
Hadron Resonances from Lattice QCD
Status and Prospects

Carsten Urbach



Quantum Chromodynamics

• astonishingly simple action, intriguingly complex dynamics

• running coupling: QCD is non-perturbative at low energies

⇒ hadron spectrum requires non-perturbative methods
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S[Aµ, ψ̄, ψ] =

∫
d4x

{
1

4
G2

µν + ψ̄q (iγµDµ +mq)ψq

}



Lattice QCD Regularisation

• quantum field theory requires
regularisation

• lattice regularisation:
⇒ discretise space-time

• hyper-cubic L3 × T -lattice with
lattice spacing a

⇒ momentum cut-off: kmax ∝ 1/a
• derivatives⇒ finite differences
• integrals⇒ sums
• gauge potentialsAµ inGµν ⇒ link
matrices Uµ (’ ’)

L

a

• work in Euclidean space-time ⇒ useMonte Carlo
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Lattice QCD Regularisation

• Monte Carlo: access to equilibrium,
vacuum properties

• fundamental observables:
Euclidean correlation functions

⟨O†
i (p, t)Oj(p, t

′)⟩ ∝
∑
n

ci,ncj,ne
−Ent

• with interpolating operatorsOi with
certain quantum numbers

• simulations at bare parameters
need to renormalise

• continuum limit:

lim
a→0

(i.e. at least 3 lattice spacing values)

• infinite volume limit:

lim
L→∞

• physical mass limit:

lim
mℓ→mphys

ℓ

or M2
π → (Mphys

π )2
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And then: Compute the Spectrum!

• excited baryon spectrum (2011)
[Edwards et al., Phys.Rev.D 84 (2011) 074508]

• spin identified, 3Mπ values

• both parities up to J = 7/2

• author’s conclusion:
“... a counting of levels that is
consistent with the
non-relativistic qqq constituent
quark model.”

atMπ ≈ 400MeV

[Edwards et al., Phys.Rev.D 84 (2011) 074508]
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• really impressive calculation!

• significant methodological progress

• but has not much to do with the real world!
unstable states are treated as stable
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Particle Interactions from Lattice QCD

• lattice stochastic methods:
work in finite volume / Euclidean space-time

⇒ real valued, quantised eigenvalues of the lattice Hamiltonian
no continuum of states

• Maiani and Testa:
interactions properties cannot be studied directly
[Maiani and Testa, (1990)]

⇒ there is no one-to-one correspondence of an energy level to a resonance state

• the connection is only provided by the Lüscher method!
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Lüscher Method

finite volume: boon and bane!

V

• for V → ∞:
⇒ interaction probability very low
⇒ E2p(p = 0) = 2E1p

• for finite V :
⇒ interaction probability rises
⇒ E2p(p = 0) receives corrections

∝ 1/V

• Lüscher: correction in 1/V

related to scattering properties!
[Lüscher, 1986]
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The 1 + 1-dimensional Analog

• plane wave acquires phase shift δ(k)

• finite extend L, periodic BC

eikL+2iδ(k) = eik0 = 1

• quantisation condition

knL+ 2δ(kn) = 2nπ

• momenta kn from dispersion relation

Wn = 2
√
m2 + k2n

Procedure

1 determine non-interactingm

2 determine energiesWn

3 Wn → kn

4 kn → δ(kn)
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The General Case
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Lüscher Method: The Simplest Case

• consider only S-wave, no mixing, and assume finite range expansion

• The scattering length a0 can be determined by inverting this equation!

• ci known, L the box extent, µ the reduced two particle non-interacting mass

• works excellent e.g. for ππ scattering with I = 0, 2
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∆E = −2πa0
µL3

(
1 + c1

a0
L

+ c2
a20
L2

+ c3
a30
L3

. . .

)



Example: Complex ϕ4 Theory

• howwell does this work?
[Romero-Lopez, Rusetsky, CU, EPJC (2018)]

⇒ complex φ4 theory as toy model

• lattice action
S =

∑
x

(
− κ

∑
µ

(φ⋆
xφx+µ + cc) + λ(|φx|2 − 1)2 + |φx|2

)
• big advantage: fast to simulate

⇒ can simulate basically arbitrary volumes

• and study the interaction of two scalar particles

(or three, four, five, ... scalar particles)
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Example: Complex ϕ4 Theory

• need to compute∆E = E2 − 2M1

• single particle energy from

C1(t) =
∑
t′

∑
x,y

⟨Ôφ(x, t′)Ô†
φ(y, t+ t′)⟩ t→∞∝ e−M1t

• n-particle energy from

C1(t) =
∑
t′

∑
x,y

⟨Ô2φ(x, t′)Ô†
2φ(y, t+ t′)⟩ t→∞∝ e−E2t + thermal pollutions

• thermal pollutions due to finite time extend T and periodic BCs

⇒ have to be taken care of
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Example: Complex ϕ4 Theory

• compute∆E as function of L

• for chosen bare parameters:
repulsive interaction

• depending on fit range sensitive
to a0 or r

• for too small L description
breaks down

5 10 15 20 25

0
.0

0
0.

0
2

0.
0
4
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0
6

0.
0
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0.
1
0

L

∆
E

2

⇒ ∆E2 gives access to a0 and r
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Example: Complex ϕ4 Theory

• three particle formula (zero total momentum)

∆E3 = E3 − 3M1 = −12πa0
M1L3

(1 + ...)− D

48M3
1L

6

[see e.g. Sharpe 2017]

• D encodes three body
interaction

• data well described

• a0, r input from∆E2

• clear evidence for non-zero
three particle interaction! 5 10 15 20 25

0.
00

0.
05

0.
10

0.
15

0
.2

0

L

∆
E

3

C. Urbach: Hadron Resonances from Lattice QCD page 14



Example: Complex ϕ4 Theory

• three particle formula (zero total momentum)

∆E3 = E3 − 3M1 = −12πa0
M1L3

(1 + ...)− D

48M3
1L

6

[see e.g. Sharpe 2017]

• D encodes three body
interaction

• data well described

• a0, r input from∆E2

• clear evidence for non-zero
three particle interaction!

6 8 10 12

-3
00

00
-2
00

00
-1
00

00
0

Lmin

D

C. Urbach: Hadron Resonances from Lattice QCD page 14



Example: Complex ϕ4 Theory

• phase-shift reconstruction

• for the example: consider S-wave only

• determinant equation reduces to

⇒ π3/2 cot(δ0) = Z00(1, q
2)/q

Lüscher function Z

⇒ every energy level → one pair (δ0(k), k)
0.00 0.05 0.10 0.15

-2
.5

-2
.0

-1
.5

-1
.0

-0
.5

0
.0

k

δ
[d
eg
re
es
]

• blue line reconstructed from
cot δ =

1

a0
+
r

2
k2
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Results: Well Separated Resonances

• status of LQCD results for hadron resonances

• comparisons compiled in a review with M. Mai and Ulf-G. Meißner
[Mai, Meißner, Urbach, Phys. Rept. 1001 (2023) 1-66]

• here: my personal choice

• mostly states where more than one lattice study available

• first focus on the “easy” cases, well separated resonances
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The ρ(770)

• ρ -resonance a poster Breit-Wigner
resonance

• best studied resonance from Lattice
QCD

• summary of 16 Lattice studies
[Mai, Meißner, Urbach, Phys. Rept. 1001 (2023) 1-66]

• bare lattice results forNf = 2 and
Nf = 2 + 1(+1)

• systematics clearly visible
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ρ -Meson Summary

• focus complex mass value at physical
point
[Mai, Meißner, Urbach, Phys. Rept. 1001 (2023) 1-66]

• uncertainties shrink over time

• but there are still discrepancies
different chiral extrapolations!

• Nf dependence?

• calculation at physical pion mass
with several lattice spacings needed!
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Elastic πN-scattering and the∆ Resonance

• ∆: lowest lying baryon resonance

• significantly more challenging
• proliferation of noise
• elastic window small
• S- and P -wave mixing

• 6(7) LQCD studies

• little control on systematics

Example δ3/2 phase shift

0.44 0.46 0.48 0.50 0.52

Ecms [a]

δ 3
/
2
[r
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d
]

0

π/2

sp− wave
Hg
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G2

(2)G
(3)G
F1

F2

[Alexandrou et al., Phys.Rev.D 109 (2024) 3, 3]
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Elastic πN-scattering and the∆ Resonance

• lattice overview for∆
[Mai, Meißner, Urbach, Phys, Rept, 1001 (2023) 1-66]

• resonance mass in reasonable
agreement with experiment

• width (or coupling) more problematic

• scattering lengths still await precise
determinations

• note: Alexandrou 2021 and 2024 are
different analysis stages on the same
data
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Results: Coupled Channels/Thresholds

• many exotic states found experimentally recently

• non-standard nature

• threshold effects and coupled channels relevant

• however: LQCD treatment significantly more challenging
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Λ(1405): TheMother of Complicated Pole Structures

• 1
2

−
Λ(1405) just belowNK̄ threshold

• decays predominantly to Σπ

• two pole structure?

• phenomenologically still undecided

• chiral EFTs+ unitarity: two pole
structure

• Lattice QCD: requires coupled channel
analysis! [GlueX, Wickramaarachchi et al, EPJ Web Conf. 271 (2022) 07005]
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The Λ(1405) from LQCD

• a single LQCD calculation available
[Bulava et al., Phys.Rev.Lett. 132 (2024) 5, 051901 & PRD]

• based on a single ensemble
Mπ ≈ 200MeV , MK ≈ 487MeV

• coupled channel Lüscher approach

• sophisticated analysis procedure

• model averaging to avoid bias
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• this one lattice investigation favours two poles

• Re E1 = 1325−1380 MeV, Re E2 = 1421−1434 MeV

• first indication confirming the Chiral EFT prediction!

• however, please remember:
one ensemble doesn’t control many systematics!



Dπ-scattering and theD∗
0(2300)

• open charm, JP = 0+ and I = 1/2,
decay toDπ

• slightly aboveDπ threshold

• expect two pole structure
analysis ofB → ϕϕ data
[Du et al., PRD 98 (9) (2018), 094018]

• a bunch of LQCD results

• virtual state belowMπ ≈ 300MeV

• inconclusive atMphys
π !

• PDG revising their conclusions.
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• virtual state belowMπ ≈ 300MeV

• inconclusive atMphys
π !

• PDG revising their conclusions.
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TheX(3872) (now called χc1(3872))

• one of the first exotic states

• narrow, JPC = 1++ charmonium like

• two lattice studies available, one
Nf = 2, oneNf = 2 + 1 + 1

[Prelovsek et al., Lee et al.,]

• both exploratory, single ensemble
investigations

• candidate I = 0 states very close to
threshold
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The elusive Zc(3900) (now called Tcc̄1(3900))

• closed charm, IG = 1+, JPC = 1+−

• rather narrow Γ ≈ 30MeV

• decay channels
J/ψπ, ηcππ,DD̄

∗, DD∗

• number of LQCD calculations of
Zc(3900)

• LQCD conclusion so far:
no evidence for the Zc was found

• only HAL QCD finds a state at threshold
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We have to control systematics!

Need to:
• investigate pion mass
dependence

• study lattice spacing
dependence

• perform a full coupled channel
investigation



A Third Particle Enters the Game

• Three particle decays highly relevant

• Three-pion decays of
K, η, ω, a1(1260), a1(1420)

• Decays of exotica, e.g.:
X(3872) → D̄∗D → D̄Dπ,
Y (4260) → J/ψ ππ

• Roper resonance→ πN and ππN

• Few-body physics: reactions with light
nuclei

C. Urbach: Hadron Resonances from Lattice QCD page 27
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Three equivalent EFTs
• RFT (Relativistic Field Theory)

[Hansen, Sharpe, 2014]

• NREFT (Non-relativistic EFT)
[Hammer, Pang, Rusetsky, 2017]

• FVU (Finite Volume Unitarity)
[Mai, Döring, 2017]



Understanding Systematics of 3pt Quantisation in ϕ4-Theory
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• two scalar fields ϕ0, ϕ1
[Garofalo, Mai, Romero-López, Rusetsky, Urbach, 2023]

• include interaction term

Sint = +
g

2
ϕ0ϕ

3
1

• allows decay ϕ0 → 3ϕ1

• at g = 0 no coupling
• at g > 0 avoided level crossing
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Understanding Systematics of 3pt Quantisation in ϕ4-Theory
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• can go further in this model
[Garofalo, Mai, Romero-López, Rusetsky, Urbach, 2023]

• reconstruct complex mass
• compare FVU and RFT approaches
• we find good agreement!
• but systematics visible

g = 17.81

g = 8.87

g = 4.43

-5

-4

-3

-2

-1

0

3.020 3.021 3.022 3.023 3.024

Re(E3/M0)

Im
(E

3
/M

0
)
×

10
7

FVU RFT



Understanding Systematics of 3pt Quantisation in ϕ4-Theory

C. Urbach: Hadron Resonances from Lattice QCD page 29

• can go further in this model
[Garofalo, Mai, Romero-López, Rusetsky, Urbach, 2023]

• reconstruct complex mass
• compare FVU and RFT approaches
• we find good agreement!
• but systematics visible

g = 17.81

g = 8.87

g = 4.43

-5

-4

-3

-2

-1

0

3.020 3.021 3.022 3.023 3.024

Re(E3/M0)

Im
(E

3
/M

0
)
×

10
7

FVU RFT

Equivalence of FVU and RFT shown in practice in controlled model



The Axial a1(1260)Meson

• IG(JPC = 1−(1++) a1 axial meson

• decays to three pions exclusively

• the only LQCD calculation of 3-body
effects

• single ensemble,Mπ = 224MeV

• proof of feasibility

[Mai et al., Phys.Rev.Lett. 127 (2021) 22, 222001]
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The Roper Resonance

• long standing puzzle from quark model
viewpoint

• lighter than parity partner ofN

• Nπ andNππ important decay channels

• many LQCD investigations
references see review

• no true Lüscher analysis so far
one utilising Hamiltonian EFT

• no LQCD calculation including 3-body
dynamics

[Leinweber et al., JPS Conf.Proc. 10 (2016) 010011]
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• one LQCD conclusion:
qqq state ruled out

• Leinweber et al. claim Roper partially
seen...

• I think: nothing more definite to
conclude yet!

• need to include Nππ operators

• and coupled channel Lüscher analysis



…and Glueballs?

• famous quenched calculation from
Morningstar and Peardon (1999)

• in dynamical QCD particularly hard
problem

• mixing with many lower lying states

• quenched not a good approximation

• novel ideas with
• gradient flow

[Sakai and Sasaki, Phys.Rev.D 107 (2023) 3, 034510]

• dynamical simulations
[Bulava et al., AIP Conf.Proc. 2249 (2020) 1, 030032]
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Glueballs from Radiative J/ψ Decays

• can one identify one of the ten scalar
mesons as predominantly a glueball?

• highly non-trivial question
(and maybe not well defined)

• radiative decays of J/ψmight be a
good place to look for scalar glueballs

• decay into q̄q naïvly suppressed by α2
s

• here: exploratory quenched study, two
lattice spacings
[L.Gui, et al. (CLQCD), Phys. Rev. Lett. 110, 021601 (2013)]

• for tensor glueballs see
[Y.B. Yang et al .(CLQCD), Phys. Rev. Lett. 111, 091601 (2013)]

• not based on Lüscher method

• matrix element

∝ ⟨G|jµ|J/ψ⟩

estimated from three-point function
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Main conclusion

Γ(J/ψ → γ → G0+)/Γtot = 3.8(9) × 10−3 from LQCD

consistent with f0(1710) PDG production rate

BR(J/ψ → γ → γf0(1710)) = 1.9 × 10−3

and inconsistent with rates of other scalar mesons.

Quenched, so systematics are uncontrolled!



Summary

• resonances in LQCD challenging
problem

• well separated resonances on a good
way

• coupled channels / threshold
phenomena promising results emerge

• can expect more in the future!

• ... thank you for you attention!
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