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Summary

Introduction
Motivation to include QED in QCD
Why lattice QCD+QED
If Lattice QCD is though, including QED is even harder!
Include QED: the perturbative approach

Hadron decay
1 Infrared divergence
2 Virtual QED corrections to K → `2
3 Real emission of a photon

Some final words
Work in progress
Future developments



Dealing with photons

Hard photons - E ∼ many GeV Ultrasoft photons - E ∼ few MeV

Perturbation theory Point-like hadrons

What to do with soft photons?

...Here lattice come to the rescue...
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Example: CKM matrix elements from semileptonic and leptonic K and π decays

Semileptonic

K π

ℓ

ν
γ ΓK→πlν̄(γ)︸ ︷︷ ︸

experiments

∝ |Vus|2
∣∣fKπ+ (0)

∣∣2︸ ︷︷ ︸
QCD

Leptonic

K/π ℓ

ν

γ
ΓK→`ν̄(γ)

Γπ→`ν̄(γ)︸ ︷︷ ︸
experiments

∝ |Vus|
2

|Vud|2

(
fK
fπ

)2

︸ ︷︷ ︸
QCD

Hadronic matrix elements, lattice results
fKπ+ (0) = 0.956 (8)
fK/fπ = 1.193 (5)

in the isospin symmetric limit.

→ At current precision ( 0.5–1%), IB corrections not negligible ←

Indeed ChPT estimates of these effects are:

(
fK

+π0

+ /fK
−π+

+ −1
)QCD

=2.9(4)%

A. Kastner, H. Neufeld (EPJ C57, 2008)

(
f
K+/fπ+
fK/fπ

−1

)QCD
=−0.22(6)%

V. Cirigliano, H. Neufeld (Phys.Lett.B700, 2011)
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More complications from QED

The target: Fully unquenched QCD + QED

L =
∑
i

ψ̄i [mi − i /Di]ψi + Lgluons + Lphoton, Di,µ = ∂µ + igAaµT
a + ieiAµ

Simulate each quark with its physical mass and charge

Introducing photons
Power-like Finite Volume Effects due to long range interaction
Zero mode from photon propagator:

∫ δµν
k2
d4k →

∑
k
δµν
k2

massive photons, removal of zero mode, C∗ boundary conditions...
Renormalization pattern gets more complicated
Additional divergencies arises!
UV completeness: Nobody knows how to tame QED to all orders!

Practical problem
Traditionally, gauge configuration datasets include only gluons
Dedicated simulations with huge cost
Even greater cost due to additional zero modes.
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The Roman approach - RM123 collaboration
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“Isospin breaking effects due to the up-down mass difference in Lattice QCD”, [JHEP 1204 (2012)]
“Leading isospin breaking effects on the lattice”, [PRD87 (2013)]
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The Roman approach - RM123 collaboration

Perturbative expansion
Work on top of the isospin symmetric theory L = LIso symm + LIso break

LIso break = eLQED + δmLmass, e2 =
4π

137.04
, δm = (md −mu) /2

QED + isospin breaking pieces are treated as a perturbation.

Pros
Cleaner: Factorize small parameters e and δm, introduce QED only when needed
Cheaper: No need to generate new QCD gauge field backgrounds (and, newly generated

ones are general purpose).

Cons
More vertex and correlations functions to be computed
Corrections to be computed separately for each observable
Including charge effects in the sea is costly (fermionically disconnected diagrams).
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The perturbative expansion in e2

Keep QCD to all orders and QED to O (e2)

〈O〉 =
1

Z

∫
D
[
Aµ, U

QCD, ψ, ψ̄
]
O
(
1− e2S1 +O

(
e4
))

exp [−S0]

N.B: O (e) vanishes due to charge symmetry.

Which on the lattice means...

S1 =

[∫
dxVµ (x)Aµ (x)

]2

︸ ︷︷ ︸+

∫
dxTµ (x)A2

µ (x)︸ ︷︷ ︸
x

x

V 2: Two photon-fermion-fermion vertices (as in the continuum)
T : One photon-photon-fermion-fermion vertex (tadpole: lattice special).
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The case of the pion

Basic correlation function

C (t) =
∑
~x

〈
P (~x, t)P † (0)

〉
QCD+QED

, P = ψ̄γ5ψ

Functional integral

C (t) = C0 (t) + C1 (t) =

〈
P (~x, t)P † (0)

〉
QCD

− e2

〈
P (~x, t)

∑
y

S1 (y)P † (0)

〉
QCD

Now take all Wick contractions...
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Diagrams

Fermionically connected - easy part (so to say)

0 x

B

A

0 x

A B

0 x

A

(gluons not drawn, connecting fermion lines in all possible ways)

Disconnected - various degree of nastiness - work is in progress to include

0 x

”monocle”

0 x

”handcuffs”

0 x 0 x

“blinking” “laughing”
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Some results, meson mass (perturbative expansion)

0
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Matrix elements
More problems

In general the amplitudes, are infrared divergent
On the lattice, a natural infrared cutoff is provided by the finite volume
But physically, only combinations of Real + Virtual contribution is finite.

To be specific
We consider the leptonic decay of a charged pion
The method is general

Nf = 2 + 1 + 1 ETM collaboration configurations
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Leptonic decays of mesons (at tree level in QED: e = 0)

Full process Eff. weak hamiltonian QCD side

W ℓ+

νℓ νℓ

ℓ+
π+

Two point correlation functions

Γπ→`ν̄ = |Vxy|︸︷︷︸
CKM

2K (m`, mM )︸ ︷︷ ︸
kinematics

| fπ︸ ︷︷ ︸
dec. constant

|2

fπ =
ZA
mπ

=
〈0|A0|π〉
mπ

Z: coupling of current inducing decay
From lattice, 2 point correlation functions:

C(τ) = 〈O†A0
(τ)OP (0)〉, O = ψ̄Γψ 0 4 8 12 16 20

τ

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

C
(τ

)

Pion 2pts. correlation function

C(τ)=Z
P
Z

A
0

e
-m

π
τ

/2m
π
 at large τ
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Leptonic decays of mesons (with QED)

Zero photons in the final state, O (e2)

Γ0ph
π+→`+ν =∣∣A0

∣∣2 + 2e2
∣∣A0A1

∣∣+O
(
e4
) A0 =

A1 = +
0 t

+ ...

IR DIVERGENT

One photon in the final state, O (e2)

Γ1ph
π+→`+νγ = e2

∣∣B0
∣∣2 B0 =

Again, IR DIVERGENT

Solution [Bloch and Nordsieck, PR52 (1937)]

Γ = Γ0ph + Γ1ph is finite
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The strategy [N.Carrasco et al., PRD91 (2015)]

Virtual photon

Needs to implement leptons
Not too demanding numerically.

0 t

Real photon
Slightly more numerically demanding/different process
Initially, we used point-like approximation and consider Eγ < 20 MeV

B0 = −→

Cut-off appropriate experimentally (γ detector sensitivity) and theoretically (π inner structure)
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Infinite volume extrapolation

Volume dependence

IR divergences ∝ logL cancel in the difference Γ0ph (L)− Γ0
pt (L)

1/L cancel as well (Ward identity)
Best fit with 1/L2 (and 1/L3) and extrapolate to L→∞



Let’s start from a slightly simpler quantity

QED contribution to ratio of decay width of Kaon and Pion
ΓK+→`+ν(γ)
Γπ+→`+ν(γ)

=
ΓK+→`+ν
Γπ+→`+ν

(1 + δRKπ) , δRKπ = δRK − δRπ
Reduction of noise
Large cancellation of renormalization correction
Suppression of finite volume dependence.

-0.015

-0.010

-0.005

0.000

0.00 0.01 0.02 0.03 0.04 0.05

physical point
β = 1.90, L/a = 20 (FVE corr.)
β = 1.90, L/a = 24 (FVE corr.)
β = 1.90, L/a = 32 (FVE corr.)

β = 1.90, L/a = 40 (FVE corr.)
β = 1.95, L/a = 24 (FVE corr.)
β = 1.95, L/a = 32 (FVE corr.)
β = 2.10, L/a = 48 (FVE corr.)

continuum limit
fit at β = 1.90
fit at β = 1.95
fit at β = 2.10

δ 
R Kπ

m
ud

   (GeV)

m
s
 = m

s
phys

PDG

[D.Giusti et al., Phys. Rev. Lett. 120, 072001 (2018)]
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Separate Pion and Kaon corrections
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Real photon on the lattice

→
Vi/Ai

θ0 θ1

P

θs

Remarks

= projection on photon of momentum k (2 physical helicities)

no photon is actually present (no power volume corrections)

Kinematics

p =
2π

L
(θ0 − θs) , pion momentum

k =
2π

L
(θ1 − θ0) , photon momentum

Cost and reach
2Nθ0Nm0Nθ1 +NθsNms propagators involved for each mass/momenta

Nθ0Nθ1Nθs kinematic combination for each meson
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Matrix element extraction

Correlators decomposition and kinematics

Ci,rW (t; p, k) = H i,r
W (p, k)K (p, k) ,

K (p, k) =
〈P (p)|P |0〉

4EPEγ
e−tEP e−(T/2−t)Eγ

Eγ = Energy of photon

EP = Energy of meson

xγ ≡ 2Eγ/EP in meson rest frame

A30.32, K meson, HA D20.48, D meson, HV

t/a t/a

Axial Vector
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Form factors

With ON SHELL photon, polarizations εr

H i,r
A (p, k) = εirMP

2 xγ

FA(xγ) +
2fP
MPxγ︸ ︷︷ ︸

IR divergence

, H i,r
V (p, k) =

[εr∧(Eγp−EP k)]i
mP

FV (p, k)

Axial matrix element is divergent, coefficient fP exactly known (WI)

TWO form factors, FA and FV
Contain the structure-dependent part of the amplitude
Exactly zero if meson were point-like
Ch-PT prediction for light pseudoscalar meson
Enhanced when excited states are close in energy (D, B mesons)

TWO MORE form factors out-shell
...and problems with analytic continuations
but would allow to study additional processes...
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Axial form factor

We conferm Ch-PT

This is new!
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Vector form factor



Differential rate to be integrated



Next steps

Finalize the calculation
Finalize the analysis with improved statistics
Complete the chiral/continuum/infinite volume extrapolation
Convolve F with the kernel.

Extend the work
Extend the xγ range to cover the D physical range
B physics (needs dedicated smearing run)
Use the kernels to select the most important part of the xγ range.

Go on
Virtual photon processes
Disconnected diagrams...?
Semileptonic decay... for nucleons?!

THANK YOU!
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Backup slides



Can’t we compute this with the “to all order” approach?

Stochastic = Put the photons in the links UQCDx,µ → UQCDx,µ exp (ieAx,µ)

1 1.5 2

a
2
p

2

-7e-06

-6e-06

-5e-06

-4e-06

-3e-06

Perturbative

To all orders, but TINY e
2

u

d̄

νℓ

ℓ+

p

p

p

p k

Γx⊗Γy

(b)

In the quenched QED approximation
Can be used to isolate ∝ e2 contribution
O(+e)+O(−e)

2e2
e→0−→ ∂e2O (e)|e=0

“numerical calculation of derivative”
strictly the same cost, for 2pts
easier & cheaper for higher correlations!?
needs some more investigations

What if you don’t take e→ 0?
Higher orders are kept in the
calculation
Can be fine if the observable is not
pathological
Extrapolating has little cost...

Unquenched QED
reweighting: can be used to compute

disconnected diagrams
simulations: no easy way to to keep

correlation of two
independent runs



What to do with zero mode?

∫
δµν
k2
d4k →

∑
k

δµν
k2

Give a mass to the photon: δµν
k2
→ δµν

k2+m2

3 pole shifted to imaginary momentum, not a problem anymore
7 need to extrapolate m→ 0.

Remove “some” zero modes

4D zero mode only:
∑

k →
∑

k 6=0

3 pole removed, irrelevant when V →∞
7 nonlocal constraint, T/L3 divergence
∼ not tragic when working at fixed T/L.

3D zero modes:
∑

k →
∑

k0 6=0

3 no divergence anymore
7 still nonlocal constraint
∼ renormalizable at O (αQED)?

Use C∗ Boundary conditions
3 local
7 needs dedicated simulations
∼ flavor violation across boundaries.
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Matching to the “real world”

Correlation functions computed with bare operators

O
i

Needs renormalization: Oreni = ZijO
bare
j

O1,2 = (V ∓A)q ⊗ (V −A)`

O3,4 = (S ∓ P )q ⊗ (S − P )`

O5 =
(
T + T̃

)
q
⊗
(
T + T̃

)
`

RI-MOM (no QED)
Compute amputated green functions:

ΛO (p) = S−1 (p)

〈∑
x,y

e−ip(x−y)ψ (x)O (0)ψ (y)

〉
S−1 (p)

Impose RI-MOM condition at given p2 (average all equivalent momenta)

ZO =
Zq

Tr
[
ΛO (p) ΛtreeO (p)−1

]
Chiral extrapolate m→ 0



Matching to the “real world” (continued)

RI-MOM with QED
As a first step [D.Giusti et al., PRL ’18]: RI-MOM for QCD + perturbation theory for QED
In the coming-soon paper: RI-(S)MOM for QCD + QED

RI-MOM, perturbative expansion: ratio with QCD and QED

δZQED+QCD
O

ZQCDO ZQEDO

=
δZQCD+QED

q

ZQCDq ZQEDq

−
Tr
[
δΛQCD+QED

O (p) ΛtreeO (p)−1
]

Tr
[
ΛQCDO (p) ΛtreeO (p)−1

]
Tr
[
ΛQEDO (p) ΛtreeO (p)−1

]
Large cancellation of cut-off effects, anomalous dimensions, noise, etc

Measure of the non-factorizability of the renormalization constants.

Vertices (with or without gluons, not drawn)
u

d̄

νℓ

ℓ+

p

p

p

p

k

Γx⊗Γy

(a)

u

d̄

νℓ

ℓ+

p

p

p

p k

Γx⊗Γy

(b)

u

d̄

νℓ

ℓ+

p

p

p

p

k

Γx⊗Γy

(c)



An example: QED correction to Z1,1
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An example: QED correction to Z1,1
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Add back ZQED,EXACT

Matching to MS assumes factorization...
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