Hadron Resonances from Lattice QCD

Status and Prospects

Carsten Urbach

Gefördert durch

UNIVERSITÄT BONN

Quantum Chromodynamics

$$S[A_{\mu},\bar{\psi},\psi] = \int d^{4}x \; \left\{ \frac{1}{4}G_{\mu\nu}^{2} + \bar{\psi}_{q} \left(i\gamma_{\mu}D_{\mu} + m_{q} \right)\psi_{q} \right\}$$

- astonishingly simple action, intriguingly complex dynamics
- running coupling: QCD is non-perturbative at low energies
- ⇒ hadron spectrum requires non-perturbative methods

Lattice QCD Regularisation

- quantum field theory requires regularisation
- lattice regularisation:
- ⇒ discretise space-time
 - hyper-cubic $L^3 \times T$ -lattice with lattice spacing a
 - \Rightarrow momentum cut-off: $k_{\max} \propto 1/a$
 - derivatives \Rightarrow finite differences
 - integrals \Rightarrow sums
 - gauge potentials A_{μ} in $G_{\mu\nu} \Rightarrow$ link matrices U_{μ} (' \clubsuit ')
- work in Euclidean space-time \Rightarrow **use Monte Carlo**

- Monte Carlo: access to equilibrium, vacuum properties
- fundamental observables:
 Euclidean correlation functions

$$\langle \mathcal{O}_i^{\dagger}(p,t) \mathcal{O}_j(p,t') \rangle \propto \sum_n c_{i,n} c_{j,n} e^{-E_n t}$$

- with interpolating operators \mathcal{O}_i with certain quantum numbers
- simulations at bare parameters need to renormalise

- Monte Carlo: access to equilibrium, vacuum properties
- fundamental observables:
 Euclidean correlation functions

$$\langle \mathcal{O}_i^{\dagger}(p,t) \, \mathcal{O}_j(p,t') \rangle \propto \sum_n c_{i,n} c_{j,n} e^{-E_n t}$$

- with interpolating operators \mathcal{O}_i with certain quantum numbers
- simulations at bare parameters need to renormalise

• continuum limit:

$$\lim_{a \to 0}$$

(i.e. at least 3 lattice spacing values)

• infinite volume limit:

$$\lim_{L\to\infty}$$

• physical mass limit:

1

$$\lim_{m_\ell \to m_\ell^{\rm phys}} \quad {\rm or} \quad M_\pi^2 \to (M_\pi^{\rm phys})^2$$

And then: Compute the Spectrum!

• excited baryon spectrum (2011)

[Edwards et al., Phys.Rev.D 84 (2011) 074508]

- spin identified, 3 M_{π} values
- both parities up to J = 7/2

at $M_\pipprox 400~{
m MeV}$

• excited baryon spectrum (2011)

[Edwards et al., Phys.Rev.D 84 (2011) 074508]

- spin identified, 3 M_{π} values
- both parities up to J=7/2
- author's conclusion:
 "... a counting of levels that is consistent with the non-relativistic qqq constituent quark model."

at $M_{\pi} \approx 400 \text{ MeV}$

at $M_{\pi} \approx 400 \text{ MeV}$ excited baryon spectrum (2011) [Edwards et al., Phys.Rev really impressive calculation! spin identifie significant methodological progress both parities ۲ author's con • "... a countine consistent with the 0.8 non-relativistic ggg constituent 5 + 7 + 1 + 1 = 3 - 5 - 7 - 7 $\frac{3}{2} + \frac{5}{2} + \frac{7}{2} + \frac{1}{2} + \frac{1}{2} - \frac{3}{2} - \frac{5}{2} - \frac{7}{2}$ quark model."

at $M_{\pi} \approx 400 \text{ MeV}$

Particle Interactions from Lattice QCD

- lattice stochastic methods: work in finite volume / Euclidean space-time
- ⇒ real valued, quantised eigenvalues of the lattice Hamiltonian no continuum of states
 - Maiani and Testa: interactions properties cannot be studied directly (Maiani and Testa, (1990))
- \Rightarrow there is no one-to-one correspondence of an energy level to a resonance state
- the connection is only provided by the Lüscher method!

Lüscher Method

finite volume: boon and bane!

- for $V \to \infty$:
- \Rightarrow interaction probability very low

$$\Rightarrow E_{2p}(p=0) = 2E_{1p}$$

Lüscher Method

finite volume: boon and bane!

- for $V \to \infty$:
- \Rightarrow interaction probability very low
- $\Rightarrow E_{2p}(p=0) = 2E_{1p}$
 - for finite *V*:
- \Rightarrow interaction probability rises
- $\Rightarrow E_{2p}(p=0)$ receives corrections $\propto 1/V$

Lüscher Method

finite volume: boon and bane!

- for $V \to \infty$:
- \Rightarrow interaction probability very low
- $\Rightarrow E_{2p}(p=0) = 2E_{1p}$
 - for finite *V*:
- \Rightarrow interaction probability rises
- $\Rightarrow E_{2p}(p=0)$ receives corrections $\propto 1/V$
 - Lüscher: correction in 1/V related to scattering properties!

[Lüscher, 1986]

- plane wave acquires phase shift $\delta(k)$
- finite extend *L*, periodic BC

 $e^{\mathbf{i}kL+2\mathbf{i}\delta(k)} = e^{ik0} = 1$

quantisation condition

 $k_n L + 2\delta(k_n) = 2n\pi$

• momenta k_n from dispersion relation

$$W_n = 2\sqrt{m^2 + k_n^2}$$

Procedure

- **1** determine non-interacting m
- **2** determine energies W_n

$$\mathbf{3} W_n \rightarrow k_n$$

Determinant Equation

$$\det\left[\mathcal{M}^{\Gamma,\mathbf{d}}(E)-\cot(\delta)\right]=0$$

(\mathcal{M} Lüscher function)

• consider only *S*-wave, no mixing, and assume finite range expansion

$$\Delta E = -\frac{2\pi a_0}{\mu L^3} \left(1 + c_1 \frac{a_0}{L} + c_2 \frac{a_0^2}{L^2} + c_3 \frac{a_0^3}{L^3} \dots \right)$$

- The scattering length a_0 can be determined by inverting this equation!
- c_i known, L the box extent, μ the reduced two particle non-interacting mass
- works excellent e.g. for $\pi\pi$ scattering with I = 0, 2

C. Urbach: Hadron Resonances from Lattice QCD

• how well does this work?

[Romero-Lopez, Rusetsky, CU, EPJC (2018)]

- $\Rightarrow \operatorname{complex} \varphi^4$ theory as toy model
- lattice action $S = \sum_x \left(-\kappa \sum_\mu (\varphi_x^\star \varphi_{x+\mu} + cc) + \lambda (|\varphi_x|^2 1)^2 + |\varphi_x|^2 \right)$
- big advantage: fast to simulate
- \Rightarrow can simulate basically arbitrary volumes
- and study the interaction of two scalar particles

• how well does this work?

[Romero-Lopez, Rusetsky, CU, EPJC (2018)]

- $\Rightarrow \operatorname{complex} \varphi^4$ theory as toy model
- lattice action $S = \sum_x \left(-\kappa \sum_\mu (\varphi_x^\star \varphi_{x+\mu} + cc) + \lambda (|\varphi_x|^2 1)^2 + |\varphi_x|^2 \right)$
- big advantage: fast to simulate
- $\Rightarrow~$ can simulate basically arbitrary volumes
- and study the interaction of two scalar particles

(or three, four, five, ... scalar particles)

C. Urbach: Hadron Resonances from Lattice QCD

- need to compute $\Delta E = E_2 2M_1$
- single particle energy from

$$C_1(t) = \sum_{t'} \sum_{x,y} \left\langle \hat{\mathcal{O}}_{\varphi}(\mathbf{x}, t') \hat{\mathcal{O}}_{\varphi}^{\dagger}(\mathbf{y}, t+t') \right\rangle \quad \stackrel{t \to \infty}{\propto} \quad e^{-M_1 t}$$

• *n*-particle energy from

$$C_1(t) = \sum_{t'} \sum_{x,y} \left\langle \hat{\mathcal{O}}_{2\varphi}(\mathbf{x},t') \hat{\mathcal{O}}_{2\varphi}^{\dagger}(\mathbf{y},t+t') \right\rangle \quad \stackrel{t \to \infty}{\propto} \quad e^{-E_2 t} + \text{thermal pollutions}$$

- thermal pollutions due to finite time extend T and periodic BCs
- \Rightarrow have to be taken care of

- compute ΔE as function of L
- for chosen bare parameters: repulsive interaction
- depending on fit range sensitive to a_0 or r
- for too small *L* description breaks down

• three particle formula (zero total momentum)

$$\Delta E_3 = E_3 - 3M_1 = -\frac{12\pi a_0}{M_1 L^3} (1 + \dots) - \frac{D}{48M_1^3 L^6}$$

[see e.g. Sharpe 2017]

- *D* encodes three body interaction
- data well described
- a_0, r input from ΔE_2
- clear evidence for non-zero three particle interaction!

• three particle formula (zero total momentum)

$$\Delta E_3 = E_3 - 3M_1 = -\frac{12\pi a_0}{M_1 L^3} (1 + \dots) - \frac{D}{48M_1^3 L^6}$$

[see e.g. Sharpe 2017]

- D encodes three body interaction
- data well described
- a_0, r input from ΔE_2
- clear evidence for non-zero three particle interaction!

- phase-shift reconstruction
- for the example: consider *S*-wave only
- determinant equation reduces to

 $\Rightarrow \pi^{3/2} \cot(\delta_0) = Z_{00}(1, q^2)/q$

Lüscher function Z

 \Rightarrow every energy level \rightarrow one pair $(\delta_0(k),k)$

$$\cot \delta = \frac{1}{a_0} + \frac{r}{2}k^2$$

- status of LQCD results for hadron resonances
- comparisons compiled in a review with M. Mai and Ulf-G. Meißner (Mai, Meißner, Urbach, Phys. Rept. 1001 (2023) 1-66)
- here: my personal choice
- mostly states where more than one lattice study available
- first focus on the "easy" cases, well separated resonances

- ρ -resonance a poster Breit-Wigner resonance
- best studied resonance from Lattice QCD
- summary of 16 Lattice studies

[Mai, Meißner, Urbach, Phys. Rept. 1001 (2023) 1-66]

- bare lattice results for $N_f = 2$ and $N_f = 2 + 1(+1)$
- systematics clearly visible

The $\rho(770)$

• focus complex mass value at physical point

[Mai, Meißner, Urbach, Phys. Rept. 1001 (2023) 1-66]

- uncertainties shrink over time
- but there are still discrepancies different chiral extrapolations!
- N_f dependence?

• focus complex mass value at physical point

[Mai, Meißner, Urbach, Phys. Rept. 1001 (2023) 1-66]

- uncertainties shrink over time
- but there are still discrepancies different chiral extrapolations!
- N_f dependence?
- calculation at physical pion mass with several lattice spacings needed!

Elastic πN -scattering and the Δ Resonance

- Δ : lowest lying baryon resonance
- significantly more challenging
 - proliferation of noise
 - elastic window small
 - S- and P-wave mixing
- 6(7) LQCD studies
- little control on systematics

Example $\delta_{3/2}$ phase shift

[Alexandrou et al., Phys.Rev.D 109 (2024) 3, 3]

Elastic πN -scattering and the Δ Resonance

• lattice overview for Δ

[Mai, Meißner, Urbach, Phys, Rept, 1001 (2023) 1-66]

- resonance mass in reasonable agreement with experiment
- width (or coupling) more problematic
- scattering lengths still await precise determinations
- note: Alexandrou 2021 and 2024 are different analysis stages on the same data

[Mai, Meißner, Urbach, Phys. Rept. 1001 (2023) 1-66; plus update]

Elastic πN -scattering and the Δ Resonance

• lattice overview for Δ

[Mai, Meißner, Urbach, Phys, Rept, 1001 (2023) 1-66]

- resonance mass in reasonable agreement with experiment
- width (or coupling) more problematic
- scattering lengths still await precise determinations
- note: Alexandrou 2021 and 2024 are different analysis stages on the same data

[Mai, Meißner, Urbach, Phys. Rept. 1001 (2023) 1-66; plus update]

- many exotic states found experimentally recently
- non-standard nature
- threshold effects and coupled channels relevant
- however: LQCD treatment significantly more challenging

$\Lambda(1405)$: The Mother of Complicated Pole Structures

- $\frac{1}{2}^{-} \Lambda(1405)$ just below $N\bar{K}$ threshold
- decays predominantly to $\Sigma\pi$
- two pole structure?
- phenomenologically still undecided
- chiral EFTs + unitarity: two pole structure
- Lattice QCD: requires coupled channel analysis!

[GlueX, Wickramaarachchi et al, EPJ Web Conf. 271 (2022) 07005]

The $\Lambda(1405)$ from LQCD

• a single LQCD calculation available

[Bulava et al., Phys.Rev.Lett. 132 (2024) 5, 051901 & PRD]

- based on a single ensemble $M_{\pi} \approx 200 \text{ MeV}$, $M_K \approx 487 \text{ MeV}$
- coupled channel Lüscher approach
- sophisticated analysis procedure
- model averaging to avoid bias

- open charm, $J^P = 0^+$ and I = 1/2, decay to $D\pi$
- slightly above $D\pi$ threshold

[[]Mai, Meißner, Urbach, Phys. Rept. 1001 (2023) 1-66; plus update]

- open charm, $J^P=0^+$ and I=1/2, decay to $D\pi$
- slightly above $D\pi$ threshold
- expect two pole structure analysis of $B \rightarrow \phi \phi$ data

[Du et al., PRD 98 (9) (2018), 094018]

[Mai, Meißner, Urbach, Phys. Rept. 1001 (2023) 1-66; plus update]

- open charm, $J^P = 0^+$ and I = 1/2, decay to $D\pi$
- slightly above $D\pi$ threshold
- expect two pole structure analysis of $B \to \phi \phi$ data

[Du et al., PRD 98 (9) (2018), 094018]

- a bunch of LQCD results
- virtual state below $M_{\pi} \approx 300 \text{ MeV}$
- inconclusive at M_{π}^{phys} !

[Mai, Meißner, Urbach, Phys. Rept. 1001 (2023) 1-66; plus update]

- open charm, $J^P=0^+$ and I=1/2, decay to $D\pi$
- slightly above $D\pi$ threshold
- expect two pole structure analysis of $B \to \phi \phi$ data

[Du et al., PRD 98 (9) (2018), 094018]

- a bunch of LQCD results
- virtual state below $M_{\pi} \approx 300 \text{ MeV}$
- inconclusive at M_{π}^{phys} !
- PDG revising their conclusions.

[Mai, Meißner, Urbach, Phys. Rept. 1001 (2023) 1-66; plus update]

- one of the first exotic states
- narrow, $J^{PC} = 1^{++}$ charmonium like
- two lattice studies available, one $N_f = 2$, one $N_f = 2 + 1 + 1$

[Prelovsek et al., Lee et al.,]

- both exploratory, single ensemble investigations
- candidate I = 0 states very close to threshold

- closed charm, $I^G = 1^+$, $J^{PC} = 1^{+-}$
- rather narrow $\Gamma \approx 30 \text{ MeV}$
- decay channels $J/\psi\pi, \eta_c\pi\pi, D\bar{D}^*, DD^*$
- number of LQCD calculations of $Z_c(3900)$
- LQCD conclusion so far: no evidence for the Z_c was found
- only HAL QCD finds a state at threshold

- closed charm, $I^G = 1^+$, $J^{PC} = 1^{+-}$
- rather narrow $\Gamma \approx 30~{\rm MeV}$
- decay channels $J/\psi\pi, \eta_c\pi\pi, D\bar{D}^*, DD^*$
- number of LQCD calculations of $Z_c(3900)$
- LQCD conclusion so far: no evidence for the Z_c was found
- only HAL QCD finds a state at threshold

We have to control systematics!

Need to:

- investigate pion mass dependence
- study lattice spacing dependence
- perform a full coupled channel investigation

- Three particle decays highly relevant
- Three-pion decays of $K, \eta, \omega, a_1(1260), a_1(1420)$
- Decays of exotica, e.g.: $X(3872) \rightarrow \overline{D}^*D \rightarrow \overline{D}D\pi$, $Y(4260) \rightarrow J/\psi \pi\pi$
- Roper resonance $\rightarrow \pi N$ and $\pi \pi N$
- Few-body physics: reactions with light nuclei

Lattice Energy Levels E

Finite Volume, discrete, real

- Three particle decays highly relevant
- Three-pion decays of $K, \eta, \omega, a_1(1260), a_1(1420)$
- Decays of exotica, e.g.: $X(3872) \rightarrow \overline{D}^*D \rightarrow \overline{D}D\pi$, $Y(4260) \rightarrow J/\psi \pi\pi$
- Roper resonance $\rightarrow \pi N$ and $\pi \pi N$
- Few-body physics: reactions with light nuclei

Lattice Energy Levels EFinite Volume, discrete, real

Interaction Properties

Infinite Volume, possibly complex

- Three particle decays highly relevant
- Three-pion decays of $K, \eta, \omega, a_1(1260), a_1(1420)$
- Decays of exotica, e.g.: $X(3872) \rightarrow \overline{D}^*D \rightarrow \overline{D}D\pi$, $Y(4260) \rightarrow J/\psi \pi\pi$
- Roper resonance $\rightarrow \pi N$ and $\pi \pi N$
- Few-body physics: reactions with light nuclei

• two scalar fields ϕ_0, ϕ_1

[Garofalo, Mai, Romero-López, Rusetsky, Urbach, 2023]

include interaction term

$$S_{\text{int}} = +\frac{g}{2}\phi_0\phi_1^3$$

• allows decay
$$\phi_0 \rightarrow 3\phi_1$$

• two scalar fields ϕ_0,ϕ_1

[Garofalo, Mai, Romero-López, Rusetsky, Urbach, 2023]

include interaction term

$$S_{\rm int} = +\frac{g}{2}\phi_0\phi_1^3$$

- allows decay $\phi_0
 ightarrow 3\phi_1$
- at g = 0 no coupling

• two scalar fields ϕ_0,ϕ_1

[Garofalo, Mai, Romero-López, Rusetsky, Urbach, 2023]

include interaction term

$$S_{\text{int}} = +\frac{g}{2}\phi_0\phi_1^3$$

- allows decay $\phi_0
 ightarrow 3\phi_1$
- at g = 0 no coupling
- at g > 0 avoided level crossing

First observation in a Lattice calculation

- can go further in this model [Garofalo, Mai, Romero-López, Rusetsky, Urbach, 2023]
 reconstruct complex mass
 compare FVU and RFT approaches
 we find good agreement!
 - but systematics visible

Equivalence of FVU and RFT shown in practice in controlled model

- $I^{G}(J^{PC} = 1^{-}(1^{++}) a_{1}$ axial meson
- decays to three pions exclusively
- the only LQCD calculation of 3-body effects
- single ensemble, $M_{\pi} = 224 \text{ MeV}$
- proof of feasibility

[Mai et al., Phys.Rev.Lett. 127 (2021) 22, 222001]

- long standing puzzle from quark model viewpoint
- lighter than parity partner of N
- $N\pi$ and $N\pi\pi$ important decay channels
- many LQCD investigations references see review
 - no true Lüscher analysis so far one utilising Hamiltonian EFT
 - no LQCD calculation including 3-body dynamics

- one LQCD conclusion: *qqq* state ruled out
- Leinweber et al. claim Roper partially seen...
- I think: nothing more definite to conclude yet!
- need to include $N\pi\pi$ operators
- and coupled channel Lüscher analysis

[Leinweber et al., JPS Conf.Proc. 10 (2016) 010011]

...and Glueballs?

- famous quenched calculation from Morningstar and Peardon (1999)
- in dynamical QCD particularly hard problem
- mixing with many lower lying states
- quenched not a good approximation
- novel ideas with
 - gradient flow

[Sakai and Sasaki, Phys.Rev.D 107 (2023) 3, 034510]

dynamical simulations

[Bulava et al., AIP Conf.Proc. 2249 (2020) 1, 030032]

Glueballs from Radiative J/ψ Decays

- can one identify one of the ten scalar mesons as predominantly a glueball?
- highly non-trivial question (and maybe not well defined)
- radiative decays of J/ψ might be a good place to look for scalar glueballs
- decay into ar q q naïvly suppressed by $lpha_s^2$
- here: exploratory quenched study, two lattice spacings

[L.Gui, et al. (CLQCD), Phys. Rev. Lett. 110, 021601 (2013)]

• for tensor glueballs see

[Y.B. Yang et al.(CLQCD), Phys. Rev. Lett. 111, 091601 (2013)]

- **not** based on Lüscher method
- matrix element

$$\propto \langle G|j^{\mu}|J/\psi\rangle$$

estimated from three-point function

Glueballs from Radiative J/ψ Decays

- can one identify one of the ten scalar mesons as predominantly a glueball?
- highly non (and mayb)
- radiative d good place
- decay into

 here: expl lattice spa

Main conclusion $\Gamma(J/\psi \rightarrow \gamma \rightarrow G_{0^+})/\Gamma_{\text{tot}} = 3.8(9) \times 10^{-3}$ from LQCD consistent with $f_0(1710)$ PDG production rate $\mathsf{BR}(J/\psi \rightarrow \gamma \rightarrow \gamma f_0(1710)) = 1.9 \times 10^{-3}$ and inconsistent with rates of other scalar mesons. Quenched, so systematics are uncontrolled!

for tensor glueballs see

[Y.B. Yang et al.(CLQCD), Phys. Rev. Lett. 111, 091601 (2013)]

estimated from three-point function

1)

 χ^2_s

d

- resonances in LQCD challenging problem
- well separated resonances on a good way
- coupled channels / threshold phenomena promising results emerge
- can expect more in the future!

[[]Mai, Meißner, Urbach, Phys. Rept. 1001 (2023) 1-66]

- resonances in LQCD challenging problem
- well separated resonances on a good way
- coupled channels / threshold phenomena promising results emerge
- can expect more in the future!
- ... thank you for you attention!

[Mai, Meißner, Urbach, Phys. Rept. 1001 (2023) 1-66]