Single meson photoproduction at CBELSA/TAPS

Annika Thiel

Exotic multi-quark states and baryon spectroscopy workshop

25.06.2024

Helmholtz-Institut für Strahlen- und Kernphysik, University of Bonn, Germany and School of Physics and Astronomy, University of Glasgow, Scotland, UK

Motivation

Structure of Matter: Spectroscopy

Spectroscopy of Hadrons

Excitation spectrum gives information about the dynamics inside the nucleon (between quarks and gluons)

Theoretical Predictions

[M. Ronniger et al., Eur.Phys.J.A 47 (2011), 162]

[R. Edwards et al., Phys.Rev.D 84 (2011) 07450]

[Eichmann, Fischer, Few Body Syst. 60 (2019) 1,2]

Discrepancies between measurement and calculations: "missing resonances" and level ordering

Theoretical Predictions

[M. Ronniger et al., Eur.Phys.J.A 47 (2011), 162]

[R. Edwards et al., Phys.Rev.D 84 (2011) 07450]

[Eichmann, Fischer, Few Body Syst. 60 (2019) 1,2]

 \rightarrow What are the relevant degrees of freedom?

Theoretical Predictions

[M. Ronniger et al., Eur.Phys.J.A 47 (2011), 162]

[R. Edwards et al., Phys.Rev.D 84 (2011) 07450]

[Eichmann, Fischer, Few Body Syst. 60 (2019) 1,2]

 \rightarrow What are the relevant degrees of freedom?

Most resonances observed in πN scattering: \rightarrow Experimental bias?

Resonances

Total cross section sensitive to dominant resonance contributions:

$$\sigma \sim |E_{0+}|^2 + |E_{1+}|^2 + |M_{1+}|^2 + |M_{1-}|^2 + \dots$$

Resonances overlap strongly with different strengths and widths

 \rightarrow Weak resonance contributions difficult to measure

Polarization Observables

Polarization Observables are a tool to access weak resonance contributions, sensitive to interference terms:

$$\Sigma \sim -2E_{0+}^*E_{2+} + 2E_{0+}^*E_{2-} - 2E_{0+}^*M_{2+} + \dots$$

		Target				Recoil			Target+Recoil				
		-	_	-	×'	y'	z'	×'	×'	z'	z'		
Photon		×	У	z	-	-	-	×	z	×	z		
unpolarized	σ	-	Т	-	-	Р	-	$T_{x'}$	$-L_{x'}$	$T_{z'}$	$L_{z'}$		
linearly pol.	Σ	Н	(-P)	-G	$O_{x'}$	(-T)	$O_{z'}$	-	_	-	-		
circularly pol.	-	F	-	-E	$-C_{x'}$	-	$-C_{z'}$	-	-	-	-		

Complete Experiment:

Extraction of the amplitudes without model dependence

For a single pseudoscalar meson at least **well-defined** 8 observables necessary

[Chiang and Tabakin, Phys.Rev.C 55 (1997) 2054-2066]

Complete Experiments

Extraction of complete sets using graph theory:

Complete Experiment:

Extraction of the amplitudes without model dependence

For a single pseudoscalar meson at least **well-defined** 8 observables necessary

[Chiang and Tabakin, Phys.Rev.C 55 (1997) 2054-2066]

Electroproduction: 13 Observables

[Y. Wunderlich, ... AT, et al., Phys.Rev.C 102 (2020) 3, 034605]

Two meson photoproduction: 16 Observables [P. Kroenert, ... AT, et al., Phys.Rev.C 103 (2021) 1, 014607]

 \rightarrow nearly full 4 π angular coverage

7

Extraction of the observables

Cross Section with Beam und Target Polarization

$,\phi$)	=	$rac{d\sigma}{d\Omega}(heta)\cdot \Big[1-p_{\gamma}^{lin}\Sigma\cos(2\phi)$
	+	$p_{x}(-p_{\gamma}^{lin}H\sin(2\phi)+p_{\gamma}^{circ}F)$
	_	$p_y(-T+p_\gamma^{lin}P\cos(2\phi))$
	_	$p_z(-p_\gamma^{lin}G\sin(2\phi)+p_\gamma^{circ}E)\Big]$

		Target Polarization				
Photon Polarization		х	у	z		
unpolarized	σ	-	Т	-		
linearly polarized	Σ	Н	Р	G		
circularly polarized	-	F	-	E		

 $\frac{d\sigma}{d\Omega}(\theta)$

π^0 -photoproduction:

G: A.Thiel et al., PRL 109 (2012) 102001 Eur. Phys. J. A53 (2017) 1, 8 E: M. Gottschall et al., PRL 112 (2014) 012003 Eur. Phys. J. A57 (2021), 1, 40

T, P, H: J. Hartmann et al., PRL 113 (2014) 062001 Phys.Lett. B748 (2015) 212

$\gamma p \rightarrow p \pi^0$: Double Polarization Observable E

E is a helicity asymmetry: Two spin configurations possible $1 \xrightarrow{\text{photon spin}} -\frac{1}{2} \qquad 1 \xrightarrow{\text{photon spin}} -\frac{1}{2} \qquad \sigma_{\frac{3}{2}}$ $E(\theta, E_{\gamma}) = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}}$

Fits to the data: BnGa11-02 MAID07 SAID CM12 JüBo15-B M. Gottschall et al., Phys. Rev. Lett. 112, 012003 (2014) Eur. Phys. J. A **57**, no.1, 40 (2021)

$$\gamma p
ightarrow p \pi^0$$
: $\sigma_{1/2}$ vs. $\sigma_{3/2}$

- Different models show good description of the cross section
- Spin dependent cross section can be extracted: σ^{1/2(3/2)} = σ₀ · (1 ± E)

$$\gamma p
ightarrow p \pi^0$$
: $\sigma_{1/2}$ vs. $\sigma_{3/2}$

- Different models show good description of the cross section
- Spin dependent cross section can be extracted: σ^{1/2(3/2)} = σ₀ · (1 ± E)
- Large differences occur in $\sigma^{1/2}$ and $\sigma^{3/2}$ cross sections

Cross Section with Beam und Target Polarization

		Target Polarization				
Photon Polarization		х	у	z		
unpolarized	σ	-	Т	-		
linearly polarized	Σ	н	Р	G		
circularly polarized	-	F	-	E		

η -photoproduction:

Σ:

F. Afzal et al., Phys.Rev.Lett. 125 (2020) 15, 152002

T, P, H, G, E:

J. Müller et al. Phys.Lett.B 803 (2020) 135323

Cusp Effect visible in η Photoproduction

High precision measurement of the Beam Asymmetry with high angular coverage

black: GRAAL

green: CLAS blue: CBELSA/TAPS

Cusp Effect visible in η Photoproduction

High precision measurement of the Beam Asymmetry with high angular coverage

Cusp effect of the η' threshold visible in the Legendre coefficients

[F. Afzal et al., Phys.Rev.Lett. 125 (2020) 15, 152002]

DIACK: GRAAL

green: CLAS blue: CBELSA/TAPS

$\gamma p \rightarrow p\eta$: Double Polarization Observable E and G

[J. Müller et al., Phys. Lett. B 803, 135323 (2020)]

Measurements off Neutrons

Database sparse for completely neutral final states like $\gamma n \rightarrow n\pi^0$ \rightarrow Readout of the CBELSA/TAPS experiment upgraded

Recent Developments

- Crystal Barrel calorimeter does not provide a fast trigger signal
- $\rightarrow\,$ Trigger on neutrons not possible!

Calorimeters were completely dismantled and read out replaced for higher rates, trigger and time determination

[C. Honisch, ..., AT et al., arXiv:2212.12364]

 \rightarrow New high-statistics data sets for completely neutral final states possible!

Measurements off (polarized) Neutrons with A2

Narrow peak observed in η photoproduction

Polarization observables used to shed further light on this structure

[D. Werthmüller et al., Phys.Rev. C90 (2014) no.1, 015205]

[L. Witthauer *et al.*, Phys. Rev. Lett. **117**, no. 13, 132502 (2016)]

Measurements off (polarized) Neutrons with A2

Narrow peak observed in η photoproduction

Polarization observables used to shed further light on this structure

[D. Werthmüller et al., Phys.Rev. C90 (2014) no.1, 015205]

[L. Witthauer *et al.*, Phys. Rev. Lett. **117**, no. 13, 132502 (2016)]

Measurements off (polarized) Neutrons with A2

Narrow peak observed in η photoproduction

Polarization observables used to shed further light on this structure

[D. Werthmüller et al., Phys.Rev. C90 (2014) no.1, 015205]

[L. Witthauer *et al.*, Phys. Rev. Lett. **117**, no. 13, 132502 (2016)]

16

Measurements off (polarized) Neutrons

[N. Jermann, Eur.Phys.J.A 59 (2023) 10, 232]

- First extraction of the observables *T*, *P* and *H* off neutrons
- S_{11} interference preferred compared to a new resonant structure 17

Interpretation

Multipoles and CGLN Amplitudes

Multipoles give information about the intermediate states, can be combined into four CGLN amplitudes:

$$egin{aligned} F_1(W,z) &= \sum_{\ell=0}^\infty [\ell M_{\ell+} + E_{\ell+}] \cdot P_{\ell+1}'(z) + [(\ell+1)M_{\ell-} + E_{\ell-}] \cdot P_{\ell-1}'(z) \ F_2(W,z) &= \sum_{\ell=0}^\infty \ldots \end{aligned}$$

with $z = \cos \theta_{\pi}$ and the Legendre polynomials $P_{\ell}(z)$.

...

Multipoles and CGLN Amplitudes

Multipoles give information about the intermediate states, can be combined into four CGLN amplitudes:

$$egin{aligned} &F_1(W,z) = \sum_{\ell=0}^\infty [\ell M_{\ell+} + E_{\ell+}] \cdot P'_{\ell+1}(z) + [(\ell+1)M_{\ell-} + E_{\ell-}] \cdot P'_{\ell-1}(z) \ &F_2(W,z) = \sum_{\ell=0}^\infty \ldots \end{aligned}$$

with $z = \cos \theta_{\pi}$ and the Legendre polynomials $P_{\ell}(z)$.

...

All observables can be expressed in CGLN amplitudes, for example:

$$\hat{\Sigma} = \frac{\Sigma \cdot \sigma(\theta_{\pi})}{\rho_{0}} = -\sin^{2}\theta_{\pi} \cdot Re\left[\frac{1}{2}|F_{3}|^{2} + \frac{1}{2}|F_{4}|^{2} + F_{2}^{*}F_{3} + F_{1}^{*}F_{4} + \cos\theta F_{3}^{*}F_{4}\right]\rho_{0}$$

with the density of states $\rho_0 = k/q$.

Multipoles and CGLN Amplitudes

Multipoles give information about the intermediate states, can be combined into four CGLN amplitudes:

with $z = \cos \theta_{\pi}$ and the Legendre polynomials $P_{\ell}(z)$.

All observables can be expressed in CGLN amplitudes, for example:

$$\hat{\Sigma} = \frac{\Sigma \cdot \sigma(\theta_{\pi})}{\rho_0} = -\sin^2 \theta_{\pi} \cdot Re \left[\frac{1}{2} |F_3|^2 + \frac{1}{2} |F_4|^2 + F_2^* F_3 + F_1^* F_4 + \cos \theta F_3^* F_4 \right] \rho_0$$

with the density of states $\rho_0 = k/q$.

18

Example of a Truncated Partial Wave Analysis

Observable described by

$$\check{T} = T \cdot \sigma = rac{q}{k} \sin heta \left[\sum_{h=0}^{2L_{max}-1} A_h (\cos heta)^h
ight]$$

• using S- and P-waves (
$$L_{max} = 1$$
):

$$\check{T} = \frac{q}{k} \sin \theta \left[A_0 + A_1 \cdot \cos \theta \right]$$

• using S-, P- and D-waves (
$$L_{max} = 2$$
):

$$\check{T} = \frac{q}{k}\sin\theta[A_0 + A_1 \cdot \cos\theta + A_2 \cdot \cos^2\theta + A_3 \cdot \cos^3\theta]$$

• using S-, P-, D- and F-waves ($L_{max} = 3$):

$$\check{\mathcal{T}} = \frac{q}{k} \sin \theta [A_0 + A_1 \cdot \cos \theta + A_2 \cdot \cos^2 \theta + A_3 \cdot \cos^3 \theta + A_4 \cdot \cos^4 \theta + A_5 \cdot \cos^5 \theta]$$

First Interpretation with a Truncated Partial Wave Analysis

TPWA for η photoproduction

Further improvement: Using Bayesian statistics

Marginalized distributions of the posteriors determined using Markov Chain Monte Carlos: θ : parameters, in our case $E_{\ell\pm}, M_{\ell\pm}$ y: data, in our case measured polarization observables

Observable	No. of datapoints	Exp. facility	References
σ_0	5736	MAMI	[Kashevarov et al., PRL 118 , 212001 (2017)]
T, F	144	MAMI	[Akondi et al., PRL 113 , 102001 (2014)]
Σ	140	GRAAL	[Bartalini et al., EPJ A 33 , 169 (2007)]
E	84	MAMI	[F. Afzal, PhD thesis, ULB Bonn (2019)]
G	47	CBELSA/TAPS	[Müller et al., Phys. Lett. B 803 , 135323 (2020)]

- Data fitted with $\ell_{max} = 1$ and 2
- Flat prior in the physically allowed region
- Results compared to 'conventional' maximum likelihood fits

TPWA for η photoproduction: Examples

- Log posterior density gives estimate about the likelihood
- At low energies: a single chain mapping the probability space
- At higher energies: Different chains map different regions

 \rightarrow Significant increase in information content by providing error distributions! P. Kroenert et al., Phys.Rev.C 109 (2024) 4, 045206

TPWA for η photoproduction

- Extraction of multipoles possible
- Results agree with the different PWA solutions

P. Kroenert et al., Phys.Rev.C 109 (2024) 4, 045206

TPWA for η photoproduction

- Predictions for up to now unmeasured observables
- Provide information about the most useful measurements to resolve ambiguities

P. Kroenert et al., Phys.Rev.C 109 (2024) 4, 045206

New Fits from different Analyses

New observables for $p\pi^0$ have been included in the analyses of the groups:

- BnGa (black)
- JüBo (red)
- SAID (blue)

For all other multipoles see: [Anisovich et al., Eur.Phys.J. A52 (2016) no.9, 284]

New Fits from different Analyses

New observables for $p\pi^0$ have been included in the analyses of the groups:

- BnGa (black)
- JüBo (red)
- SAID (blue)

Variance between the different analyses decreases!

For all other multipoles see: [Anisovich et al., Eur.Phys.J. A52 (2016) no.9, 284]

Comparison between PDG values

- Until 2010: almost only results from pion nucleon scattering used in the PDG, only few pion photoproduction data used
- PWA groups include photoproduction data with different final states from several experiments
- Now: new values from the fits are entering the PDG

Particle	J^{P}	overall	$N\gamma$	$N\pi$	$\Delta \pi$	$N\sigma$	$N\eta$	ΛK	ΣK	$N\rho$	$N\omega$	$N\eta'$
N	$1/2^+$	****										
N(1440)	$1/2^+$	****	****	****	***	***	-			-		
N(1520)	$3/2^{-}$	****	****	****	****	**	****					
N(1535)	$1/2^{-}$	****	****	****	***	*	****					
N(1650)	$1/2^{-}$	****	****	****	***	*	****	*				
N(1675)	$5/2^{-}$	****	****	****	****	***	*	*	*	2.00		
N(1680)	$5/2^+$	****	****	****	****	***	*	*	*			
N(1700)	$3/2^{-}$	***	**	***	***	*	*		2	2.00		
N(1710)	$1/2^+$	***	***	***	*_		***	**	*	*	*	
N(1720)	$3/2^+$	****	****	****	***	*	*	****	*	*_	*	
N(1860)	$5/2^{+}$	**	*	**		*	*					
N(1875)	$3/2^{-}$	***	**	**	*	**	*	*	*	*	*	
N(1880)	$1/2^+$	***	**	*	**	*	*	**	**		**	
N(1895)	$1/2^{-}$	****	****	*	*	*	****	**	**	*	*	****
N(1900)	$3/2^+$	****	****	**	**	*	*	**	**	2.00	*	**
N(1990)	$7/2^+$	**	**	**			*	*	*			
N(2000)	$5/2^+$	**	**	*_	**	*	*	2.00			*	
N(2040)	$3/2^{+}$	*		*								
N(2060)	$5/2^{-}$	***	***	**	*	*	*	*	*	*	*	
N(2100)	$1/2^+$	***	**	***	**	**	*	*		*	*	**
N(2120)	$3/2^{-}$	***	***	**	**	**		**	*		*	*
N(2190)	$7/2^{-}$	****	****	****	****	**	*	**	*	*	*	
N(2220)	$9/2^+$	****	**	****			*	*	*			
N(2250)	$9/2^{-}$	****	**	****			*	*	*			
N(2300)	$1/2^{+}$	**		**								
N(2570)	$5/2^{-}$	**		**								
N(2600)	$11/2^{-}$	***		***								
N(2700)	$13/2^+$	**		**								

Large improvement, but still lot of work to be done!

Summary

Conclusion

- Reactions like $\gamma p \rightarrow p\pi^0$, $p\eta$, $p\eta'$, $p\pi^0\pi^0$, ... have been measured with polarized photons and protons with the CBELSA/TAPS experiment
- Data for the observables Σ , *G*, *E*, *T*, *P* and *H* has been published for π^0 and η photoproduction, other channels will follow soon
- Crystal Barrel detector was upgraded for a higher detection efficiency for photoproduction off the neutron
- Data is included in the different partial wave analyses and the multipoles are converging
- New polarization data will help to understand the resonance spectrum and will provide an experimental basis for comparison with constituent quark models, lattice QCD or other methods

Review Paper:

A. T., F. Afzal and Y. Wunderlich,

Light Baryon Spectroscopy

Progress in Particle and Nuclear Physics 125 (2022) 103949 e-Print: 2202.05055 [nucl-ex]

Thank you for your attention!