 012008 (2021)

- Background in $R(D^{(*)})$ measurements
- Background in inclusive $|V_{ub}|$ measurements
- Signal component in inclusive $B \to X_c \ell \nu$ & $B \to X \tau \nu$ measurements
- FEI calibration in Belle II

. . .

R. van Tonder et al. (Belle), PRD 104, 112011 (2021)

- Background in $R(D^{(*)})$ measurements
- Background in inclusive $|V_{ub}|$ measurements
- Signal component in inclusive $B \to X_c \ell \nu$ & $B \to X \tau \nu$ measurements
- FEI calibration in Belle II

. . .

Source	Uı	Uncertainty [%]		
	e	μ	l	
Experimental sample size	8.8	12.0	7.1	
Simulation sample size	6.7	10.6	5.7	
Tracking efficiency	2.9	3.3	3.0	
Lepton identification	2.8	5.2	2.4	
$X_c \ell \nu M_X$ shape	7.3	6.8	7.1	
Background (p_{ℓ}, M_X) shape	5.8	11.5	5.7	
$X\ell\nu$ branching fractions	7.0	10.0	7.7	
$X \tau \nu$ branching fractions	1.0	1.0	1.0	
$X_c \tau(\ell) \nu$ form factors	7.4	8.9	7.8	
Total	18.1	25.6	17.3	

Belle II Collaboration, 2311.07248

• Background in $R(D^{(*)})$ measurements

Background in inclusive $|V_{ub}|$ measurements

Signal component in inclusive $B \to X_c \ell \nu$ & $B \to X \tau \nu$ measurements

FEI calibration in Belle II

Why are they interesting in their own right?

- They might shed light on the semileptonic gap, i.e. through $B \to D^{**}(\to D^{(*)}\gamma)\ell\nu$ decays
- Different J^P than $D \& D^*$, thus could be affected differently by new physics
- The I/2 vs. 3/2 puzzle: ratio between broad and narrow contributions does not match theory expectation [Bigi et al. EPJC 52 (2007) 975-985]
- Tensions in measurements
- Do we understand the broad states?

Why are they interesting in their own right?

HFLAV collaboration, PRD 107, 052008 (2023)

- They might shed light on the semileptonic gap, i.e. through $B \to D^{**}(\to D^{(*)}\gamma)\ell\nu$ decays
- Different J^P than $D \& D^*$, thus could be affected differently by new physics
- The I/2 vs. 3/2 puzzle: ratio between broad and narrow contributions does not match theory expectation [Bigi et al. EPJC 52 (2007) 975-985]
- Tensions in measurements
- Do we understand the broad states?

Why are they interesting in their own right?

Du, Guo, Hanhart, Kubis, Meissner, <u>PRL 126 192001 (2021)</u>

- They might shed light on the semileptonic gap, i.e. through $B \to D^{**}(\to D^{(*)}\gamma)\ell\nu$ decays
- Different J^P than $D \& D^*$, thus could be affected differently by new physics
- The I/2 vs. 3/2 puzzle: ratio between broad and narrow contributions does not match theory expectation [Bigi et al. EPJC 52 (2007) 975-985]
 - Tensions in measurements
- Do we understand the broad states?

Form-factor decompositions: $B \rightarrow D\ell\nu$

 $\left\langle D(p_D) \left| V^{\mu} \right| \overline{B}(p_B) \right\rangle = \left(p_B^{\mu} + p_D^{\mu} - \frac{\Delta M^2}{q^2} q^{\mu} \right) f_+(q^2)$ Only vector current component of the weak current contributes $+\frac{\Delta M^2}{a^2}f_0(q^2)$

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} = \frac{G_F^2 |V_{cb}|^2}{384\pi^3 M_B^3} \left(1 - \frac{m_l^2}{q^2}\right)^2 \left[\left(2 + \frac{m_l^2}{q^2}\right)\lambda^{3/2} |f_+|^2 + 3\frac{m_l^2}{q^2}\lambda^{1/2} |f_0|^2\right]$$

Each tensor structure only couples to one component of the current

Momentum dependence of terms in the decay rate due to J^P of the current components

Form-factor decompositions: $B \rightarrow D\pi \ell \nu$

Similar to $B \to D^* \ell \nu$ form factors

Each structure of the axial current only couples to one polarization of the current

• Vectors $L_{\mu}^{(l)}$ constructed to lead to correct angular dependence of a given partial wave

Interference between partial waves if not integrating over angles

Form-factor decompositions: $B \rightarrow D\pi \ell \nu$

$$\begin{split} \left\langle D(p_{D})\pi(p_{\pi}) \mid V^{\mu} \mid B(p_{B}) \right\rangle &= i\epsilon_{\nu\rho\sigma}^{\mu} p_{D\pi}^{\rho} p_{B}^{\sigma} \sum_{l>0} L^{(l),\nu} g_{l}(q^{2}, M_{D\pi}^{2}) \\ \left\langle D(p_{D})\pi(p_{\pi}) \mid A^{\mu} \mid B(p_{B}) \right\rangle &= \\ &\frac{1}{2} \sum_{l>0} \left(L^{(l),\mu} + \frac{4}{\lambda_{B}} \left[(p_{B} \cdot p_{D\pi})q^{\mu} - (p_{D\pi} \cdot q)p_{B}^{\mu} \right] L^{(l),\nu} q_{\nu} \right) f_{l}(q^{2}, M_{D\pi}^{2}) \\ &+ \frac{M_{D\pi}(M_{B}^{2} - M_{D\pi}^{2})}{\lambda_{B}} \left[(p_{B} + p_{D\pi})^{\mu} - \frac{M_{B}^{2} - M_{D\pi}^{2}}{q^{2}} q^{\mu} \right] \sum_{l>0} L^{(l),\nu} q_{\nu} \mathcal{F}_{1,l}(q^{2} + M_{D\pi} \frac{q^{\mu}}{q^{2}} \sum_{l>0} L^{(l),\nu} q_{\nu} \mathcal{F}_{2,l}(q^{2}, M_{D\pi}^{2}) \end{split}$$

$$L^{(l)}_{\mu}q^{\mu} \propto P_{l}(\cos\theta) \quad L^{(l)}_{\mu}p^{\mu}_{D\pi} = 0$$

$$\frac{\mathrm{d}^2 \Gamma}{\mathrm{d} M_{D\pi}^2 \mathrm{d} q^2} = \frac{G_F^2 |V_{cb}|^2}{(4\pi)^5} M_B M_{D\pi}^2 \sum_{l>0} W^{2l+1} \left[\frac{4(M_B)^2}{3} M_B M_{D\pi}^2 \sum_{l>0} W^{2l+1} \right] \left[\frac{4(M_B)^2}{3} M_B M_{D\pi}^2 \sum_{l>0} W^{2l+1} \left[\frac{4(M_B)^2}{3} M_B M_{D\pi}^2 \sum_{l>0} W^{2l+1} \right] \right]$$

Similar to $B \rightarrow D^* \ell \nu$ form factors

Each structure of the axial current only couples to one polarization of the current

², $M_{D\pi}^2$ Vectors $L_{\mu}^{(l)}$ constructed to lead to correct angular dependence of a given partial wave

Interference between partial waves if not integrating over angles

 $\frac{M_B^2 - M_{D\pi}^2)^2}{3(2l+1)} \frac{|\mathscr{F}_{1,l}|^2}{\lambda_B} + \frac{l(l+1)}{(2l+1)}q^2 \left(|g_l|^2 + \frac{|f_l|^2}{\lambda_B}\right) \right]$

Connecting form factors to perturbative quantities

 p_X)

$$\Pi_{(J)}^{L/T}(q) \equiv i \int d^4x \ e^{iq \cdot x} \ \langle 0 \left| \ J^{L/T}(x) \ J^{L/T}(0) \left| 0 \right\rangle$$
$$\chi_{(J)}^L(Q^2) \equiv \frac{\partial \Pi_{(J)}^L}{\partial q^2} \right|_{q^2 = Q^2} = \frac{1}{\pi} \int_0^\infty dq^2 \frac{\mathrm{Im} \Pi_{(J)}^L(q^2)}{(q^2 - Q^2)^2}$$
$$\chi_{(J)}^T(Q^2) \equiv \frac{1}{2} \frac{\partial^2 \Pi_{(J)}^T}{\partial (q^2)^2} \Big|_{q^2 = Q^2} = \frac{1}{\pi} \int_0^\infty dq^2 \frac{\mathrm{Im} \Pi_{(J)}^T(q^2)}{(q^2 - Q^2)^3}$$

$$\operatorname{Im}\Pi_{(J)}^{T/L} = \frac{1}{2} \sum_{X} \int dPS P_{T/L}^{\mu\nu} \left\langle 0 \left| J_{\mu} \right| X \right\rangle \left\langle X \left| J_{\nu} \right| 0 \right\rangle \delta^{(4)}(q - I) \left[Im \Pi_{(V)}^{T} \right]_{BD} = K(q^2) \left| f_{+}(q^2) \right|^2$$

- Starting point: once and twice subtracted dispersion relations [Boyd, Grinstein, Lebed]
- Susceptibilities perturbatively computable for large space-like Q^2 or at $Q^2 = 0$ if heavy quarks involved
- Optical theorem allows to write the imaginary part as sum over all possible final states
- Neglecting a final state leads to an inequality

Conformal mapping, outer functions and all that

- Mapping q^2 to the dimensionless variable z transforms integration region to unit circle
- In this form it is evident that our FFs live in the Hardy space H^2
- Insert Blaschke products to get rid of subthreshold poles and zeroes in kinematic factors
- Series expand product
- Semileptonic region: |z| < 1

Unitarity bounds on $B \rightarrow D\pi \ell \nu$ form factors

$$\begin{split} \operatorname{Im}\Pi_{V}^{T}\Big|_{D\pi} &= \frac{1}{192\pi^{3}} \frac{M_{B}^{4}}{q^{2}} \int_{(M_{D}+m_{\pi})^{2}}^{(\sqrt{q^{2}}-M_{B})^{2}} \mathrm{d}M_{D\pi}^{2} \sum_{l>0} W^{2l+1} \frac{l+1}{l(2l+1)} \|g_{l}\|^{2} \\ \operatorname{Im}\Pi_{A}^{T}\Big|_{D\pi} &= \frac{1}{192\pi^{3}} \frac{M_{B}^{4}}{q^{2}} \int_{(M_{D}+m_{\pi})^{2}}^{(\sqrt{q^{2}}-M_{B})^{2}} \mathrm{d}M_{D\pi}^{2} \left(\frac{M_{D\pi}^{2}}{\lambda_{B}} \sum_{l>0} \frac{W^{2l+1}}{2l+1} \left(\frac{|\mathscr{F}_{1,l}|^{2}}{q^{2}} + \frac{l+1}{l} \|f_{l}\|^{2}\right) + W\lambda_{B} \frac{|f_{+}|^{2}}{q^{2}M_{B}^{2}}\right) \\ \operatorname{Im}\Pi_{A}^{L}\Big|_{D\pi} &= \frac{1}{64\pi^{3}} \frac{M_{B}^{4}}{q^{4}} \int_{(M_{D}+m_{\pi})^{2}}^{(\sqrt{q^{2}}-M_{B})^{2}} \mathrm{d}M_{D\pi}^{2} \left(M_{D\pi}^{2} \sum_{l>0} \frac{W^{2l+1}}{2l+1} |\mathscr{F}_{2,l}|^{2} + W \frac{(M_{B}^{2}-M_{D\pi}^{2})^{2}}{M_{B}^{2}} \|f_{0}\|^{2}\right) \end{split}$$

$$f^{(l)}(q^2, M_{D\pi}^2) = \hat{f}^{(l)}(q^2, M_{D\pi}^2) g^{(l)}(M_{D\pi}^2) \approx \tilde{f}^{(l)}(q^2) g^{(l)}(M_{D\pi}^2)$$

$$1 \ge \frac{1}{\pi} \int_0^\infty dq^2 \frac{M_B^4}{192\pi^3 \chi} \frac{C^{(l)}}{(2l+1)(q^2)^a} \mathcal{F}^{(l)}_{(b,c,d)}(q^2) |\tilde{f}^{(l)}(q^2)|^2$$

- Two integrals involved
- If $M_{D\pi}^2$ integration can be carried out, we are back to standard case
- Watson-Migdal theorem allows factorization of final-state interactions from weak decay
 - Remaining dependence on hadronic invariant mass often found to be small

The simple case: Breit-Wigner x Blatt-Weisskopf

$$f_l(q^2, M_{D\pi}^2) \approx \frac{\hat{f}_l(q^2) X^{(l)}(|\vec{p}_D| r_{BW}, |\vec{p}_{D,0}| r_{BW})}{(M_{D\pi}^2 - M_R^2) + iM_R \Gamma(M_{D\pi}^2)}$$

$$X^{(0)}(z, z_0) = 1$$
$$X^{(1)}(z, z_0) = \sqrt{(1 + z_0)/(1 + z)}$$

$$X^{(2)}(z, z_0) = \sqrt{(9 + 3z_0^2 + z_0^4)/(9 + 3z^2 + z^4)}$$

- In the simplest cases we can assume a relativistic Breit-Wigner function
- Tails can be too long
 - Angular-momentum dependent Blatt-Weiskopf damping factors
 - Free parameter r_{BW}

Common practice for not too broad resonances in the literature

Where is the lightest charmed scalar meson?

Du, Guo, Hanhart, Kubis, Meissner, PRL 126 192001 (2021)

- Not all resonances are well described by Breit-Wigner functions
- Calculations within unitarized chiral perturbation theory suggest that the D_0^* is one of them
- Recent analyses point to two poles, one with low mass, D^{*}₀(2100), and one at higher mass:
 D^{*}₀(2450)
- Nonleptonic B decays strongly favour this picture over the standard one

Omnès factors and matrices

Albaladejo, Fernandez-Soler, Guo, Nieves, <u>PLB 767 (2017) 465-469</u> Input from: Liu, Orginos, Guo, Hanhart, Meissner, <u>PRD 87, 014508</u> (2013)

$$\operatorname{Im} \vec{f}(q^2, M_{D\pi}^2 + i\epsilon) = T^*(M_{D\pi}^2 + i\epsilon)\Sigma(M_{D\pi}^2)\vec{f}(q^2, M_{D\pi}^2)$$
$$\vec{f}(q^2, M_{D\pi}^2) = \Omega(M_{D\pi}^2)\vec{P}(q^2, M_{D\pi}^2)$$
$$\operatorname{Im} \Omega(s + i\epsilon) = \frac{1}{\pi} \int_{s_{\text{thr}}}^{\infty} \frac{T^*(s')\Sigma(s')\Omega(s')}{s' - s - i\epsilon} ds'$$

• One can relate the $M_{D\pi}^2$ -dependence to the Omnès-Matrix

The Omnès-Matrix is related to the Scattering-Matrix

In this case: Lattice + Unitarized ChiPT

The available data

F. Meier et al. (Belle), PRD 107, 092003 (2023)

2.8 2.7

Measurements by Belle and Babar of the invariant mass distribution

Model-dependent measurement of the q^2 and $|cos\theta|$ distribution for $B \to D_{\gamma}^* \ell \nu$

Masses and widths from a plethora of inclusive measurements or $B \rightarrow D\pi\pi$ decays

The available data

Measurements by Belle and Babar of the invariant mass distribution

Model-dependent measurement of the q^2 and $|cos\theta|$ distribution for $B \to D_{\gamma}^* \ell \nu$

Masses and widths from a plethora of inclusive measurements or $B \rightarrow D\pi\pi$ decays

Fitting the D_2^* spectra

- Breit-Wigner x Blatt-Weisskopf to describe lineshape
- Fit the three relevant FFs up to linear order in z
- Angular spectrum fixes relative size of \mathcal{F}_1 to a linear combination of f and g
- Since no information on $\cos \theta_l$ spectrum f and g are mostly degenerate
- Some tension w.r.t. to shape of q^2 distribution with Bernlochner, Ligeti, Robinson

Fitting the mass spectra

- Simultaneously fit both charge modes measured by Belle
- χ^2_{aug} /dof = 124.4/133
- Fit with Breit-Wigner for $D_0^*(2300)$ only slightly worse, at the cost of longer D^* tail
- In both cases smaller S-wave BF than assumed by PDG
- The resulting branching fractions for $B \to D_s K \ell \nu$ and $B \to D \eta \ell \nu$ are $\mathcal{O}(10^{-5})$

How can we do better?

$$\mathscr{A}_{FB}^{D} = \frac{1}{\mathrm{d}\Gamma/\mathrm{d}M_{D\pi}^{2}} \left(\int_{0}^{1} \mathrm{d}\cos\theta \frac{\mathrm{d}^{2}\Gamma}{\mathrm{d}M_{D\pi}^{2}\mathrm{d}\cos\theta} - \int_{-1}^{0} \mathrm{d}\cos\theta \frac{\mathrm{d}^{2}\Gamma}{\mathrm{d}M_{D\pi}^{2}\mathrm{d}\cos\theta} \right)$$

 $\cos\theta$

0.8

• Provide z-expansion coefficients for $B \to D_2^* \ell \nu$ FFs and implementation in EvtGen

Study the forward-backward asymmetry of the D-meson to extract the $D\pi$ S-wave phase from experiment

Extend to $B \rightarrow D^* \pi \ell \nu$

Include LCSR results and HQET constraints in fits

Find a better handle on neglected terms

What can the experiments do?

- Provide more model-independent measurements, i.e. spectra, not just branching fractions
- Differential measurements, especially in $\cos \theta$
- A measurement of the forward-backward asymmetry of the D-meson in the low $M_{D\pi}^2$ region
- A study of $B \to D_s K\pi$ could help to determine which other resonances contribute to $B \to D_s K\ell\nu$

What can the experiments do?

- Provide more model-independent measurements, i.e. spectra, not just branching fractions
- Differential measurements, especially in $\cos \theta$: Can this be done with inclusive tagging at Belle II?
- A measurement of the forward-backward asymmetry of the D-meson in the low $M_{D\pi}^2$ region
- A study of $B \rightarrow D_s K \pi$ could help to determine which other resonances contribute to $B \rightarrow D_{c} K \ell \nu$

Summary

- There are interesting semileptonic decays beyond $B \to D \ell \nu$ and $B \to D^* \ell \nu$
- To maximise what we can get from measurements of R (D^(*)) or inclusive measurements we need to understand them
- Interesting connection to hadron spectroscopy
- A lot remains to be done, both in experiment and theory
- Some developments might prove useful to the study of semileptonic *D*-meson decays

