BGOOD

Σ beam asymmetry for $\boldsymbol{\eta}$ photoproduction off the proton at BGOOD

Alessia Fantini
on behalf of the BGOOD collaboration

Project supported by the EU Horizon 2020 research \& innovation programme, grant agreement 824093

Exotic Multi-Quark States and Baryon Spectroscopy Workshop June $25^{\text {th }}-27^{\text {th }} 2024$ University of Bonn
$\xrightarrow[C A]{C H}$

Outline:

$>$ Brief introduction to Physics Motivations for meson photoproduction measurements
$>$ Short description of BGOOD apparatus
$>$ Analysis and η photoproduction events selection
$>$ Beam Asymmetry Σ extraction method
$>\Sigma$ measurement Results \& comparison with Existing Data
$>$ Summary \& Conclusions

Why meson photoproduction?

The understanding of the dynamics underlying the bound state of the nucleon and its excited spectrum still remain a crucial task since in this energy range QCD cannot be treated in perturbative mode.

Many models, based on different degrees of freedom descriptions, have been developed in order to describe the spectrum of excitation states and their features

Meson photoproduction studies represent a strong tool for probing nucleon resonances:
\checkmark Access to resonance states coupled to photons which only weakly coupling to the πN processes (Missing Resonances problem)
\checkmark Access to Polarization Observables => Separation of overlapping resonances and characterization in terms of Spin and Parity, Constrains for unambiguous PWA

- Low e.m cross section $\quad>\quad \checkmark$ Overcome thanks to technological developments
- Non resonance contribution $\Rightarrow>\quad \checkmark$ Disentagled with polarization observables
η photoproduction isoscalar meson $(\mathrm{I}=0)=>$ Isospin Filter $=>$ only $\mathrm{N}^{*}(\mathrm{I}=1 / 2)$ resonances as intermediate states

BGOOD Detector

BGO calorimeter (central region) \& Forward Spectrometer combination

Tagging Detector

E_{γ} measured through the detection of the corresponding electrons in the tagging system.

linearly polarised photon beams generated by coherent bremsstrahlung using a diamond crystal radiator.
Cu Radiator \rightarrow Incoherent Bremsstrahlung
Diamond Radiator \rightarrow Coherent Bremss \rightarrow Linearly Polarized γ beam

Bremsstrahlung spectra

Normalized Diamond Spectra and Polarization

BGOOD Central Detectors:

large solid angle calorimeter:
$>$ excellent energy resolution for photons
$>$ good detection efficiency for neutrons
> charged particle tracking and identification

Photons in BGO Rugby Ball

Pid BGORugbyBall-Plastic Scint. Barrel

High momentum resolution forward tracking

- Charged particles tracking in front of the magnet by means of two scintillating fibre detectors
- Behind the magnet, particle trajectories are determined through eight double layers of drift chambers

Particle identification through velocity measurements with the ToF Walls

Mass from ToF Walls

(b) 8000
 B vs Momentum in Forw Spectrometer

Σ Beam Asymmetry of η photoproduction on the proton

$$
\vec{\gamma}+\boldsymbol{p} \rightarrow \boldsymbol{\eta}+\boldsymbol{p}
$$

Energy Range: $E_{\gamma}=1.2 \div 1.7 \mathrm{GeV}$
Analyzed simultaneously all main η decay channels:

$$
\begin{gathered}
\eta \rightarrow 2 \gamma \\
\eta \rightarrow 3 \pi^{0} \rightarrow 6 \gamma \\
\eta \rightarrow \pi^{+}+\pi^{-}+\pi^{0} \\
\text { for }
\end{gathered}
$$

4 data taking periods

$>$ With different Polarization degrees
$>$ With different detection and reconstruction efficiencies

$\vec{\gamma}+p \rightarrow \eta+p$ Events Selection:

1) $\eta \rightarrow 2 \gamma$
2γ detected in the BGO +1 proton in whole apparatus
```
2) \(\eta \rightarrow 3 \pi^{0}\)
\(6 \gamma\) detected in the BGO + 1 proton in whole apparatus
```

3) $\eta \rightarrow \pi^{+}+\pi^{-}+\pi^{0}$
2γ detected in BGO +1 proton $+\pi^{+}+\pi^{-}$in whole apparatus
for this last case:
$\left|\boldsymbol{p}_{\boldsymbol{p}}\right|\left|\boldsymbol{p}_{\boldsymbol{\pi}^{+}}\right|\left|\boldsymbol{p}_{\boldsymbol{\pi}^{-}}\right|$reconstructed from momentum conservation between Initial and Final State
Particles with NO hypothesis on the decaying meson
Measured quantities: => Beam Energy E_{γ}
p and $\pi^{ \pm}$angles $\left(\theta_{P}, \varphi_{P}\right)\left(\theta_{\pi^{+}}, \varphi_{\pi^{+}}\right)\left(\theta_{\pi^{-}}, \varphi_{\pi^{-}}\right)$
$2 \gamma^{\prime}$ s energies and angles $\left(E_{\gamma_{1}}, \theta_{\gamma_{1}}, \varphi_{\gamma_{1}}\right)\left(E_{\gamma_{2}}, \theta_{\gamma_{2}}, \varphi_{\gamma_{2}}\right)$
4) $\vec{\gamma}+p \rightarrow \eta+p \rightarrow 2 \gamma+p$
5) $\vec{\gamma}+p \rightarrow \eta+p \rightarrow 6 \gamma+p$
$\theta_{m i s s P}^{c a l c}-\theta_{P}^{m e a s} \%$ Coplanarity

Meson InvMass \% MissMass from Meson

2 -body reaction completely defined by the meson reconstructed from the 2γ 's or 6γ 's in BGO and the proton detected in whole apparatus.

Redundancy of Measured variables => Clean Event Selection by means of 2D Graphical Cuts

$$
\text { 3) } \vec{\gamma}+p \rightarrow \eta+p \rightarrow \pi^{+}+\pi^{-}+\pi^{0}+p
$$

PID Proton $-\pi^{ \pm}=>\Delta E \% E$ in BGO-Barrel detectors

Mass from ToF in the Spectrometer

Events selection => 2D-Graph. Cut on Calc Meson Inv Mass \% Calc Missing Mass from Proton

Four Data taking periods with different polarized E_{γ} spectra

During each data period two different polarization planes

Pol Period 3

«Standard» method for Σ beam asymmetry extraction:

In case of One Data Taking period P with polarization $\mathcal{P}_{+}^{P}=\mathcal{P}_{-}^{P}=\boldsymbol{\mathcal { P }}^{P}$

$>$ For fixed $\left(\mathrm{E}_{\gamma}, \theta_{\eta}^{c m}\right)$ bins the number of polarized events normalized to the flux is modulated in **sin $\left(2 \varphi_{\eta}\right)$

$$
\frac{N_{ \pm}^{P}}{F_{ \pm}^{P}}=\left(\frac{d \sigma}{d \Omega}\right)_{U N P} \varepsilon^{P}(\varphi) \mathrm{N}_{\mathrm{SC}}\left(1 \mp \mathcal{P}^{P} \Sigma \cdot \sin \left(2 \varphi_{\eta}\right)\right) \quad * * \cos 2\left(\phi_{p o l}-\varphi_{\eta}^{c m}\right) \stackrel{\phi_{p o l}= \pm 45^{\circ}}{\Longrightarrow} \mp \sin \left(2 \varphi_{\eta}^{c m}\right)=\mp \sin \left(2 \varphi_{\eta}\right)
$$

Since the detectio and recostruction efficiency $\varepsilon^{P}(\varphi)$ can be assumed to be the same for the two polarization states
$>$ For each $\left(\mathrm{E}_{\gamma}, \theta_{\eta}^{c m}\right)=>$ The term $\mathcal{P}^{P} \Sigma$ can be extracted from an azimuthal fit of the ratio

$$
\frac{\frac{N_{ \pm}^{P}}{F_{ \pm}^{P}}}{N_{U N P, \text { norm }}^{P}}=\frac{\frac{N_{ \pm}^{P}}{F_{ \pm}^{P}}}{\frac{N_{+}^{P}}{F_{+}^{P}}+\frac{N_{-}^{P}}{F_{-}^{P}}}=\frac{1}{2}\left(1 \mp \mathcal{P}^{P} \sum \sin \left(2 \varphi_{\eta}\right)\right)
$$

«Standard» method for Σ beam asymmetry extraction (continued):

In case of a single period of data taking, but with $\mathcal{P}_{+}^{P} \neq \mathcal{P}_{-}^{P}$ In the ratio:

$$
\frac{\frac{N_{ \pm}^{P}}{F_{ \pm}^{P}}}{N_{\text {UNP,norm }}^{P}}=\frac{1}{2}\left(1 \mp \boldsymbol{P}_{ \pm}^{P} \Sigma \sin \left(2 \varphi_{\eta}\right)\right)
$$

it is necessary to redefine the expression of the unpolarized term $N_{U N P, \text { norm }}$ because the form $\mathrm{N}_{U N P, \text { norm }}^{P}=\frac{N_{+}^{P}}{F_{+}^{P}}+\frac{N^{P}}{F^{P}}$ has a dependence on $\sin (2 \varphi)$.
$\mathrm{N}_{U N P, \text { norm }}^{P}$ has to be defined as

$$
\mathrm{N}_{U N P, n o r m}^{P}=\frac{2}{\mathcal{P}_{+}^{P}+\boldsymbol{\mathcal { P }}_{-}^{P}}\left(\mathcal{P}_{-}^{P} \frac{N_{+}^{P}}{F_{+}^{P}}+\mathcal{P}_{+}^{P}+\frac{N_{-}^{P}}{F_{-}^{P}}\right) \quad \Rightarrow \quad \mathrm{N}_{U N P, n o r m}^{P} \propto 2 \varepsilon^{P}\left(\varphi_{\eta}\right)
$$

It is simple to show that this quantity depends on φ_{η} only via the efficiency $\varepsilon^{P}\left(\varphi_{\eta}\right)$

Σ beam asymmetry extraction method considering several data taking periods

Different Polarization spectra for the two polarization states and several periods
For each $\left(E_{\gamma}, \theta_{\boldsymbol{\eta}}^{c m}\right)$ bin we start from the ratio:

Where:

- $\quad P_{i} \Rightarrow \mathrm{i}$-th data taking period ($\mathrm{i}=1,2,3,4$)

$$
\text { 1) } \frac{\sum_{i} N_{+, \text {norm }}^{P i}}{\sum_{i} N_{\text {UNP,norm }}^{P i}}=\frac{1}{2}\left(1-\mathcal{P}_{+}^{*} \Sigma \sin (2 \varphi)\right)
$$

- $N_{ \pm, n o r m}^{P i}=\frac{N_{ \pm}^{P i}}{F_{ \pm}^{P}} \Rightarrow$ yeld of polarized events, normalized to flux for the period P_{i}
- $\mathrm{N}_{U N P, n o r m}^{P_{i}}\left(E_{\gamma}, \theta_{\eta}^{c m}, \varphi\right)=\frac{2}{\mathcal{P}_{+}^{P_{i}}+\mathcal{P}_{-}^{P_{i}}}\left(\mathcal{P}_{-}^{P_{i}} \frac{N_{+}^{P i}}{F_{+}^{P_{i}}}+\mathcal{P}_{+}^{P_{i}} \frac{N_{-}^{P i}}{F_{-}^{P_{i}}}\right) \Rightarrow \mathrm{N}_{U N P, n o r m}^{P_{i}}\left(E_{\gamma}, \theta_{\eta}^{c m}, \varphi\right) \propto \varepsilon^{P_{i}}(\varphi)$
- $\mathcal{P}_{+}^{*}=\frac{\sum_{\mathbf{i}}\left(\varepsilon^{P i} \mathcal{P}_{+}^{P_{i}}\right)}{\sum_{\mathbf{1}} \varepsilon^{P i}} \Rightarrow$ sum of polarizations weighted on the efficiencies of the respective periods
- NB !!!!!! $\mathcal{P}_{+}^{*}=\mathcal{P}_{+}^{*}(\varphi)=>$ the fit on the ratio 1) is not possible

Since $\mathrm{N}_{U N P, \text { norm }}^{P_{i}} \propto \varepsilon^{P_{i}}(\varphi):$

the quantity \mathcal{P}_{+}^{*} can be extracted directly from data replacing the efficiency $\varepsilon^{P i}$ by $N_{U N P, n o r m}^{P_{i}}$

$$
\mathcal{P}_{+}^{*}=\frac{\sum_{\mathrm{i}}\left(\varepsilon^{P i} \mathcal{P}_{+}^{P_{i}}\right)}{\sum_{\mathrm{i}} \varepsilon^{P i}}=\frac{\sum_{\mathrm{i}}\left(\mathrm{~N}_{\text {UNP,norm }}^{P_{i}} \mathcal{P}_{+}^{P_{i}}\right)}{\sum_{\mathrm{i}} \mathrm{~N}_{\text {UNP,norm }}^{P_{i}}}
$$

We still have the problem that \mathcal{P}_{+}^{*} depends on φ, but it is possible to show that the behavior of $\mathcal{P}_{+}^{*}(\boldsymbol{\varphi})$ is quite flat as function of the azimuthal angle φ for each $\left(\mathrm{E}_{\gamma}, \theta_{\eta}^{c m}\right)$

Since $\mathrm{N}_{U N P, \text { norm }}^{P_{i}} \propto \varepsilon^{P_{i}}(\varphi):$

the quantity \mathcal{P}_{+}^{*} can be extracted directly from data replacing the efficiency $\varepsilon^{P i}$ by $\mathrm{N}_{U N P, \text { norm }}^{P_{i}}$

$$
\mathcal{P}_{+}^{*}=\frac{\sum_{\mathrm{i}}\left(\varepsilon^{P i} \mathcal{P}_{+}^{P_{i}}\right)}{\sum_{\mathrm{i}} \varepsilon^{P i}}=\frac{\sum_{\mathrm{i}}\left(\mathrm{~N}_{\text {UNP,norm }}^{P_{i}} \mathcal{P}_{+}^{P_{i}}\right)}{\sum_{\mathrm{i}} \mathrm{~N}_{\text {UNP,norm }}^{P_{i}}}
$$

We still have the problem that \mathcal{P}_{+}^{*} depends on φ, but it is possible to show that the behavior of $\mathcal{P}_{+}^{*}(\boldsymbol{\varphi})$ is quite flat as function of the azimuthal angle φ for each ($\mathrm{E}_{\gamma}, \theta_{\eta}^{c m}$)

It is possible to make the average of $\boldsymbol{\mathcal { P }}_{+}^{*}$ all over the φ bins.

$$
\overline{\mathcal{P}_{+}^{*}}=\frac{\sum_{\varphi} \mathcal{P}_{+}^{*}(\varphi)}{\mathrm{N}_{\varphi_{\mathrm{bins}}}}
$$

For each $\left(E_{\gamma}, \theta_{\eta}^{c m}\right)$ bin we can then obtain the Σ beam asymmetry by:

1) extracting $\overline{\mathcal{P}_{ \pm}^{*}} \Sigma$ from the azimuthal fit of the ratio:

$$
\frac{\sum_{i} N_{ \pm, \text {norm }}^{P i}}{\sum_{i} N_{U N P, n o r m}^{P}}=\frac{1}{2}\left(1 \mp \overline{\mathcal{P}_{ \pm}^{*}} \Sigma \sin (2 \varphi)\right)
$$

2) Dividing the value $\overline{\mathcal{P}_{ \pm}^{*} \Sigma}$ by $\overline{\mathcal{P}_{ \pm}^{*}}$

$$
\Sigma=\frac{\overline{\mathcal{P}_{ \pm}^{*}} \Sigma}{\overline{\mathcal{P}_{ \pm}^{*}}}
$$

NB: Since we analyze several η decay channels: $\eta \rightarrow 2 \gamma, \quad \eta \rightarrow 3 \pi^{0} \rightarrow 6 \gamma, \quad \eta \rightarrow \pi^{+}+\pi^{-}+\pi^{0}$
$\varepsilon^{P i}(\varphi)$ is the "global efficiency" \Rightarrow i.e the sum of the efficiencies of each channel

$$
\varepsilon^{P i}(\varphi)=\varepsilon^{P i, C 1}(\varphi)+\varepsilon^{P i, C 2}(\varphi)+\varepsilon^{P i, C 3}(\varphi)
$$

Azimuthal Fit of ratio $\sum_{i} N_{+, \text {norm }}^{P_{i}} / \Sigma_{i} N_{U \lambda}^{P_{i}}$

$+4^{x^{1}}+7+7^{1+14}$

Σ Beam Asymmetry Results (Preliminary)

$8 \quad E_{\gamma}$ bins (60 MeV)
$11 \theta_{\eta}^{c m}$ bins

$$
\begin{gathered}
\eta \rightarrow 2 \gamma \\
\eta \rightarrow 3 \pi^{0} \rightarrow 6 \gamma \\
\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}
\end{gathered}
$$

4 ANALYZED PERIODS

\# selected events:Period1: 31747
\# selected events:Period2: $\mathbf{5 4 5 9 8}$
\# selected events:Period3: $\mathbf{1 4 4 8 7 9}$
\# selected events:Period4: 90579
Total \# selected events $\mathbf{3 2 1 8 0 3}$
Pol- A Proton in Intermediate Reg.
\triangle Proton in BGO

Pol+ \square Proton in BGO

Comparison with data from GRAAL-CLAS-CBELSA-LEP2

Comparison between Σ extracted analizing 4 periods together or individually

$$
E_{\gamma}=1370 \div 1430 \mathrm{MeV}
$$

Period 2
PolPlus-PolNainus 1370_1430

Period 3

Period 4

Comparison between Σ extracted analizing 4 periods all together or individually

$$
E_{\gamma}=1610 \div 1670 \mathrm{MeV}
$$

All the 4 periods

Σ Beam Asymmetry Results (VERY Preliminary)

A Proton in Forward region

- Proton in Forward region

$\cos \theta_{\eta}^{c m}$

Pol+ Pol-

We extracted the Beam Asymmetry Σ for η photoproduction on the proton, with an technique which allows to analyze simultaneously data:

- With Different polarization Degrees
- With Different Detection and Reconstruction Efficiencies
- From Different Eta decay channels
- This technique permits to considerably improve the statistics and opens the possibility for us to analyze η photoproduction on neutron and η^{\prime} phoproduction on proton.
- The work is in progress => systematic errors estimation \& checks with simulation, other two periods have to be analyzed for η photoproduction on the proton and data taking is still in progress
- Backup
Σ beam asymmetry extraction method considering different data periods

$\vec{\gamma}+p \rightarrow \eta+p \rightarrow \pi^{+}+\pi^{-}+\pi^{0}+p$

2γ in BGO $\left(\pi^{0}\right)+1$ proton in Centr/Interm Det $\pi^{+} \pi^{-}$everywhere (most in BGOBarrel)
We miss the energies of pions and proton => apply momentum conservation along the three directions and we get a system of three equations:

$$
\left\{\begin{array}{c}
0=p_{P} \sin \theta_{P} \cos \varphi_{P}+E_{\gamma_{1}} \sin \theta_{\gamma_{1}} \cos \varphi_{-} \gamma_{1}+E_{\gamma_{2}} \sin \theta_{\gamma_{2}} \cos \varphi_{\gamma_{2}}+p_{\pi}^{+} \sin \theta_{\pi^{+}} \cos \varphi_{\pi^{+}}+p_{\pi^{-}} \sin \theta_{\pi^{-}} \cos \varphi_{\pi^{-}} \\
0=p_{P} \sin \theta_{P} \sin \varphi_{P}+E_{\gamma_{1}} \sin \theta_{\gamma_{1}} \sin \varphi_{\gamma_{1}}+E_{\gamma_{2}} \sin \theta_{\gamma_{2}} \sin \varphi_{\gamma_{2}}+p_{\pi}^{+} \sin \theta_{\pi^{+}} \operatorname{si} \varphi_{\pi^{+}}+p_{\pi^{-}} \sin \theta_{\pi^{-}} \sin \varphi_{\pi^{-}} \\
E_{\gamma}=p_{P} \cos \theta_{P}+E_{\gamma_{1}} \cos \theta_{\gamma_{1}}+E_{\gamma_{2}} \cos \theta_{\gamma_{2}}+p_{\pi^{+}} \cos \theta_{\pi^{+}}+p_{\pi^{-}} \cos \varphi_{\pi^{-}}
\end{array}\right.
$$

Where:

- Measured quantities:
proton and charged pions angles $(\theta \mathrm{P}, \varphi \mathrm{P})(\theta \pi 1 \varphi \pi 1)(\theta \pi 1 \varphi \pi 1)$
photons energies and angles $(\theta \gamma 2 \varphi \gamma 2)(\theta \gamma 2 \varphi \gamma 2)$
- Unknown quantities:
proton and charged pions momenta ($\mathrm{pP}, \mathrm{p} \pi 1, \mathrm{p} \pi 2$)

