

N* studies using KY Electroproduction at CLAS12

Lucilla Lanza

University of Rome Tor Vergata & INFN Roma Tor Vergata

ab12

C

INFN

Istituto Nazionale di Fisica Nucleare

Outline

- **Physics Motivation**: Study of the nucleon excitation spectrum to understand the dynamical properties of QCD in the non-perturbative regime.
- What is the role of glue?
- Search for new Baryon States \rightarrow Hybrid States
- How does the role of the active degrees of freedom in the nucleon spectrum evolve with distance scale?
- Probe underlying degrees of freedom and their emergence from QCD via studies of the Q² evolution of electroproduction amplitudes
- **CLAS12 and Forward Tagger (FT)** *@* **JLab:** Experimental Setup description.
- **On-going Data Analysis:**
- Results from Physics Runs: ep -> e'KY channel studied exploiting data from Fall 2018 Physics Runs in Hall B at Jefferson Lab
- Beam-Recoil <u>Hyperon Transferred Polarization Analysis</u>

Critical QCD Questions Addressed

• The light N* spectrum: what is the role of glue?

Derek B. Leinweber – University of Adelaide

"Nucleons are the stuff of which our world is made.

As such they must be **at the center of any discussion of why the world** we actually experience **has the character it does.**"

Nathan Isgur, NStar2000, Newport News, Virginia

Why N*? From the N* Spectrum to QCD

Understanding the proton's ground requires understanding state its excitation spectrum.

The N^{*} spectrum reflects the effective degrees of freedom and the forces.

S₁₁(1650) D₁₅(1675) F₁₅(1680)

Mass Acquisition

We need more information about the working of QCD in the non-perturbative regime

Exotic multi-quark states and baryon spectroscopy workshop, June 27 2024 - Lucilla Lanza – N* Studies using KY Electroproduction at CLAS12

Exotic Hadrons

Standard Hadrons come in two varieties: Baryons & Mesons

Exotic Hadrons

Glueballs:

Molecules...

Meson and baryon states whose properties cannot be described in terms of q anti-q or qqq degrees of freedom only

Photo- and Electro- production of mesons on nucleon targets

Meson photo- and electroproduction reactions

for

Light quark baryon spectroscopy

Two elements provided a crucial boost in the field:

- advent of large solid angle detectors
- polarized beam and targets

single and double polarization observables

Powerful tool to study the internal structure of the nucleon

Polarization Observables @ JLab

g14 HD-ICE run period (CLAS):

- circularly polarized photons
- HD frozen spin polarized target

$$ec{\gamma}ec{N} o \pi^+\pi^-N$$

Polarization Observables @ JLab

g14 HD-ICE run period (CLAS):

- circularly polarized photons
- HD frozen spin polarized target

r'

$$\vec{\gamma} \vec{N}
ightarrow \pi^+ \pi^- N$$

$$P_z = \frac{1}{\Lambda_z} \frac{[N(\rightarrow \Rightarrow) + N(\leftarrow \Rightarrow)] - [N(\rightarrow \Leftarrow) + N(\leftarrow \Leftarrow)]}{[N(\rightarrow \Rightarrow) + N(\leftarrow \Rightarrow)] + [N(\rightarrow \Leftarrow) + N(\leftarrow \Leftarrow)]}$$

$$I^{\odot} = \frac{1}{\delta_{\odot}} \frac{[N(\rightarrow \Rightarrow) + N(\rightarrow \Leftarrow)] - [N(\leftarrow \Rightarrow) + N(\leftarrow \Leftarrow)]}{[N(\rightarrow \Rightarrow) + N(\rightarrow \Leftarrow)] + [N(\leftarrow \Rightarrow) + N(\leftarrow \Leftarrow)]}$$

$$P_z^{\odot} = \frac{1}{\Lambda_z \delta_{\odot}} \frac{[N(\rightarrow \Rightarrow) + N(\leftarrow \Leftarrow)] - [N(\rightarrow \Leftarrow) + N(\leftarrow \Rightarrow)]}{[N(\rightarrow \Rightarrow) + N(\leftarrow \Leftarrow)] + [N(\rightarrow \Leftarrow) + N(\leftarrow \Rightarrow)]}$$

$$\frac{d\sigma}{dx_i} = \sigma_0 \{ (1 + \Lambda_z \cdot \mathbf{P_z}) + \delta_{\odot} (\mathbf{I}^{\odot} + \Lambda_z \cdot \mathbf{P}_z^{\odot}) \}$$

 π_1

 $P_{\pi\pi}$ $\Theta^{\pi\pi}$ cm

 π_2

Polarization Observables @ JLab

CLAS N* Experimental Program

The N* program is one of the Hall B fundamental
CLAS & CLAS12 – optimized to study exclusive reaction channels over a broad kinematic range:

 πN , ωN , φN , ηN , $\eta' N$, $\pi \pi N$, KY, K*Y, KY*

CLAS12

[V.D. Burkert et al., Nucl. Inst. and Meth. A 959, 163419 (2020)]

Targets (org. by Run Groups)

- Proton (RG-A/K)
- Deuteron (RG-B)
- Nuclei (RG-M/D/E)
- Long. pol. NH₃/ND₃ (RG-C)

Magnetic Field

Ideal instrument to study exclusive meson electroproduction in the nucleon resonance region

CLAS12 Spectrometer

beam

Experimental Setup: Forward Tagger

RGK @ CLAS12

Run Group Proposal (RG K) "Color Confinement and Strong QCD":

Search for Hybrid Baryons (qqqg) KY Electroproduction for the N* study DVCS SIDIS

RUN CONDITIONS				
Torus Current	100% (3375 A) - negative out-bending			
Solenoid	-100 %			
FT	ON @ 7.5 GeV -> OFF @ 6.5 GeV and 8.5 GeV			
Beam/Target	Polarized electrons, un-polarized LH ₂ target			
Luminosity	• ~ 5 10 34 cm ⁻² s ⁻¹ @ 7.5 GeV ~ 0.87 10 34 cm ⁻² s ⁻¹ @ 6.5 GeV 0.87 10 35 cm ⁻² s ⁻¹ @ 6.4 GeV 10 35 cm ⁻² s ⁻¹ @8.5 GeV FULL LUMINOSITY			

Fall 2018: EVENTS 15.6 G

Spring 2024: EVENTS 60 G (Statistics increased by a factor 4)

50% of the total

Upgraded Simulation and Reconstruction of $K^+\Lambda$ Electroproduction Events in CLAS12 using the RPR-2011 Model, GEMC and CLARA

1.6 GeV < W < 3 GeV

Simulations have been performed using:

- Event Generator based on the Ghent RPR-2011 Model to produce electroproduction events
- **GEMC** to simulate CLAS12 acceptance effects.

Exotic multi-quark states and baryon spectroscopy workshop, June 27 2024 - Lucilla Lanza – N* Studies using KY Electroproduction at CLAS12

Magnetic Field

Strength of Torus Current

Magnetic Field

Hybrid Hadrons

Hybrid hadrons with dominant gluonic contributions are predicted to exist by QCD. **Experimentally:**

- **Hybrid mesons** $|q\bar{q}g\rangle$ states may have exotic quantum numbers J^{PC} not available to pure $|q\bar{q}\rangle$ states GlueX, MesonEx, COMPASS, PANDA
- Hybrid baryons |qqqg> have the same quantum numbers J^P as |qqq> electroproduction with CLAS12 (Hall B).

Theoretical predictions:

♦ MIT bag model - T. Barnes and F. Close, Phys. Lett. 123B, 89 (1983).

♦ QCD Sum Rule - L. Kisslinger and Z. Li, Phys. Rev. D 51, R5986 (1995).

♦ Flux Tube model - S. Capstick and P. R. Page, Phys. Rev. C 66, 065204 (2002).

♦ LQCD - J.J. Dudek and R.G. Edwards, PRD85, 054016 (2012).

Exotic multi-quark states and baryon spectroscopy workshop, June 27 2024 - Lucilla Lanza – N* Studies using KY Electroproduction at CLAS12

Hybrid Baryons in LQCD

Hybrid states have same J^P values as qqq baryons. How to identify them?

- Overpopulation of N 1/2⁺ and N 3/2⁺ states compared to QM projections.
- $A_{1/2}$ ($A_{3/2}$) and $S_{1/2}$ show different Q^2 evolution.

Transverse helicity amplitudes $A_{1/2}(Q^2)$, $A_{3/2}(Q^2)$ and longitudinal helicity amplitude $S_{1/2}(Q^2)$ allow to distinguish Q³G from Q³ states

The resonance electroexcitation amplitudes can be related to the $\gamma_v NN^*$ electrocouplings $A_{1/2}$, $A_{3/2}$, and $S_{1/2}$ for nucleons

$$\langle \lambda_{R} | T_{em} | \lambda_{\gamma} \lambda_{p} \rangle = \frac{W}{M_{r}} \sqrt{\frac{8M_{N}M_{r}q_{\gamma_{r}}}{4\pi\alpha}} \sqrt{\frac{q_{\gamma}}{q_{\gamma}}} A_{1/2,3/2}(Q^{2}) \text{ with } |\lambda_{\gamma} - \lambda_{p}| = \frac{1}{2}, \frac{3}{2} \text{ for transverse photons,}$$

$$\langle \lambda_{R} | T_{em} | \lambda_{\gamma} \lambda_{p} \rangle = \frac{W}{M_{r}} \sqrt{\frac{16M_{N}M_{r}q_{\gamma_{r}}}{4\pi\alpha}} \sqrt{\frac{q_{\gamma_{r}}}{q_{\gamma}}} S_{1/2}(Q^{2}) \text{ for longitudinal photons}$$

$$\text{The } N^{*} \text{ hadronic decay amplitudes can be expanded in partial waves of total momentum } J$$

$$\lambda_{f} | T_{dec} | \lambda_{R} \rangle = \langle \lambda_{f} | T_{dec}^{J_{r}} | \lambda_{R} \rangle d_{\mu\nu}^{J_{r}} (\cos \theta^{*}) e^{i\mu\phi^{*}} \text{ where } \langle \lambda_{f} | T_{dec}^{J_{r}} | \lambda_{R} \rangle = \frac{2\sqrt{2\pi}\sqrt{2J_{r}+1}M_{r}\sqrt{\Gamma_{\lambda_{f}}}}{\sqrt{\langle p_{i}^{r} \rangle}} \sqrt{\frac{\langle p_{i}^{r} \rangle}{\langle p_{i} \rangle}}$$

$$\text{V. I. Mokeev, CLAS Collaboration, PHYSICAL REVIEW C 86, 035203 (2012)$$

CLAS results on electrocouplings clarified nature of the Roper. Will CLAS12 data be able to identify gluonic contributions ?

Based on available knowledge, the *signature* for hybrid baryons may consist of :

- Extra resonances with $J^p=1/2^+$ and $J^p=3/2^+$, with masses from 1.8 GeV to 2.5 GeV and decays to $N\pi\pi$ or KY final states
- •A drop of the transverse helicity amplitudes $A_{1/2}(Q^2)$ and $A_{3/2}(Q^2)$ faster than for ordinary three quark states, because of extra glue-component in valence structure
- •A suppressed longitudinal amplitude $S_{1/2}(Q^2)$ in comparison with transverse electro-excitation amplitude

Exotic multi-quark states and baryon spectroscopy workshop, June 27 2024 - Lucilla Lanza – N* Studies using KY Electroproduction at CLAS12 26

KY channel, low Q² region

Data from KY are critical to provide the extraction of the electrocoupling amplitudes:

e p \rightarrow e' K⁺ Λ , $\Lambda \rightarrow$ p π^{-}

FT allows to probe the **crucial Q² range** where hybrid baryons may be identified due to their fast dropping $A_{1/2}(Q^2)$ amplitude and the suppression of the scalar $S_{1/2}(Q^2)$ amplitude.

Particle ID, electron in CLAS

Preliminary Results: electron in the FD(CLAS)

Preliminary Results: electron in the FD(CLAS)/FT

<text><text><text><equation-block></equation-block></text></text></text>	PHYSICAL REVIEW C 105, 065201 (2022) Beam-recoil transferred polarization in K*Y electroproduction in the nucleon resonance region with CLAS12 D.S. Carman ^{0,45*} A. D'Angelo, ^{15:34} L. Lauza ¹⁹ V. I. Mokee ^{-,45} K. P. Adhikari, ¹⁴ M. J. Anaryan ²¹ W. R. Armstrong, ¹ H. Anz ²⁴ H. Avadian ⁴⁵ C. Ayerbe Gayosa ^{10,45} N. A. Battergli ¹⁶ L. Barkon ¹⁷ M. Battarglieri, ^{15:44} I. Bedindaiy ²⁴ B. Benkel, ²⁹	D.S. Carman, A. D'Angelo, L. Lanza, V. Mokeev (CLAS Collaboration)), "Beam-Recoil Transferred Polarization in K ⁺ Y Electroproduction in the Nucleon Resonance Region with CLAS12", Phys. Rev. C 105, 065201 (2022)		y x θ_{x}^{*} θ_{x}^{*}	
2469-9985/2022/1056/065301(24) 065201-1 02022 American Physical Society	<code-block></code-block>	Analysis of CLAS12 RG-K data from Fall 2 • 6.535 GeV and 7.546 GeV electro • Extract beam-recoil transferred plongitudinally polarized beam electron hyperon vs. Q ² , W, cos θ_{κ} ^{c.m.} \mathcal{P}' = transferred polarization $\mathcal{P}'_{x'} = K_I \sqrt{1 - \epsilon^2} R_{TT'}^{x'0}$ $\mathcal{P}'_{y'} = 0$ $\mathcal{P}'_{z'} = K_I \sqrt{1 - \epsilon^2} R_{TT'}^{z'0}$	2018 rons on LH ₂ target polarization from ctron to final stat (x',y',z')	electron scattering plane $A = \frac{N^{+} - N^{-}}{N^{+} + N^{-}} = \nu_{Y} \alpha_{\Lambda} P_{b} \mathcal{P}'_{Y}$ $\mathcal{P}^{0} = \text{recoil polarization}$ $\mathcal{P}^{0}_{x'} \qquad 0$ $\mathcal{P}^{0}_{y'} K_{I}(R_{T}^{y'0} + \epsilon R_{L}^{y'0})$ $\mathcal{P}^{0}_{z'} \qquad 0$	$-\cos \theta_p^{RF}$

Theoretical expectation:

 F_{Σ}

How to extract the polarization from data (approach 1):

$$\frac{dN}{d\cos\theta_P^{RF}} = N_0 \left(1 + \nu_Y \alpha P_Y \cos\theta_p^{RF} \right)$$

Where $\alpha_{\Lambda} = 0.732$, P=0.8567 and ϑ_{p}^{RF} is the angle between the spin quantization axis and the Λ decay proton in the yperon rest frame

$$A_{meas} = \frac{(N_{\Lambda}^{+} + N_{\Sigma}^{+} + N_{B}^{+}) - (N_{\Lambda}^{-} + N_{\Sigma}^{-} + N_{B}^{-})}{N_{\Lambda} + N_{\Sigma} + N_{B}} = \alpha P_{b}[P'_{meas}] \cos \theta_{P}^{RF}$$
$$P'_{\Lambda} = P'_{meas} \left(1 + F_{\Sigma} + F_{B}\right) - \nu_{\Sigma} P'_{\Sigma} F_{\Sigma}$$

$$=rac{N_{\Sigma}}{N_{\Lambda}}, \qquad F_B=rac{1}{2}$$

Binning is performed over the three kinematic variables Q², W and $\cos \vartheta_{K}^{*}$

The **independent analysis** consists of the direct exploitation of equation $N^+ - N^-$

$$A = \frac{N^+ - N}{N^+ + N^-} = \nu_Y \alpha_\Lambda P_b \mathcal{P}'_Y \cos \theta_p^{RF}$$

The events in each kinematic bin of Q², W and cos ϑ_{K}^{*} were divided into 5 cos ϑ_{p}^{RF} bins for each beam helicity...

... and the number of Λ events was extracted using a fit of the MM(eK⁺) spectrum

Beam-Recoil Λ Transferred Polarization

 Λ polarization results extend available data from previous experiments (e.g. CLAS e1-6 @ 5.754 GeV)

Beam-Recoil Σ⁰ Transferred Polarization

 Σ^0 are the first statistically meaningful datasets that can be compared with model predictions.

K⁺Y Transferred Polarization CLAS12 vs. CLAS

K⁺Y Induced Polarization CLAS12

Λ(1520)

Other channels could be exploited as final states for possible new resonances..

 $ep \to eK^+\Lambda(1520) \to eK^+\;K^-p$

The existence of several nonstrange N* resonances with significant (~5%) branching ratios into the decay channel $K^+\Lambda(1520)$ has been predicted

Λ(1520)

Λ(1520)

Summary and Outlook

Summarizing:

• The study of N* states is one of the crucial topics of the CLAS and CLAS12 physics programs:

-CLAS has produced a huge amount of data up to $\mathsf{Q}^2 < 5~\mathsf{GeV}^2$

-CLAS12 was designed to extend these studies for $0.05 < Q^2 < 12 \; \text{GeV}^2$

• The first results of the CLAS12 N* program have been obtained with the analysis of KY polarization transfer data from the RGK Fall 2018 Run

-The RGK dataset is 5x larger than the available KY world data in the resonance region

-Only 10% of expected statistics has been analyzed.

• On going analyses:

-First paper on KY electroproduction has been published on PRC -Other analyses based on the existing RG-K data are in progress -More data have been collected in Spring 2024

And in the future...

• Future work with these data is expected to face up he most challenging problems of the Standard Model on the nature of hadron mass, confinement, and the emergence of N* states from quarks and gluons

Summary and Outlook

Summarizing:

The study of N* states is one of the crucial topics of the CLAS and CLAS12
 -CLAS has produced a huge amount of data up to Q2 5 GeV2
 -CLAS12 was designed to extend these studies for 0.05 Q2 12 GeV

nu

 The first results of the CLAS12 N* program have be ransfer data from the RGK Fall 2018 Run

> -The RGK dataset is 5x larger than the -Only 10% of expected statistic

- On going analyses:

 -First paper on the second secon
- Future work won the nature of

Stay tuned for further updates...

ncing well

ams:

rization