

Σ beam asymmetry for η photoproduction off the proton at BGOOD

Alessia Fantini

 $on \ behalf \ of \ the \ BGOOD \ collaboration$

Project supported by the EU Horizon 2020 research & innovation programme, grant agreement 824093

Exotic Multi-Quark States and Baryon Spectroscopy Workshop June $25^{\text{th}} - 27^{\text{th}} 2024$ University of Bonn

- Brief introduction to Physics Motivations for meson photoproduction measurements
- > Short description of BGOOD apparatus
- > Analysis and η photoproduction events selection
- > Beam Asymmetry Σ extraction method
- $\succ \Sigma$ measurement Results & comparison with Existing Data
- ➤ Summary & Conclusions

Why meson photoproduction ?

- The understanding of the dynamics underlying the bound state of the nucleon and its excited spectrum still remain a crucial task since in this energy range QCD cannot be treated in perturbative mode.
- Many models, based on different *degrees of freedom* descriptions, have been developed in order to describe the spectrum of excitation states and their features
- Meson photoproduction studies represent a strong tool for probing nucleon resonances:
- \checkmark Access to resonance states coupled to photons which only weakly coupling to the πN processes (Missing Resonances problem)
- Access to Polarization Observables => Separation of overlapping resonances and characterization in terms
 of Spin and Parity, Constrains for unambiguous PWA
- Low e.m cross section =>
- ✓ Overcome thanks to technological developments
- Non resonance contribution =>
- $\checkmark\,$ Disentagled with polarization observables

 η photoproduction isoscalar meson (I=0) => Isospin Filter => only N*(I=1/2) resonances as intermediate states

BGOOD Detector:

BGO calorimeter (central region) & Forward Spectrometer combination

BGOOD Tagged and Polarized Bremsstrahlung Photon Beam

Tagging Detector

 E_{γ} measured through the detection of the corresponding electrons in the tagging system.

linearly polarised photon beams generated by coherent bremsstrahlung using a diamond crystal radiator.

Cu Radiator \rightarrow Incoherent Bremsstrahlung

Normalized Diamond Spectra and Polarization

Bremsstrahlung spectra

Fantini Alessia - June 25th –27th 2024, Bonn

BGOOD Central Detectors:

large solid angle calorimeter:

- excellent energy resolution for photons
- good detection efficiency for neutrons
- charged particle tracking and identification

Pid BGORugbyBall-Plastic Scint. Barrel

BGOOD Forward Spectrometer

• Charged particles tracking in front of the magnet by means of two scintillating fibre detectors

• Behind the magnet, particle trajectories are determined through eight double layers of drift chambers

Particle identification through velocity measurements with the ToF Walls

Mass from ToF Walls

$\boldsymbol{\beta}$ vs Momentum in Forw Spectrometer

 Σ Beam Asymmetry of η photoproduction on the proton

 $\vec{\gamma} + p \rightarrow \eta + p$

Energy Range: $E_{\nu} = 1.2 \div 1.7 \ GeV$ Analyzed simultaneously all main η decay channels: $\eta \rightarrow 2 \gamma$ $\eta \rightarrow 3\pi^0 \rightarrow 6\gamma$ $\eta \rightarrow \pi^+ + \pi^- + \pi^0$ for 4 data taking periods > With different Polarization degrees \blacktriangleright With different detection and reconstruction efficiencies

1) $\eta \rightarrow 2 \gamma$

 $2\,\gamma$ detected in the BGO + 1 proton in whole apparatus

2) $\eta \rightarrow 3\pi^0$

 6γ detected in the BGO + 1 proton in whole apparatus

3) $\eta \rightarrow \pi^+ + \pi^- + \pi^0$

2 γ detected in BGO + 1 proton + π^+ + π^- in whole apparatus

for this last case:

 $|p_p| |p_{\pi^+}| |p_{\pi^-}|$ reconstructed from momentum conservation between Initial and Final State Particles with NO hypothesis on the decaying meson

Measured quantities: => Beam Energy E_{γ}

Beam Energy E_{γ} $p \text{ and } \pi^{\pm} \text{ angles } (\theta_P, \varphi_P) (\theta_{\pi^+}, \varphi_{\pi^+}) (\theta_{\pi^-}, \varphi_{\pi^-})$ $2 \gamma's \text{ energies and angles } (E_{\gamma_1}, \theta_{\gamma_1}, \varphi_{\gamma_1}) (E_{\gamma_2}, \theta_{\gamma_2}, \varphi_{\gamma_2})$

Fantini Alessia - June 25th -27th 2024, Bonn

9

2-body reaction completely defined by the meson reconstructed from the 2 γ 's or 6 γ 's in BGO and the proton detected in whole apparatus.

Redundancy of Measured variables => Clean Event Selection by means of 2D Graphical Cuts

3) $\vec{\gamma} + p \rightarrow \eta + p \rightarrow \pi^+ + \pi^- + \pi^0 + p$

Four Data taking periods with different polarized E_{γ} spectra

Fantini Alessia - June 25th –27th 2024, Bonn

«*Standard*» *method* for Σ beam asymmetry extraction:

In case of One Data Taking period P with polarization $\mathcal{P}_{+}^{P} = \mathcal{P}_{-}^{P} = \mathcal{P}_{-}^{P}$

> For fixed $(E_{\gamma}, \theta_{\eta}^{cm})$ bins the number of polarized events normalized to the flux is modulated in **sin $(2\varphi_{\eta})$

$$\frac{N_{\pm}^{P}}{F_{\pm}^{P}} = \left(\frac{d\sigma}{d\Omega}\right)_{UNP} \varepsilon^{P}(\varphi) N_{SC}(1 \mp \mathcal{P}^{P} \Sigma \cdot \sin(2\varphi_{\eta})) \qquad ^{**}\cos 2(\phi_{pol} - \varphi_{\eta}^{cm}) \xrightarrow{\phi_{pol} = \pm 45^{\circ}} \mp \sin(2\varphi_{\eta}^{cm}) = \mp \sin(2\varphi_{\eta})$$

Since the detectio and reconstruction efficiency $\varepsilon^{P}(\varphi)$ can be assumed to be the same for the two polarization states

$$N_{UNP,norm}^{P} = \frac{N_{+}^{P}}{F_{+}^{P}} + \frac{N_{-}^{P}}{F_{-}^{P}} \propto \varepsilon^{P}(\varphi) \cdot \left(1 - \mathcal{P}^{P} \Sigma \sin(2\varphi_{\eta}) + 1 + \mathcal{P}^{P} \Sigma \sin(2\varphi_{\eta})\right) \Rightarrow \qquad N_{UNP,norm}^{P} \propto 2\varepsilon^{P}(\varphi_{\eta})$$

For each $(E_{\gamma}, \theta_{\eta}^{cm}) \Rightarrow$ The term $\mathcal{P}^{P}\Sigma$ can be extracted from an azimuthal fit of the ratio

Fantini Alessia - June 25th –27th 2024, Bonn

«Standard» method for Σ beam asymmetry extraction (continued):

In case of a single period of data taking, but with $\mathcal{P}^{P}_{+} \neq \mathcal{P}^{P}_{-}$ In the ratio: N^{P}_{+}

$$\frac{\frac{N_{\pm}}{F_{\pm}^{P}}}{\frac{N_{P}}{N_{UNP,norm}}} = \frac{1}{2} \left(1 \mp \mathcal{P}_{\pm}^{P} \Sigma \sin(2\varphi_{\eta}) \right)$$

it is necessary to redefine the expression of the unpolarized term $N_{UNP,norm}$ because the form $N_{UNP,norm}^{P} = \frac{N_{+}^{P}}{F_{+}^{P}} + \frac{N_{-}^{P}}{F_{+}^{P}}$ has a dependence on $sin(2\varphi)$. $N_{UNP,norm}^{P}$ has to be defined as

$$\mathbf{N}_{UNP,norm}^{P} = \frac{2}{\mathcal{P}_{+}^{P} + \mathcal{P}_{-}^{P}} \left(\mathcal{P}_{-}^{P} \frac{N_{+}^{P}}{F_{+}^{P}} + \mathcal{P}_{+}^{P} \frac{N_{-}^{P}}{F_{-}^{P}} \right) \quad \Rightarrow \qquad \mathbf{N}_{UNP,norm}^{P} \propto 2\varepsilon^{P} (\varphi_{\eta})$$

It is simple to show that this quantity depends on φ_{η} only via the efficiency $\varepsilon^{P}(\varphi_{\eta})$

Σ beam asymmetry extraction method considering several data taking periods

Different Polarization spectra for the two polarization states and several periods

For each $(E_{\gamma}, \theta_{\eta}^{cm})$ bin we start from the ratio:

Where:

• $P_i \Rightarrow$ i-th data taking period (i=1,2,3,4)

__ Pi

$$\frac{\sum_{i} N_{+,norm}^{Pi}}{\sum_{i} N_{UNP,norm}^{Pi}} = \frac{1}{2} \left(1 - \mathcal{P}_{+}^{*} \Sigma sin(2\varphi) \right)$$

•
$$N_{\pm,norm}^{Pi} = \frac{N_{\pm}^{+}}{F_{\pm}^{P_{i}}} \Rightarrow$$
 yeld of polarized events, normalized to flux for the period P_{i}

•
$$N_{UNP,norm}^{P_i}(E_{\gamma,}\theta_{\eta}^{cm},\varphi) = \frac{2}{\mathcal{P}_+^{P_i} + \mathcal{P}_-^{P_i}} \left(\mathcal{P}_-^{P_i} \frac{N_+^{P_i}}{F_+^{P_i}} + \mathcal{P}_+^{P_i} \frac{N_-^{P_i}}{F_-^{P_i}} \right) \Rightarrow N_{UNP,norm}^{P_i}(E_{\gamma},\theta_{\eta}^{cm},\varphi) \propto \varepsilon^{P_i}(\varphi)$$

• $\mathcal{P}^*_+ = \frac{\sum_{i} (\varepsilon^{i} \cdot \mathcal{P}^{i}_+)}{\sum_{i} \varepsilon^{P_i}} \Rightarrow$ sum of polarizations weighted on the efficiencies of the respective periods

• NB !!!!!! $\mathcal{P}_{+}^{*} = \mathcal{P}_{+}^{*}(\varphi) \Longrightarrow$ the fit on the ratio 1) is not possible

 Σ beam asymmetry extraction method considering several data periods (cont.)

Since $N_{UNP,norm}^{P_i} \propto \varepsilon^{P_i}(\varphi)$:

the quantity \mathcal{P}^*_+ can be extracted directly from data replacing the efficiency \mathcal{E}^{Pi} by $N_{UNP,norm}^{Pi}$

$$\mathcal{P}_{+}^{*} = \frac{\sum_{i} \left(\varepsilon^{Pi} \mathcal{P}_{+}^{P_{i}} \right)}{\sum_{i} \varepsilon^{Pi}} = \frac{\sum_{i} \left(N_{UNP,norm}^{P_{i}} \mathcal{P}_{+}^{P_{i}} \right)}{\sum_{i} N_{UNP,norm}^{P_{i}}}$$

We still have the problem that \mathcal{P}^*_+ depends on φ , but it is possible to show that the behavior of $\mathcal{P}^*_+(\varphi)$ is quite flat as function of the azimuthal angle φ for each $(E_{\gamma}, \theta_n^{cm})$

${\boldsymbol{\mathcal{P}}}^*_+ = {\boldsymbol{\mathcal{P}}}^*_+({\boldsymbol{arphi}})$

Fantini Alessia - June 25th -27th 2024, Bonn

17

 Σ beam asymmetry extraction method considering several data periods (cont.)

Since
$$N_{UNP,norm}^{P_i} \propto \varepsilon^{P_i}(\varphi)$$

the quantity \mathcal{P}^*_+ can be extracted directly from data replacing the efficiency \mathcal{E}^{Pi} by $N_{UNP,norm}^{Pi}$

$$\mathcal{P}_{+}^{*} = \frac{\sum_{i} \left(\varepsilon^{Pi} \mathcal{P}_{+}^{P_{i}} \right)}{\sum_{i} \varepsilon^{Pi}} = \frac{\sum_{i} \left(N_{UNP,norm}^{P_{i}} \mathcal{P}_{+}^{P_{i}} \right)}{\sum_{i} N_{UNP,norm}^{P_{i}}}$$

We still have the problem that \mathcal{P}_{+}^{*} depends on φ , but it is possible to show that the behavior of $\mathcal{P}_{+}^{*}(\varphi)$ is quite flat as function of the azimuthal angle φ for each $(E_{\gamma}, \theta_{\eta}^{cm})$

It is possible to make the average of \mathcal{P}^*_+ all over the φ bins.

$$\overline{\mathcal{P}_{+}^{*}} = \frac{\sum_{\varphi} \mathcal{P}_{+}^{*}(\varphi)}{N_{\varphi}_{\text{bins}}}$$

Fantini Alessia - June 25th –27th 2024, Bonn

 Σ beam asymmetry extraction method considering several data periods (Cont.)

For each $(E_{\gamma}, \theta_{\eta}^{cm})$ bin we can then obtain *the* Σ beam asymmetry by:

1) extracting $\overline{\mathcal{P}_{+}^{*}\Sigma}$ from the azimuthal fit of the ratio:

$$\frac{\sum_{i} N_{\pm,norm}^{Pi}}{\sum_{i} N_{UNP,norm}^{P_{i}}} = \frac{1}{2} \left(1 \mp \overline{\mathcal{P}_{\pm}^{*}} \Sigma sin(2\varphi) \right)$$

2) Dividing the value $\overline{\mathcal{P}_{\pm}^*}\Sigma$ by $\overline{\mathcal{P}_{\pm}^*}$

NB: Since we analyze several η decay channels: $\eta \to 2 \gamma$, $\eta \to 3\pi^0 \to 6\gamma$, $\eta \to \pi^+ + \pi^- + \pi^0$

 $\boldsymbol{\varepsilon}^{Pi}(\boldsymbol{\varphi})$ is the "global efficiency" \Rightarrow i.e the sum of the efficiencies of each channel

$$\boldsymbol{\varepsilon}^{Pi}(\boldsymbol{\varphi}) = \, \boldsymbol{\varepsilon}^{Pi,C1}(\boldsymbol{\varphi}) + \boldsymbol{\varepsilon}^{Pi,C2}(\boldsymbol{\varphi}) + \, \boldsymbol{\varepsilon}^{Pi,C3}(\boldsymbol{\varphi})$$

19

Azimuthal Fit of ratio $\sum_{i} N_{+,norm}^{Pi} / \sum_{i} N_{UNP,norm}^{P_i}$

20

Σ Beam Asymmetry Results (Preliminary)

8 E_{γ} bins (60 MeV)

11 θ_{η}^{cm} bins $\eta \rightarrow 2\gamma$ $\eta \rightarrow 3\pi^{0} \rightarrow 6\gamma$ $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$

4 ANALYZED PERIODS

selected events:Period1: 31747
selected events:Period2: 54598
selected events:Period3: 144879
selected events:Period4: 90579
Total # selected events 321803

Pol-▲Proton in Intermediate Reg.▲Proton in BGO

Proton in Intermediate Reg.Pol+Proton in BGO

Fantini Alessia - June 25th –27th 2024, Bonn

Comparison with data from GRAAL-CLAS-CBELSA-LEP2 $\,$

PHYSICAL REVIEW C 106, 035201 (2022) T. Hashimoto et al. (LEPS2/BGOegg Collaboration)

Fantini Alessia - June 25th –27th 2024, Bonn

Comparison between Σ extracted analizing 4 periods together or individually

Σ Beam Asymmetry Results (VERY Preliminary)

Fantini Alessia - June 25th –27th 2024, Bonn

We extracted the Beam Asymmetry Σ for η photoproduction on the proton, with an technique which allows to analyze simultaneously data:

- With Different polarization Degrees
- With Different Detection and Reconstruction Efficiencies
- From Different Eta decay channels
- This technique permits to considerably improve the statistics and opens the possibility for us to analyze η photoproduction on neutron and η' phoproduction on proton.
- The work is in progress => systematic errors estimation & checks with simulation, other two periods have to be analyzed for η photoproduction on the proton and data taking is still in progress

• Backup

Σ beam asymmetry extraction method considering different data periods

$$\vec{\gamma} + p \rightarrow \eta + p \rightarrow \pi^+ + \pi^- + \pi^0 + p$$

 2γ in BGO (π^0) + 1 proton in Centr/Interm Det $\pi^+ \pi^-$ everywhere (most in BGOBarrel)

We miss the energies of pions and proton => apply momentum conservation along the three directions and we get a system of three equations:

$$\begin{cases} 0 = p_P \sin\theta_P \cos\varphi_P + E_{\gamma_1} \sin\theta_{\gamma_1} \cos\varphi_- \gamma_1 + E_{\gamma_2} \sin\theta_{\gamma_2} \cos\varphi_{\gamma_2} + p_{\pi}^+ \sin\theta_{\pi^+} \cos\varphi_{\pi^+} + p_{\pi^-} \sin\theta_{\pi^-} \cos\varphi_{\pi^-} \\ 0 = p_P \sin\theta_P \sin\varphi_P + E_{\gamma_1} \sin\theta_{\gamma_1} \sin\varphi_{\gamma_1} + E_{\gamma_2} \sin\theta_{\gamma_2} \sin\varphi_{\gamma_2} + p_{\pi}^+ \sin\theta_{\pi^+} \sin\varphi_{\pi^+} + p_{\pi^-} \sin\theta_{\pi^-} \sin\varphi_{\pi^-} \\ E_{\gamma} = p_P \cos\theta_P + E_{\gamma_1} \cos\theta_{\gamma_1} + E_{\gamma_2} \cos\theta_{\gamma_2} + p_{\pi^+} \cos\theta_{\pi^+} + p_{\pi^-} \cos\varphi_{\pi^-} \end{cases}$$

Where:

- Measured quantities:

proton and charged pions angles $(\theta P, \varphi P)$ $(\theta \pi 1 \varphi \pi 1) (\theta \pi 1 \varphi \pi 1)$ photons energies and angles $(\theta \gamma 2 \varphi \gamma 2) (\theta \gamma 2 \varphi \gamma 2)$

- Unknown quantities:

proton and charged pions momenta (pP, $p\pi 1$, $p\pi 2$)

29

29