

Two-pole structures in QCD

Ulf-G. Meißner, Univ. Bonn & FZ Jülich

supported by DFG, SFB/TR-110

by CAS, PIFI

by DFG, SFB 1639

by ERC, EXOTIC

by NRW-FAIR

Contents

- Short introduction: Bound states in QCD
- ullet A tale of the two $\Lambda(1405)$ states
- ullet Two-pole structure of the $D_0^*(2300)$
- ullet Amplitude analysis of $B o D\pi\pi$
- Summary & outlook

Details in: UGM, Symmetry 12 (2020) 981 [2005.06909 [hep-ph]] Mai, UGM, Urbach, Phys. Rept. 1001 (2023)1 [2206.01477 [hep-ph]]

Short introduction: Bound states in QCD

Bound states in QCD

- Long time a playground of the Quark Model (QM):
 - \hookrightarrow mesons $(\bar{q}q)$ and baryons (qqq)
- Exotics w.r.t. the QM (already mentioned by Gell-Mann in 1964): Phys.Lett. 8 (1964) 214
 - → tetraquarks, pentaquarks, hybrids,..., glueballs (truely exotic)
- Even more structures:
 - → dynamically generated states, hadronic molecules, ..., nuclei → next slide
- Revival of hadron spectroscopy started around 2003:

$$\hookrightarrow D_{s0}^{\star}(2317), D_{s1}(2460), \, \chi_{c1}(3872) ext{ aka } X(3872), ...$$

- ⇒ The hadron spectrum is arguably the least understood part of the Standard Model
- ⇒ Discuss one new feature here, the two-pole structures

Dynamically generated states / hadronic molecules

- Hadron-hadron (or three-hadron) interactions can dynamically generate resonances
- Hadronic molecules: a subclass of these (shallow binding, close to the real axis)
- \bullet Prime example: The light scalar mesons $\underbrace{f_0(500)}_{\sigma},\underbrace{f_0(700)}_{\kappa},f_0(980)$

$$M_{f_0(500)} = 441^{+16}_{-8} \; {
m MeV}$$

$$\Gamma_{f_0(500)} = 544^{+18}_{-25} \, {
m MeV}$$

Caprini, Colangelo, Leutwyler (2005)

$$M_{f_0(700)} = 648 \pm 7 \ {
m MeV}$$

$$\Gamma_{f_0(700)} = 280 \pm 16 \, ext{MeV}$$

Pelaez, Rodas (2020)

$$M_{f_0(980)} = 990 \pm 20 \ {
m MeV} \ \Gamma_{f_0(980)} = 10 - 100 \ {
m MeV} \
brace$$

in between the K^+K^- and $K^0\bar{K}^0$ thresholds \hookrightarrow it is a molecule!

Two-pole structures

What is a two-pole structure?

The term two-pole structure refers to the fact that particular single states in the hadron spectrum as listed in the PDG tables are indeed two states.

- Basic ingredients:
 - coupled channels
 - molecular states / dynamically generated states

A tale of the two Λ (1405) states

ullet Quark model: uds excitation with $J^P=rac{1}{2}^-$ CLAS (2014) a few hundred MeV above the $\Lambda(1116)$

$$m=1405.1^{+1.3}_{-1.0}~{
m MeV}\,,~\Gamma=50.5\pm2.0~{
m MeV}~$$
 [PDG 2015]

- Prediction as early as 1959 by Dalitz and Tuan: Resonance between the coupled $\pi\Sigma$ and $\bar KN$ channels Dalitz, Tuan, Phys. Rev. Lett. **2** (1959) 425; J.K. Kim, PRL **14** (1965) 29
- ullet Clearly seen in $K^-p o \Sigma 3\pi$ reactions at 4.2 GeV at CERN Hemingway, Nucl.Phys. B **253** (1985) 742

 $\pi^{\Lambda} \xrightarrow{\pi\Sigma} \overline{KN} \xrightarrow{\eta\Lambda} \underline{E}$ $\Lambda(1405)$ $\pi^{\circ}\Sigma^{\circ}\pi^{-}\Sigma^{+}\pi^{+}\Sigma^{-}$ $K^{-}p \xrightarrow{K^{\circ}n}$

• An enigma: Too low in mass for the quark model, but well described in unitarized chiral perturbation theory: $\phi B \to \phi B$

Kaiser, Siegel, Weise, Ramos, Oset, Oller, UGM, Lutz, ...

Enter chiral dynamics

• Great idea:

Combine (leading-order) chiral SU(3) Lagrangian with coupled-channel dynamics
Kaiser, Siegel, Weise, Nucl. Phys. A **594** (1995) 325

- \hookrightarrow Dominance of the Weinberg-Tomozawa term, excellent description of K^-p data and $\pi\Sigma$ mass distribution, also inclusion of NLO terms with constrained fits
- \hookrightarrow The $\Lambda(1405)$ appears as a dynamically generated state (MB molecule)
- But: unpleasant regulator dependence (Yukawa-type, momentum cut-off) gauge invariance in photo-reactions?

A new twist

ullet Re-analysis of coupled-channel K^-p scattering and the $\Lambda(1405)$

Oller, UGM Phys. Lett. B **500** (2001) 263

- Technical improvements:
 - Subtracted meson-baryon loop with dim reg
 → standard method
 - Coupled-channel approach to the $\pi\Sigma$ mass distribution
 - Matching formulas to any order in chiral perturbation theory established

Most significant finding:

"Note that the $\Lambda(1405)$ resonance is described by **two poles** on sheets II and III with rather different imaginary parts indicating a clear departure from the Breit-Wigner situation..."

[pole 1: (1379.2 -i 27.6) MeV, pole 2: (1433.7 -i 11.0) MeV on RS II]

Jido, Oller, Oset, Ramos, UGM, Nucl. Phys. A 725 (2003) 181

Some formalism

• Coupled channels with S = -1:

$$K^-p o K^-p, \, ar{K}^0n, \, \pi^0\Sigma^0, \, \pi^+\Sigma^-, \, \pi^-\Sigma^+, \, \pi^0\Lambda, \, \eta\Lambda, \, \eta\Sigma^0, \, K^+\Xi^-, \, K^0\Xi^0$$

Lippmann-Schwinger eq. in matrix space:

$$T(W) = [\mathcal{I} + \mathcal{V}(W) \cdot g(s)]^{-1} \cdot \mathcal{V}(W)$$

$$g(s)_i = rac{1}{16\pi^2} \left\{ a_i(\mu) + \log rac{m_i^2}{\mu^2} rac{M_i^2 - m_i^2 + s}{2s} \log rac{M_i^2}{m_i^2} + rac{q_i}{\sqrt{s}} \log rac{m_i^2 + M_i^2 - s - 2\sqrt{s}q_i}{m_i^2 + M_i^2 - s + 2\sqrt{s}q_i}
ight\}$$

• Matching to chiral perturbation theory, say to orders $\mathcal{O}(p)$, $\mathcal{O}(p^2)$, $\mathcal{O}(p^3)$:

$$T_1=\mathcal{V}_1\;, \qquad T_1+T_2=\mathcal{V}_1+\mathcal{V}_2 \ T_1+T_2+T_3=\mathcal{V}_1+\mathcal{V}_2+\mathcal{V}_3-\mathcal{V}_1\cdot g\cdot \mathcal{V}_1$$

The two-pole scenario explained

- Detailed analysis found **two** poles in the complex energy plane
- → generated by chiral dynamics, but can we understand this in more detail?
- Group theory:

$$8 \otimes 8 = \underbrace{1 \oplus 8_s \oplus 8_a}_{\text{binding at LO}} \oplus 10 \oplus \overline{10} \oplus 27$$

 Follow the pole movement from the SU(3) limit to the physical masses: Jido, Oller, Oset, Ramos, UGM, Nucl. Phys. A 725 (2003) 181

- However: scattering and kaonic atom data
 alone do not lead to a unique solution (two poles, but spread in the complex plane)
- Photoproduction to the rescue: $\gamma p o K^+ \Sigma \pi$ CLAS, Phys. Rev. C **87**, 035206 (2013)

SU(3) symmetry considerations - details

Jido, Oller, Oset, Ramos, UGM, Nucl. Phys. A 725 (2003) 181

- SU(3) limit: $m_u = m_d = m_s \neq 0$
- \hookrightarrow all GB mesons have equal mass M_0 , all octet baryons have equal mass m_0
- \Rightarrow from the SU(3) limit at x=0 to the physical world w/ x=1

$$m_i(x) = m_0 + x(m_i - m_0)$$

 $M_i^2(x) = M_0^2 + x(M_i^2 - M_0^2)$

$$a_i(x) = a_0 + x(a_i - a_0)$$

$$m_0=1151\,\mathrm{MeV}$$

$$M_0=368\,\mathrm{MeV}$$

$$a_0 = -2.148$$

Resoances are poles in the complex plane!

Present status of the two-pole scenario

• Two poles from scattering + SIDDHARTA data (one well, the other not-so-well fixed):

for details, see Mai, Eur. Phys. J. ST 230 (2021) 1593 [arXiv:2010.00056 [nucl-th]]

→ PDG 2016: http://pdg.lbl.gov/2015/reviews/rpp2015-rev-lam-1405-pole-struct.pdf

POLE STRUCTURE OF THE $\Lambda(1405)$ REGION Written first November 2015 by Ulf-G. Meißner and Tetsuo Hyodo

SU(3) symmetry considerations - a new twist

Guo, Kamiya, Mai, UGM, PLB 846 (2023) 138264

Interesting interchange of trajectories from LO to NLO

- → different findings in Zhuang, Molina, Lu, Geng, [2405.07686 [hep-ph]] ?

Status in the Review of Particle Physics

• Two excited Λ states listed in the 2020 RPP edition:

P. A. Zyla et al. [Particle Data Group], PTEP 2020 (2020) 083C01

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

Λ(1380) 1/2⁻

$$J^P = \frac{1}{2}$$
 Status: **

OMITTED FROM SUMMARY TABLE

See the related review on "Pole Structure of the $\Lambda(1405)$ Region."

- a new two-star resonance at 1380 MeV
- still not in the summary table
- there are more such two-pole states!
- this is a fascinating phenomenon intimately tied to molecular structures

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

Λ(1405) 1/2⁻

$$I(J^P) = O(\frac{1}{2})$$
 Status: ***

In the 1998 Note on the $\Lambda(1405)$ in PDG 98, R.H. Dalitz discussed the S-shaped cusp behavior of the intensity at the $N-\overline{K}$ threshold observed in THOMAS 73 and HEMINGWAY 85. He commented that this behavior "is characteristic of S-wave coupling; the other below threshold hyperon, the $\Sigma(1385)$, has no such threshold distortion because its $N-\overline{K}$ coupling is P-wave. For $\Lambda(1405)$ this asymmetry is the sole direct evidence that $J^P=1/2^-$."

A recent measurement by the CLAS collaboration, MORIYA 14, definitively established the long-assumed $J^P=1/2^-$ spin-parity assignment of the $\Lambda(1405)$. The experiment produced the $\Lambda(1405)$ spin-polarized in the photoproduction process $\gamma p \to K^+ \Lambda(1405)$ and measured the decay of the $\Lambda(1405)$ (polarized) $\to \Sigma^+$ (polarized) π^- . The observed isotropic decay of $\Lambda(1405)$ is consistent with spin J=1/2. The polarization transfer to the Σ^+ (polarized) direction revealed negative parity, and thus established $J^P=1/2^-$.

See the related review(s):

Pole Structure of the $\Lambda(1405)$ Region

Hyodo, UGM

- Two Λ 's: recenty confirmed by lattice QCD Bulava et al., PRL 132 (2024) 051901 \hookrightarrow nature of the lower pole not really pinned down
- for a review, see UGM, Symmetry 12 (2020) 981

Two-pole structure of the $D_0^st(2300)$

Coupled channel scattering on the lattice

Moir, Peardon, Ryan, Thomas, Wilson [HadSpec], JHEP 1610 (2016) 011

- ullet $D\pi$, $D\eta$, $D_sar{K}$ scattering with I=1/2:
- ullet 3 volumes, one a_s , one a_t , $M_\pi \simeq 390$ MeV, various K-matrix type extrapolations

- ullet S-wave pole at (2275.9 \pm 0.9) MeV
- ullet close to the $D\pi$ threshold
- ullet consistent w/ $D_0^{\star}(2300)$ of PDG
- BUT: symmetries ignored... :-(

Coupled channel dynamics

Kaiser, Weise, Siegel (1995), Oset, Ramos (1998), Oller, UGM (2001), Kolomeitsev, Lutz (2002), Jido et al. (2003), Guo et al. (2006), . . .

• $D\phi$ bound states: Poles of the T-matrix (potential from CHPT and unitarization)

Unitarized CHPT as a non-perturbative tool:

$$T^{-1}(s) = \mathcal{V}^{-1}(s) - G(s)$$

ullet $\mathcal{V}(s)$: derived from the SU(3) heavy-light chiral Lagrangian, 6 LECs up to NLO

→ next slide

- ullet G(s): 2-point scalar loop function, regularized w/ a subtraction constant $a(\mu)$
- \bullet T, \mathcal{V}, G : all these are matrices, channel indices suppressed

Coupled channel dynamics cont'd

Barnes et al. (2003), van Beveren, Rupp (2003), Kolomeitsev, Lutz (2004), Guo et al. (2006), . . .

NLO effective chiral Lagrangian for coupled channel dynamics

Guo, Hanhart, Krewald, UGM, Phys. Lett. B 666 (2008) 251

$${\cal L}_{
m eff} = {\cal L}^{(1)} + {\cal L}^{(2)}$$
 ${\cal L}^{(1)} = {\cal D}_{\mu} D {\cal D}^{\mu} D^{\dagger} - M_D^2 D D^{\dagger} \;,\;\; D = (D^0, D^+, D_s^+)$ ${\cal L}^{(2)} = D \left[-h_0 \langle \chi_+ \rangle - h_1 \chi_+ + h_2 \langle u_{\mu} u^{\mu} \rangle - h_3 u_{\mu} u^{\mu} \right] D + {\cal D}_{\mu} D \left[h_4 \langle u^{\mu} u^{\nu} \rangle - h_5 \{ u^{\mu}, u^{\nu} \} \right] {\cal D}_{\nu} D$ with $u_{\mu} \sim \partial_{\mu} \phi \;,\;\; \chi_+ \sim {\cal M}_{
m quark} \;,\; \dots$

• LECs:

- $\hookrightarrow h_0$ absorbed in masses
- $\hookrightarrow h_1 = 0.42$ from the D_s -D splitting
- $\hookrightarrow h_{2,3,4,5}$ from a fit to lattice data $(D\pi o D\pi, Dar{K} o Dar{K},...)$

Liu, Orginos, Guo, Hanhart, UGM, Phys. Rev. D 87 (2013) 014508

Fit to lattice data

Liu, Orginos, Guo, Hanhart, UGM, PRD 87 (2013) 014508

• Fit to lattice data in 5 "simple" channels: no disconnected diagrams

ullet Prediction: Pole in the (S,I)=(1,0) channel: 2315^{+18}_{-28} MeV

Experiment:

$$M_{D_{s0}^{\star}(2317)} = (2317.8 \pm 0.5)\,\mathrm{MeV}$$
 PDG2021

What about the $D_0^{\star}(2300)$?

ullet Calculate the finite volume energy levels for I=1/2, compare w/ the LQCD results Albaladejo, Fernandez-Soler, Guo, Nieves, Phys. Lett. B **767** (2017) 465

- this is NOT a fit!
- all LECs taken from the earlier study of Liu et al. (discussed before)

What about the $D_0^{\star}(2300)$? – cont'd

- reveals a two-pole scenario! [cf. $\Lambda(1405)$]
- understood from group theory

$$ar{3} \otimes 8 = \underbrace{ar{3} \oplus 6}_{ ext{attractive}} \oplus \overline{15}$$

this was seen earlier in various calc's

Kolomeitsev, Lutz (2004), F. Guo, Shen, Chiang, Ping, Zou (2006), F. Guo, Hanhart, UGM (2009), Z. Guo, UGM, Yao (2009)

- Again: important role of chiral symmetry
- Lattice QCD test: sextet pole becomes a b.s.

for $M_{\phi} > 575$ MeV in the SU(3) limit Du et al., Phys.Rev. D **98** (2018) 094018

- FZJ LQCD finds a b.s. for $M_{\pi}=600$ MeV Gregory et al., 2106.15391 [hep-ph]
- HadSpec finds a virtual state ($M_{\pi}=700~\text{MeV}$) Yeo et al., 2403.10498 [hep-lat]

Albaladejo, Fernandez-Soler, Guo, Nieves (2017)

Two-pole structure consistent with the lattice data?

Ashokan, Tang, Guo, Hanhart, Kamiya, UGM, EPJ C 83 (2023) 850

- Can we understand why HadSpec only reported one pole?
- Impose SU(3) symmetry on the K-matrix to fit the FV energy levels → less parmeters!

$$K = \left(rac{g_{ar{3}}^2}{m_{ar{3}}^2 - s} + c_{ar{3}}
ight) C_{ar{3}} + \left(rac{g_{6}^2}{m_{6}^2 - s} + c_{6}
ight) C_{6} + c_{ar{15}} C_{ar{15}}.$$

- perform various fits (switch off various terms)
- → Poles are consistent w/ UChPT!
- → never ignore symmetries!

Two-pole scenario in the heavy-light sector

- Invoke HQSS and HQFS:
- \hookrightarrow Two states in various I=1/2 states in the heavy meson sector $(M,\Gamma/2)$

	Lower [MeV]	Higher [MeV]	PDG2024 [MeV]
D_0^\star	$\left(2105^{+6}_{-8},102^{+10}_{-11}\right)$	$\left(2451^{+36}_{-26},134^{+7}_{-8}\right)$	$(2343\pm 10,115\pm 8)$
D_1	$\left(2247^{+5}_{-6},107^{+11}_{-10}\right)$	$\left(2555^{+47}_{-30},203^{+8}_{-9}\right)$	$(2412 \pm 9, 157 \pm 15)$
B_0^\star	$\left(5535^{+9}_{-11},113^{+15}_{-17}\right)$	$\left(5852^{+16}_{-19}, 36\pm 5 ight)$	
B_1	$\left(5584^{+9}_{-11},119^{+14}_{-17}\right)$	$\left(5912^{+15}_{-18}, 42^{+5}_{-4}\right)$	

→ but is there further experimental support for this?

Amplitude Analysis of $B \to D\pi\pi$

Data for $B o D\pi\pi$

ullet Recent high precision results for $B o D\pi\pi$ from LHCb

Aaji et al. [LHCb], Phys. Rev. D 94 (2016) 072001, ...

• Spectroscopic information in the angular moments ($D\pi$ FSI):

Theory of $B o D\pi\pi$

Du, Albadajedo, Fernandez-Soler, Guo, Hanhart, UGM, Nieves, Phys. Rev. D 98 (2018) 094018

- \bullet Effective Lagrangian for $B\to D$ transitions w/ one fast & one slow pseudoscalar Savage, Wise, Phys. Rev. D ${\bf 39}$ (1989) 3346
- ullet $B^- o D^+ \pi^- \pi^-$ contains coupled-channel $D\pi$ FSI
- Consider S, P, D waves: $\mathcal{A}(B^- \to D^+\pi^-\pi^-) = \mathcal{A}_0(s) + \mathcal{A}_1(s) + \mathcal{A}_2(s)$
 - \rightarrow P-wave: $D^*, D^*(2680)$; D-wave: $D_2(2460)$ as by LHCb
 - ightarrow S-wave: use coupled channel $(D\pi,D\eta,D_sar{K})$ amplitudes with all parameters fixed before
 - ightarrow only two parameters in the S-wave (one combination of the LECs c_i and one subtraction constant in the G_{ij})

$${\cal A}_0(s) \propto E_\pi \left[2 + G_{D\pi}(s) \left(rac{5}{3} T_{11}^{1/2}(s) + rac{1}{3} T_{11}^{3/2}(s)
ight)
ight]
onumber \ + rac{1}{3} E_\eta G_{D\eta}(s) T_{21}^{1/2}(s) + \sqrt{rac{2}{3}} E_{ar K} G_{D_s ar K}(s) T_{31}^{1/2}(s) + ...$$

Analysis of $B o D\pi\pi$

 $\times 10^{6}$

1.5

 $\langle P_0 \rangle / (20 \text{ MeV})$ 6.0 (2.0 V)

Du, Albadajedo, Fernandez-Soler, Guo, Hanhart, UGM, Nieves, Yao, Phys. Rev. D 98 (2018) 094018

More appropriate combinations of the angular moments:

$$\langle P_0
angle \propto |\mathcal{A}_0|^2 + |\mathcal{A}_1|^2 + |\mathcal{A}_2|^2 \ \langle P_2
angle \propto rac{2}{5} |\mathcal{A}_1|^2 + rac{2}{7} |\mathcal{A}_2|^2 + rac{2}{\sqrt{5}} |\mathcal{A}_0| |\mathcal{A}_2| \cos(\delta_2 - \delta_0) \ \langle P_{13}
angle = \langle P_1
angle - rac{14}{9} \langle P_3
angle \propto rac{2}{\sqrt{3}} |\mathcal{A}_0| |\mathcal{A}_1| \cos(\delta_1 - \delta_0) \ rac{10^6}{20.5} \left(\frac{10^6}{90.5} \right) \left(\frac{10^6}{90.5}$$

- ullet The **S-wave** $D\pi$ can be very well described using pre-fixed amplitudes
- ullet Fast variation in [2.4,2.5] GeV in $\langle P_{13} \rangle$: cusps at the $D\eta$ and $D_s \bar{K}$ thresholds \hookrightarrow should be tested experimentally

A closer look at the S-wave

 LHCb provides anchor points, where the strength and the phase of the S-wave were extracted from the data and connected by cubic spline

• Higher mass pole at 2.46 GeV clearly amplifies the cusps predicted in our amplitude

Theory of $B^0_s o ar D^0 K^- \pi^+$

Du, Albadajedo, Fernandez-Soler, Guo, Hanhart, UGM, Nieves, Yao, Phys. Rev. D98 (2018) 094018

- ullet LHCb has also data on $B^0_s
 ightarrow ar{D}^0 K^- \pi^+$, but less precise
- ullet Same formalism as before, one different combination of the LECs c_i
- same resonances in the P- and D-wave as LHCb

→ one parameter fit!

- ⇒ these data are also well described
- \Rightarrow better data for $\langle P_{13} \rangle$ would be welcome
- ⇒ even more channels, see Du, Guo, UGM, Phys. Rev. D 99 (2019) 114002

Where is the lowest charm-strange meson?

Du, Guo, Hanhart, Kubis, UGM, Phys. Rev. Lett. 126 (2021) 192001 [2012.04599]

- Precise analysis of the LHCb data on $B^- \to D^+ \pi^- \pi^-$ using UChPT and Khuri-Treiman eq's (3-body unit.) Aaji et al. [LHCb], Phys. Rev. D **94** (2016) 072001
- Breit-Wigner description not appropriate for the S-wave but UChPT and the dispersive analysis are!
- ullet First determination of the $D\pi$ phase shift
- The lowest charm-strange meson is located at:

$$\left(2105^{+6}_{-8}-i\,102^{+10}_{-11}
ight)$$
 MeV

Recently confirmed by Lattice QCD!
 Cheung et al. [HadSpec], JHEP 02 (2021) 100 [2008.06432]

PDG update

The PDG group is like a heavy tanker, still there is motion:

RPP 2024: 79. Heavy Non- $q\bar{q}$ Mesons, Hanhart, Gutsche, Mitchell

 \Rightarrow stay tuned!

Summary

Summary & discussion

- Chiral coupled-channel dynamics of QCD generates two-pole structures

 Oller, UGM (2001), Jido et al. (2005)
- ullet Further two-pole structures beyond the $\Lambda(1405)$ and $D_0^\star(2300)$
 - $\hookrightarrow K_1(1270)$ meson Roca et al., PRD 72 (2005) 014002, Geng et al., PRD 75 (2007) 014017
 - $\hookrightarrow \Xi(1820)$ baryon Sarkar et al., Nucl. Phys. A **750** (2005) 294, ...
 - $\hookrightarrow Y(4260)$ meson? Ablikim et al. [BESIII], Phys. Rev. D 102 (2020) 031101
 - → more to be found ... (interplay of lattice QCD / EFT/ disp. rel./ data)
- All this is not properly reflected in the PDG tables
 - \hookrightarrow summary tables e.g. only lists one pole for the $\Lambda(1405)$

 - → PDG needs a more serious approach to the hadron spectrum!

SPARES

Finite volume formalism

- ullet Goal: postdict the finite volume (FV) energy levels for I=1/2 and compare with the recent LQCD results from Moir et al. using the already fixed LECs ullet parameter-free insights into the $D_0^\star(2300)$
- ullet In a FV, momenta are quantized: $ec{q}=rac{2\pi}{L}ec{n}\ ,\ \ ec{n}\in\mathbb{Z}^3$
- \Rightarrow Loop function G(s) gets modified: $\int d^3 ec{q}
 ightarrow rac{1}{L^3} \sum_{ec{q}}$

$$G(s) = (0, D_s)$$

$$\pi, \eta, \overline{K}$$

$$ilde{G}(s,L) = G(s) = \lim_{\Lambda o \infty} \left[rac{1}{L^3} \sum_{ec{n}}^{|ec{q}| < \Lambda} I(ec{q}) - \int_0^{\Lambda} rac{q^2 dq}{2\pi^2} I(ec{q})
ight]$$

Döring, UGM, Rusetsky, Oset, Eur. Phys. J. A47 (2011) 139

ullet FV energy levels from the poles of $ilde{T}(s,L)$:

$$\tilde{T}^{-1}(s,L) = \mathcal{V}^{-1}(s) - \tilde{G}(s,L)$$

Chiral Lagrangian for B o D transitions

Savage, Wise, Phys. Rev. D39 (1989) 3346

- ullet Consider $ar{B} o D$ transition with the emission of two light pseudoscalars (pions)
- Chiral effective Lagrangian:

$$egin{aligned} \mathcal{L}_{ ext{eff}} &= ar{B}ig[c_1\left(u_{\mu}tM + Mtu_{\mu}
ight) + c_2\left(u_{\mu}M + Mu_{\mu}
ight)t \ &+ c_3t\left(u_{\mu}M + Mu_{\mu}
ight) + c_4\left(u_{\mu}\langle Mt
angle + M\langle u_{\mu}t
angleig) \ &+ c_5t\langle Mu_{\mu}
angle + c_6\langle \left(Mu_{\mu} + u_{\mu}M
ight)t
angleig]\partial^{\mu}D^{\dagger} \end{aligned}$$

with

$$ar{B} = (B^-, ar{B}^0, ar{B}^0_s) \;, \quad D = (D^0, D^+, D^+_s)$$

 $oldsymbol{M}$ is the matter field for the fast-moving pion

t = uHu is a spurion field for Cabbibo-allowed decays

ightarrow only some combinations of the LECs c_i appear

$$H = egin{pmatrix} 0 & 0 & 0 \ 1 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}$$

Some formalism

Exact three-body unitarity via Khuri-Treiman equations:

Khuri, Treiman (1960)

$$\hookrightarrow$$
 write $\mathcal{A}_{+--}(B^- \to D^+\pi^-\pi^-)$ and $\mathcal{A}_{00-}(B^- \to D^0\pi^0\pi^-)$ as [reconstruction theorem]

$$\begin{split} \mathcal{A}_{+--}(s,t,u) &= \mathcal{F}_0^{1/2}(s) + \frac{\kappa(s)}{4} z_s \mathcal{F}_1^{1/2}(s) + \frac{\kappa(s)^2}{16} (3z_s^2 - 1) \mathcal{F}_2^{1/2}(s) + (t \leftrightarrow s) \\ \mathcal{A}_{00-}(s,t,u) &= -\frac{1}{\sqrt{2}} \mathcal{F}_0^{1/2}(s) - \frac{\kappa(s)}{4\sqrt{2}} z_s \mathcal{F}_1^{1/2}(s) - \frac{\kappa(s)^2}{16\sqrt{2}} (3z_s^2 - 1) \mathcal{F}_2^{1/2}(s) + \frac{\kappa_u(u)}{4} z_u \mathcal{F}_1^1(u) \\ z_s &= \cos\theta_s = \frac{s(t-u) - \Delta}{\kappa(s)}, z_u = \cos\theta_u = \frac{t-s}{\kappa_u(u)}, \quad \Delta = (M_B^2 - M_\pi^2)(M_D^2 - M_\pi^2) \\ \kappa(s) &= \lambda^{1/2}(s, M_D^2, M_\pi^2) \lambda^{1/2}(s, M_B^2, M_\pi^2), \kappa_u(u) = \lambda^{1/2}(u, M_B^2, M_D^2) \sqrt{1 - 4M_\pi^2/u} \\ \mathcal{F}_\ell^I : \text{angular momentum } \ell \leq 2, \text{ isospin } I < 3/2 \end{split}$$

Solve via the Omnès ansatz:

$$\mathcal{F}_{\ell}^{I}(s) = \Omega_{\ell}^{I}(s) \left\{ Q_{\ell}^{I}(s) + \frac{s^{n}}{\pi} \int_{s_{\rm th}}^{\infty} \frac{ds'}{s'^{n}} \frac{\sin \delta_{\ell}^{I}(s') \tilde{\mathcal{F}}_{\ell}^{I}(s')}{|\Omega_{\ell}^{I}(s')|(s'-s)} \right\},$$

 $Q_\ell^I(s)$ = polynom of degree zero (one subtraction suffices)

$$\Omega_\ell^I(s) = \exp\left\{rac{s}{\pi}\int_{s_{
m th}}^\infty ds' rac{\delta_\ell^I(s')}{s'(s'-s)}
ight\}$$