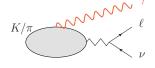
Real Photon emission for $K \to \ell_2$...and other stuff



Francesco Sanfilippo, INFN, Roma Tre

Bonn ETMC meeting, 24 September 2019

Summary

Introduction

- Motivation to include QED in QCD
- Why lattice QCD+QED
- If Lattice QCD is though, including QED is even harder!
- Include QED: the perturbative approach

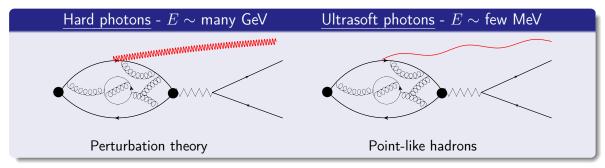
Hadron decay

- Infrared divergence
- ② Virtual QED corrections to $K \to \ell_2$
- 3 Real emission of a photon

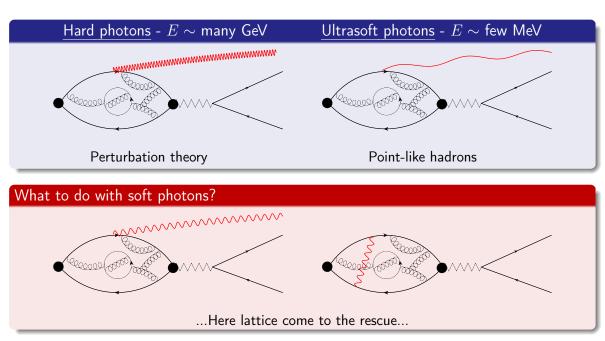
Some final words

- Work in progress
- Future developments

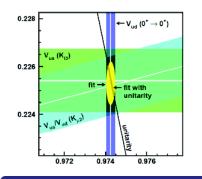
Dealing with photons

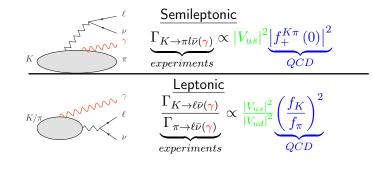


Dealing with photons



Example: CKM matrix elements from semileptonic and leptonic K and π decays





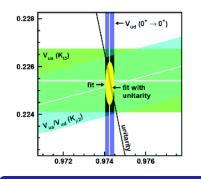
Hadronic matrix elements, lattice results

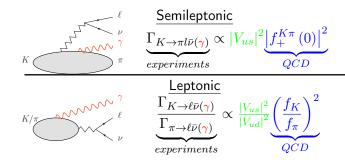
$$f_{+}^{K\pi}(0) = 0.956(8)$$

 $f_{K}/f_{\pi} = 1.193(5)$

in the isospin symmetric limit.

Example: CKM matrix elements from semileptonic and leptonic K and π decays



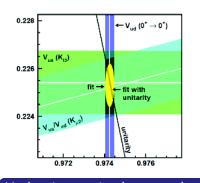


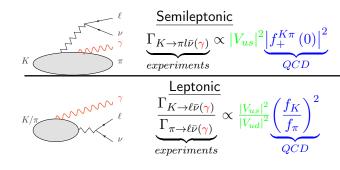
Hadronic matrix elements, lattice results

$$f_{+}^{K\pi}(0) = 0.956(8)$$
 in the isospin symmetric limit.

 \rightarrow At current precision (0.5–1%), IB corrections **not negligible** \leftarrow

Example: CKM matrix elements from semileptonic and leptonic K and π decays





Hadronic matrix elements, lattice results

$$f_{+}^{K\pi}\left(0\right)=0.956\left(8\right)$$
 in the isospin symmetric limit.

 \rightarrow At current precision (0.5--1%), IB corrections **not negligible** \leftarrow

Indeed ChPT estimates of these effects are:

$$\left(f_{+}^{K^{+}\pi^{0}}/f_{+}^{K^{-}\pi^{+}}-1\right)^{QCD}=2.9(4)\%$$

A. Kastner, H. Neufeld (EPJ C57, 2008)

$$\left(\frac{f_{K}+/f_{\pi}+}{f_{K}/f_{\pi}}-1\right)^{QCD} = -0.22(6)\%$$

V. Cirigliano, H. Neufeld (Phys.Lett.B700, 2011)

More complications from QED

The target: Fully unquenched QCD + QED

$$\mathcal{L} = \sum_{i} \bar{\psi}_{i} \left[m_{i} - i \not D_{i} \right] \psi_{i} + \mathcal{L}_{gluons} + \mathcal{L}_{photon}, \quad D_{i,\mu} = \partial_{\mu} + i g A_{\mu}^{a} T^{a} + i e_{i} A_{\mu}$$

Simulate each quark with its physical mass and charge

More complications from QED

The target: Fully unquenched QCD + QED

$$\mathcal{L} = \sum_{i} \bar{\psi}_{i} \left[m_{i} - i \mathcal{D}_{i} \right] \psi_{i} + \mathcal{L}_{gluons} + \mathcal{L}_{photon}, \quad D_{i,\mu} = \partial_{\mu} + i g A_{\mu}^{a} T^{a} + i e_{i} A_{\mu}$$

Simulate each quark with its physical mass and charge

Introducing photons

Power-like Finite Volume Effects due to long range interaction

Zero mode from photon propagator: $\int \frac{\delta_{\mu\nu}}{k^2} d^4k \rightarrow \sum_k \frac{\delta_{\mu\nu}}{k^2}$ massive photons, removal of zero mode, C^* boundary conditions...

Renormalization pattern gets more complicated

Trenormalization pattern gets more complicated

Additional divergencies arises!

UV completeness: Nobody knows how to tame QED to all orders!

More complications from QED

The target: Fully unquenched QCD + QED

$$\mathcal{L} = \sum_{i} \bar{\psi}_{i} \left[m_{i} - i \mathcal{D}_{i} \right] \psi_{i} + \mathcal{L}_{gluons} + \mathcal{L}_{photon}, \quad D_{i,\mu} = \partial_{\mu} + i g A_{\mu}^{a} T^{a} + i e_{i} A_{\mu}$$

Simulate each quark with its physical mass and charge

Introducing photons

Power-like Finite Volume Effects due to long range interaction

Zero mode from photon propagator: $\int \frac{\delta_{\mu\nu}}{k^2} d^4k \rightarrow \sum_k \frac{\delta_{\mu\nu}}{k^2}$ massive photons, removal of zero mode, C^* boundary conditions...

Renormalization pattern gets more complicated

Additional divergencies arises!

UV completeness: Nobody knows how to tame QED to all orders!

Practical problem

- Traditionally, gauge configuration datasets include only gluons
- Dedicated simulations with huge cost
- Even greater cost due to additional zero modes.

Pioneering papers

- "Isospin breaking effects due to the up-down mass difference in Lattice QCD", [JHEP 1204 (2012)]
- "Leading isospin breaking effects on the lattice", [PRD87 (2013)]

Pioneering papers

- "Isospin breaking effects due to the up-down mass difference in Lattice QCD", [JHEP 1204 (2012)]
- "Leading isospin breaking effects on the lattice", [PRD87 (2013)]

3) Roma Tre

D.Giusti,

V.Lubicz, S.Romiti,

F.S,

S.Simula,

C. Tarantino

1) La Sapienza

M.Di Carlo, G.Martinelli

2) Tor Vergata

G.deDivitiis, R.Frezzotti, N.Tantalo

* Guest Star from Southampton University: C.T.Sachrajda

Perturbative expansion

Work on top of the isospin symmetric theory $\mathcal{L} = \mathcal{L}_{Iso\,symm} + \mathcal{L}_{Iso\,break}$

$$\mathcal{L}_{Iso\,break} = e\mathcal{L}_{QED} + \delta m\mathcal{L}_{mass}, \quad e^2 = \frac{4\pi}{137.04}, \quad \delta m = \left(m_d - m_u\right)/2$$
 QED + isospin breaking pieces are treated as a perturbation.

Perturbative expansion

Work on top of the ${\color{red}\underline{isospin}}$ symmetric theory $\mathcal{L} = \mathcal{L}_{Iso\,symm} + \mathcal{L}_{Iso\,break}$

$$\mathcal{L}_{Isobreak} = e\mathcal{L}_{QED} + \delta m\mathcal{L}_{mass}, \quad e^2 = \frac{4\pi}{137.04}, \quad \delta m = (m_d - m_u)/2$$

QED + isospin breaking pieces are treated as a perturbation.

Pros

Cleaner: Factorize small parameters e and δm , introduce QED only when needed

Cheaper: No need to generate new QCD gauge field backgrounds (and, newly generated ones are general purpose).

Perturbative expansion

Work on top of the isospin symmetric theory $\mathcal{L} = \mathcal{L}_{Iso\,symm} + \mathcal{L}_{Iso\,break}$

$$\mathcal{L}_{Iso\,break} = e\mathcal{L}_{QED} + \delta m\mathcal{L}_{mass}, \quad e^2 = \frac{4\pi}{137.04}, \quad \delta m = (m_d - m_u)/2$$

 QED + isospin breaking pieces are treated as a $\underline{\mathsf{perturbation}}$.

Pros

Cleaner: Factorize small parameters e and δm , introduce QED only when needed

Cheaper: No need to generate new QCD gauge field backgrounds (and, newly generated

ones are general purpose).

Cons

- More vertex and correlations functions to be computed
- Corrections to be computed separately for each observable
- Including charge effects in the sea is costly (fermionically disconnected diagrams).

The perturbative expansion in e^2

Keep QCD to all orders and QED to $\mathcal{O}\left(e^{2}\right)$

$$\langle O \rangle = \frac{1}{\mathcal{Z}} \int D\left[A_{\mu}, U^{QCD}, \psi, \bar{\psi}\right] O\left(1 - \frac{e^2}{2}S_1 + \mathcal{O}\left(e^4\right)\right) \exp\left[-S_0\right]$$

N.B: $\mathcal{O}\left(e\right)$ vanishes due to charge symmetry.

The perturbative expansion in e^2

Keep QCD to all orders and QED to $\mathcal{O}\left(e^{2}\right)$

$$\langle O \rangle = \frac{1}{\mathcal{Z}} \int D\left[A_{\mu}, U^{QCD}, \psi, \bar{\psi}\right] O\left(1 - \frac{e^2}{2}S_1 + \mathcal{O}\left(e^4\right)\right) \exp\left[-S_0\right]$$

N.B: $\mathcal{O}\left(e\right)$ vanishes due to charge symmetry.

Which on the lattice means...

$$S_{1} = \underbrace{\left[\int dx \, V_{\mu}\left(x\right) A_{\mu}\left(x\right)\right]^{2}}_{X} + \underbrace{\int dx \, T_{\mu}\left(x\right) A_{\mu}^{2}\left(x\right)}_{X}$$

- ullet V^2 : Two photon-fermion-fermion vertices (as in the continuum)
- ullet T: One photon-photon-fermion-fermion vertex (tadpole: lattice special).

The case of the pion

Basic correlation function

$$C(t) = \sum_{\vec{x}} \left\langle P(\vec{x}, t) P^{\dagger}(0) \right\rangle_{QCD+QED}, \qquad P = \bar{\psi} \gamma_5 \psi$$

The case of the pion

Basic correlation function

$$C(t) = \sum_{\vec{x}} \langle P(\vec{x}, t) P^{\dagger}(0) \rangle_{QCD+QED}, \qquad P = \bar{\psi} \gamma_5 \psi$$

Functional integral

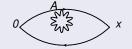
$$\left\langle P\left(\vec{x},t\right)P^{\dagger}\left(0\right)\right\rangle _{QCD}-\frac{e^{2}}{c}\left\langle P\left(\vec{x},t\right)\sum_{y}S_{1}\left(y\right)P^{\dagger}\left(0\right)\right\rangle _{QCD}$$

 $C(t) = C_0(t) + C_1(t) =$

Now take all Wick contractions...

Diagrams

Fermionically connected - easy part (so to say)



(gluons not drawn, connecting fermion lines in all possible ways)

Diagrams

Fermionically connected - easy part (so to say)

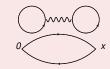
(gluons not drawn, connecting fermion lines in all possible ways)

Disconnected - various degree of nastiness - work is in progress to include

"monocle"

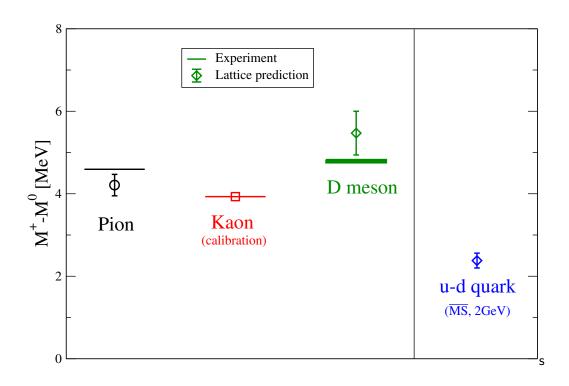
''handcuffs''

"blinking"



"laughing"

Some results, meson mass (perturbative expansion)



Matrix elements

More problems

- In general the amplitudes, are infrared divergent
- On the lattice, a natural infrared cutoff is provided by the finite volume
- But physically, only combinations of Real + Virtual contribution is finite.

Matrix elements

More problems

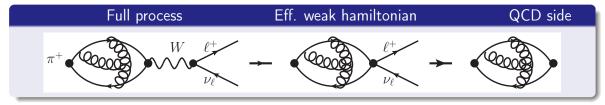
- In general the amplitudes, are infrared divergent
- On the lattice, a natural infrared cutoff is provided by the finite volume
- But physically, only combinations of Real + Virtual contribution is finite.

To be specific

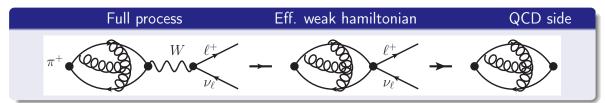
- We consider the leptonic decay of a charged pion
- The method is general

 $N_f = 2 + 1 + 1$ ETM collaboration configurations

Leptonic decays of mesons (at tree level in QED: e=0)



Leptonic decays of mesons (at tree level in QED: e=0)



Two point correlation functions

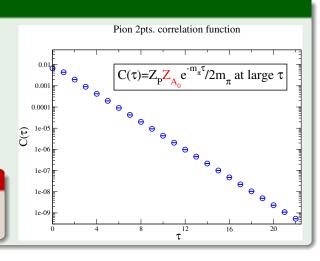
$$\Gamma_{\pi \to \ell \bar{\nu}} = \underbrace{|V_{xy}|^2}_{\text{CKM}} \underbrace{\mathcal{K}(m_\ell, m_M)}_{\text{kinematics}} | \underbrace{f_{\pi}}_{\text{dec. constant}} |^2$$

$$f_{\pi} = \frac{Z_A}{m_{\pi}} = \frac{\langle 0|A_0|\pi\rangle}{m_{\pi}}$$

Z: coupling of current inducing decay

From lattice, 2 point correlation functions:

$$C(\tau) = \langle O_{A_0}^{\dagger}(\tau) O_P(0) \rangle, \ O = \bar{\psi} \Gamma \psi$$

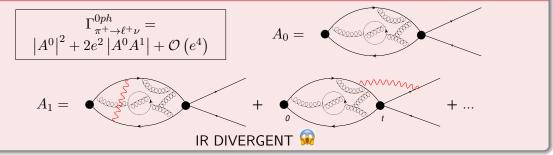


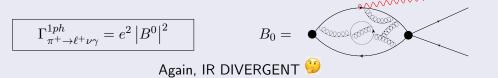
Leptonic decays of mesons (with QED)

Zero photons in the final state, $\mathcal{O}\left(e^2\right)$ $\Gamma^{0ph}_{\pi^+\to\ell^+\nu} = \\ |A^0|^2 + 2e^2 \left|A^0A^1\right| + \mathcal{O}\left(e^4\right)$ $A_0 = \underbrace{ \left|A^0\right|^2 + 2e^2 \left|A^0A^1\right| + \mathcal{O}\left(e^4\right)}$ HR DIVERGENT

Leptonic decays of mesons (with QED)

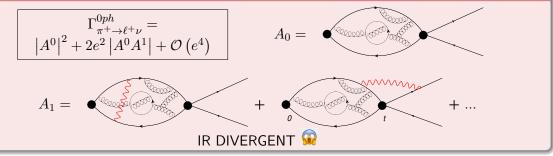
Zero photons in the final state, $\mathcal{O}\left(e^{2}\right)$





Leptonic decays of mesons (with QED)

Zero photons in the final state, $\mathcal{O}\left(e^{2}\right)$



One photon in the final state, $\mathcal{O}\left(e^{2}\right)$

$$\Gamma^{1ph}_{\pi^+ \to \ell^+ \nu \gamma} = e^2 \left| B^0 \right|^2$$

Again, IR DIVERGENT 😕

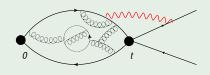
Solution

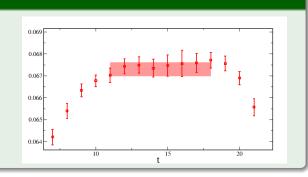
[Bloch and Nordsieck, PR52 (1937)]

$$\Gamma = \Gamma^{0ph} + \Gamma^{1ph}$$
 is finite

Virtual photon

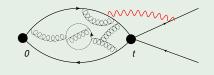
- Needs to implement leptons
- Not too demanding numerically.

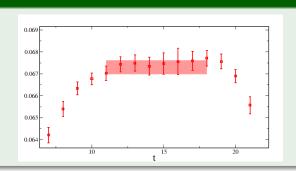




Virtual photon

- Needs to implement leptons
- Not too demanding numerically.





Real photon

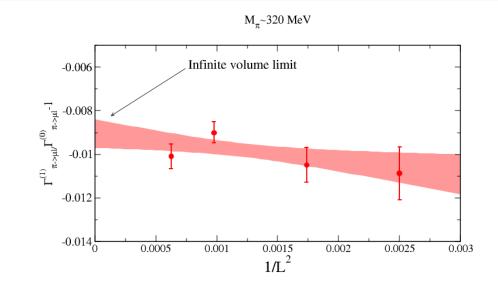
- Slightly more numerically demanding/different process
- ullet Initially, we used point-like approximation and consider $E_{\gamma} < 20$ MeV

Cut-off appropriate experimentally (γ detector sensitivity) and theoretically (π inner structure)

Infinite volume extrapolation

Volume dependence

- IR divergences $\propto \log L$ cancel in the difference $\Gamma^{0ph}\left(L\right) \Gamma^{0}_{pt}\left(L\right)$
- 1/L cancel as well (Ward identity)
- ullet Best fit with $1/L^2$ (and $1/L^3$) and extrapolate to $L o \infty$



Let's start from a slightly simpler quantity

QED contribution to ratio of decay width of Kaon and Pion

D contribution to ratio of decay width of Kaon and Pion
$$\frac{\Gamma_{K^+\to\ell^+\nu(\gamma)}}{\Gamma_{\pi^+\to\ell^+\nu(\gamma)}} = \frac{\Gamma_{K^+\to\ell^+\nu}}{\Gamma_{\pi^+\to\ell^+\nu}} \left(1+\delta R_{K\pi}\right), \qquad \delta R_{K\pi} = \delta R_K - \delta R_\pi$$
 Reduction of noise

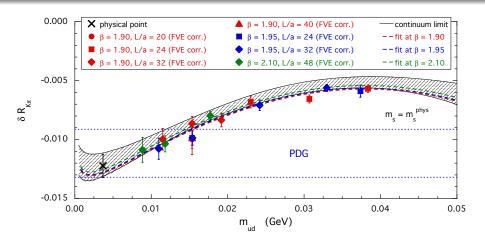
- Large cancellation of renormalization correction
- Suppression of finite volume dependence.

Let's start from a slightly simpler quantity

QED contribution to ratio of decay width of Kaon and Pion

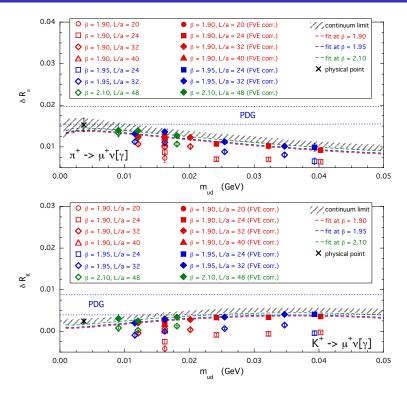
$$\frac{\Gamma_{K^+ \to \ell^+ \nu(\gamma)}}{\Gamma_{\pi^+ \to \ell^+ \nu(\gamma)}} = \frac{\Gamma_{K^+ \to \ell^+ \nu}}{\Gamma_{\pi^+ \to \ell^+ \nu}} \left(1 + \delta R_{K\pi} \right), \qquad \delta R_{K\pi} = \delta R_K - \delta R_{\pi}$$

- Reduction of noise
- Large cancellation of renormalization correction
- Suppression of finite volume dependence.



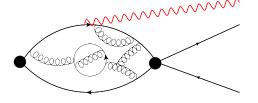
[D.Giusti et al., Phys. Rev. Lett. 120, 072001 (2018)]

Separate Pion and Kaon corrections

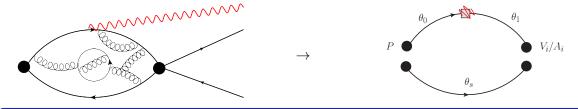


[M. Di Carlo et al., Phys.Rev. D100 (2019) no.3, 034514]

Real photon on the lattice







Remarks

= projection on photon of momentum k (2 physical helicities)

no photon is actually present (no power volume corrections)

Remarks

= projection on photon of momentum k (2 physical helicities)

no photon is actually present (no power volume corrections)

Kinematics

$$p = \frac{2\pi}{L} (\theta_0 - \theta_s),$$
 pion momentum $k = \frac{2\pi}{L} (\theta_1 - \theta_0),$ photon momentum

Remarks

= projection on photon of momentum k (2 physical helicities)

no photon is actually present (no power volume corrections)

Kinematics

$$p = \frac{2\pi}{L} (\theta_0 - \theta_s)$$
, pion momentum $k = \frac{2\pi}{L} (\theta_1 - \theta_0)$, photon momentum

Cost and reach

 $2N_{\theta_0}N_{m_0}N_{\theta_1}+N_{\theta_s}N_{m_s}$ propagators involved for each mass/momenta

 $N_{\theta_0}N_{\theta_1}N_{\theta_s}$ kinematic combination for each meson

Matrix element extraction

Correlators decomposition and kinematics

$$C_W^{i,r}(t;p,k) = \frac{H_W^{i,r}(p,k)K(p,k)}{(p,k)},$$

$$K(p,k) = \frac{\langle P(p)|P|0\rangle}{4E_PE_{\gamma}}e^{-tE_P}e^{-(T/2-t)E_{\gamma}}$$

$$E_{\gamma} = \text{Energy of photon}$$

 $E_P = \text{Energy of meson}$
 $x_{\gamma} \equiv 2E_{\gamma}/E_P \text{ in meson rest frame}$

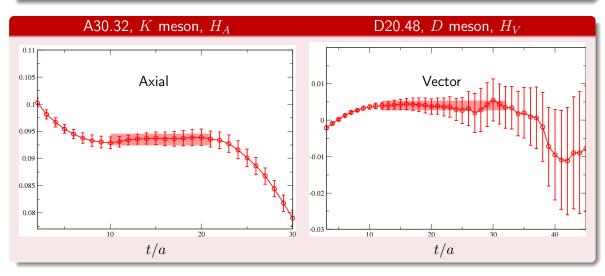
Matrix element extraction

Correlators decomposition and kinematics

$$C_W^{i,r}(t;p,k) = \frac{H_W^{i,r}(p,k)K(p,k)}{4E_P E_{\gamma}},$$

$$K(p,k) = \frac{\langle P(p)|P|0\rangle}{4E_P E_{\gamma}}e^{-tE_P}e^{-(T/2-t)E_{\gamma}}$$

 $E_{\gamma}=$ Energy of photon $E_{P}=$ Energy of meson $x_{\gamma}\equiv 2E_{\gamma}/E_{P} \text{ in meson rest frame}$



Form factors

With ON SHELL photon, polarizations ϵ_r

$$H_{A}^{i,r}\left(p,k
ight)=rac{\epsilon_{r}^{i}M_{P}}{2}x_{\gamma}\left[oldsymbol{F_{A}(x_{\gamma})}+\underbrace{rac{2f_{P}}{M_{P}x_{\gamma}}}_{IR\,divergence}
ight], \qquad H_{V}^{i,r}\left(p,k
ight)=rac{\left[\epsilon_{r}\wedge\left(E_{\gamma}p-E_{P}k
ight)
ight]_{i}}{m_{P}}oldsymbol{F_{V}}\left(oldsymbol{p},oldsymbol{k}
ight)$$

Axial matrix element is **divergent**, coefficient f_P exactly known (WI)

Form factors

With ON SHELL photon, polarizations ϵ_r

$$H_{A}^{i,r}(p,k) = \frac{\epsilon_{r}^{i}M_{P}}{2}x_{\gamma} \left[\mathbf{F}_{A}(\mathbf{x}_{\gamma}) + \underbrace{\frac{2f_{P}}{M_{P}x_{\gamma}}}_{IR\,divergence} \right], \qquad H_{V}^{i,r}(p,k) = \frac{\left[\epsilon_{r}\wedge(E_{\gamma}p - E_{P}k)\right]_{i}}{m_{P}}\mathbf{F}_{V}(\mathbf{p},\mathbf{k})$$

Axial matrix element is **divergent**, coefficient f_P exactly known (WI)

TWO form factors, F_A and F_V

- Contain the structure-dependent part of the amplitude
- Exactly zero if meson were point-like
- Ch-PT prediction for light pseudoscalar meson
- ullet Enhanced when excited states are close in energy (D, B mesons)

Form factors

With ON SHELL photon, polarizations ϵ_r

$$H_{A}^{i,r}(p,k) = \frac{\epsilon_{r}^{i} M_{P}}{2} x_{\gamma} \left[\mathbf{F}_{A}(\mathbf{x}_{\gamma}) + \underbrace{\frac{2f_{P}}{M_{P} x_{\gamma}}}_{IR \, divergence} \right], \qquad H_{V}^{i,r}(p,k) = \frac{\left[\epsilon_{r} \wedge \left(E_{\gamma} p - E_{P} k\right)\right]_{i}}{m_{P}} \mathbf{F}_{V}(\mathbf{p}, \mathbf{k})$$

$$H_{V}^{i,r}\left(p,k
ight)=rac{\left[\epsilon_{r}\wedge\left(E_{\gamma}p-E_{P}k
ight)
ight]_{i}}{m_{P}}oldsymbol{F_{V}}\left(oldsymbol{p,k}
ight)$$

Axial matrix element is **divergent**, coefficient f_P exactly known (WI)

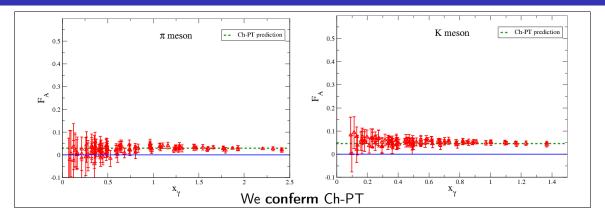
TWO form factors, F_{A} and F_{V}

- Contain the structure-dependent part of the amplitude
- Exactly zero if meson were point-like
- Ch-PT prediction for light pseudoscalar meson
- Enhanced when excited states are close in energy (D, B mesons)

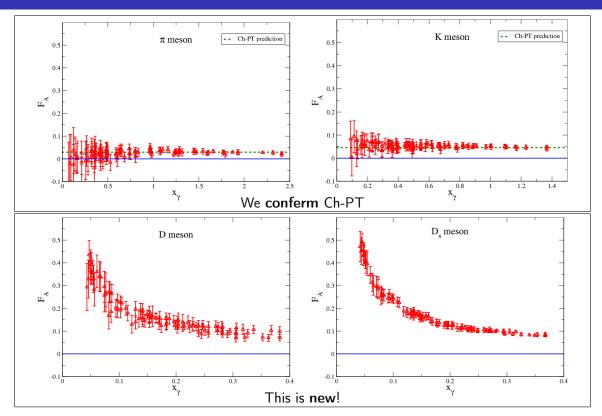
TWO MORE form factors out-shell

- ...and problems with analytic continuations
- but would allow to study additional processes...

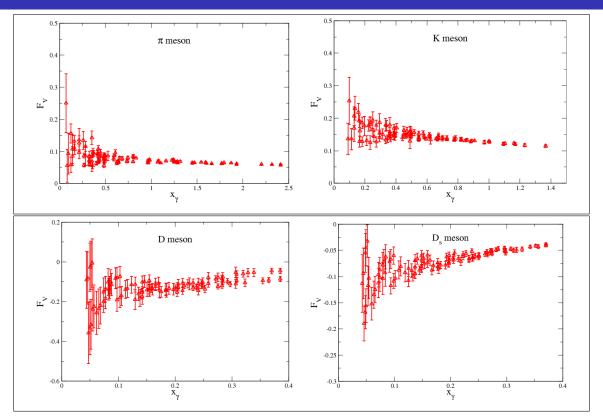
Axial form factor



Axial form factor



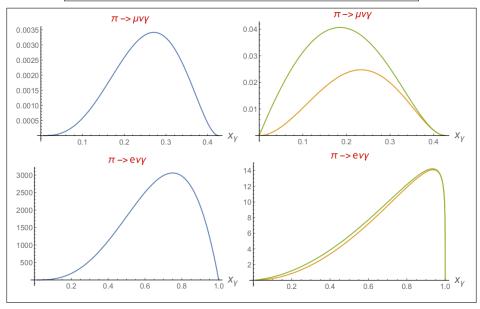
Vector form factor



Differential rate to be integrated

$$\frac{4\pi}{\alpha \Gamma_0^{\text{tree}}} \frac{d\Gamma_1^{\text{SD}}}{dx_{\gamma}} = \frac{m_P^2}{6f_P^2 r_\ell^2 (1 - r_\ell^2)^2} \left[F_V(x_{\gamma})^2 + F_A(x_{\gamma})^2 \right] f^{\text{SD}}(x_{\gamma})$$

$$\frac{4\pi}{\alpha \Gamma_0^{\text{tree}}} \frac{d\Gamma_1^{\text{INT}}}{dx_{\gamma}} = -\frac{2 m_P}{f_P (1 - r_\ell^2)^2} \left[F_V(x_{\gamma}) f_V^{\text{INT}}(x_{\gamma}) + F_A(x_{\gamma}) f_A^{\text{INT}}(x_{\gamma}) \right]$$



Finalize the calculation

- Finalize the analysis with improved statistics
- Complete the chiral/continuum/infinite volume extrapolation
- \bullet Convolve F with the kernel.

Finalize the calculation

- Finalize the analysis with improved statistics
- Complete the chiral/continuum/infinite volume extrapolation
- Convolve F with the kernel.

Extend the work

- ullet Extend the x_{γ} range to cover the D physical range
- B physics (needs dedicated smearing run)
- Use the kernels to select the most important part of the x_{γ} range.

Finalize the calculation

- Finalize the analysis with improved statistics
- Complete the chiral/continuum/infinite volume extrapolation
- Convolve F with the kernel.

Extend the work

- ullet Extend the x_{γ} range to cover the D physical range
- B physics (needs dedicated smearing run)
- ullet Use the kernels to select the most important part of the x_{γ} range.

Go on

- Virtual photon processes
- Disconnected diagrams...?
- Semileptonic decay... for nucleons?!

Finalize the calculation

- Finalize the analysis with improved statistics
- Complete the chiral/continuum/infinite volume extrapolation
- Convolve F with the kernel.

Extend the work

- ullet Extend the x_{γ} range to cover the D physical range
- B physics (needs dedicated smearing run)
- Use the kernels to select the most important part of the x_{γ} range.

Go on

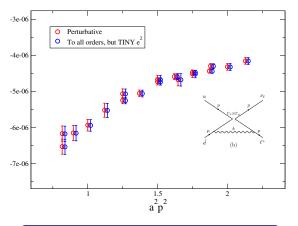
- Virtual photon processes
- Disconnected diagrams...?
- Semileptonic decay... for nucleons?!

THANK YOU!

Backup slides

Can't we compute this with the "to all order" approach?

Stochastic = Put the photons in the links $U_{x,\mu}^{QCD} \to U_{x,\mu}^{QCD} \exp{(ieA_{x,\mu})}$



In the quenched QED approximation

- ullet Can be used to isolate $\propto e^2$ contribution
- $\frac{O(+e)+O(-e)}{2e^2} \xrightarrow{e \to 0} \partial_{e^2} O(e)|_{e=0}$ "numerical calculation of derivative"
- strictly the same cost, for 2pts
- easier & cheaper for higher correlations!?
- needs some more investigations

What if you don't take $e \to 0$?

- Higher orders are kept in the calculation
- Can be fine if the observable is not pathological
- Extrapolating has little cost...

Unquenched QED

reweighting: can be used to compute disconnected diagrams

simulations: no easy way to to keep correlation of two independent runs

$$\int \frac{\delta_{\mu\nu}}{k^2} d^4k \ \to \ \sum_k \frac{\delta_{\mu\nu}}{k^2}$$

$$\int \frac{\delta_{\mu\nu}}{k^2} d^4k \rightarrow \sum_k \frac{\delta_{\mu\nu}}{k^2}$$

Give a mass to the photon: $rac{\delta_{\mu u}}{k^2} ightarrowrac{\delta_{\mu u}}{k^2+m^2}$

 \checkmark pole shifted to imaginary momentum, not a problem anymore

 $\boldsymbol{\mathsf{X}}$ need to extrapolate $m \to 0$.

$$\int \frac{\delta_{\mu\nu}}{k^2} d^4k \quad \to \quad \sum_k \frac{\delta_{\mu\nu}}{k^2}$$

Give a mass to the photon: $\frac{\delta_{\mu\nu}}{k^2} \rightarrow \frac{\delta_{\mu\nu}}{k^2+m^2}$

- ✓ pole shifted to imaginary momentum, not a problem anymore
- **X** need to extrapolate $m \to 0$.

Remove "some" zero modes

4D zero mode only: $\sum_{k} \rightarrow \sum_{k\neq 0}$

✓ pole removed, irrelevant when $V \to \infty$

X nonlocal constraint, T/L^3 divergence

 \sim not tragic when working at fixed T/L.

3D zero modes: $\sum_{k} \rightarrow \sum_{k_0 \neq 0}$

✓ no divergence anymore X still nonlocal constraint

 \sim renormalizable at $\mathcal{O}(\alpha_{OED})$?

$$\int \frac{\delta_{\mu\nu}}{k^2} d^4k \rightarrow \sum_k \frac{\delta_{\mu\nu}}{k^2}$$

Give a mass to the photon: $rac{\delta_{\mu u}}{k^2} ightarrowrac{\delta_{\mu u}}{k^2+m^2}$

- ✓ pole shifted to imaginary momentum, not a problem anymore
- X need to extrapolate $m \to 0$.

Remove "some" zero modes

4D zero mode only: $\sum_k \rightarrow \sum_{k\neq 0}$

- \checkmark pole removed, irrelevant when $V \to \infty$
- $\boldsymbol{\mathsf{X}}$ nonlocal constraint, T/L^3 divergence
- \sim not tragic when working at fixed T/L.

3D zero modes: $\sum_k \rightarrow \sum_{k_0 \neq 0}$

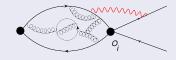
- ✓ no divergence anymore ✗ still nonlocal constraint
- \sim renormalizable at $\mathcal{O}(\alpha_{QED})$?

Use C^* Boundary conditions

- ✓ local
- × needs dedicated simulations
- \sim flavor violation across boundaries.

Matching to the "real world"

Correlation functions computed with bare operators



Needs renormalization: $O_i^{ren} = Z_{ij}O_i^{bare}$

$$O_{1,2} = (V \mp A)_q \otimes (V - A)_{\ell}$$

$$O_{3,4} = (S \mp P)_q \otimes (S - P)_{\ell}$$

$$O_5 = \left(T + \tilde{T}\right)_q \otimes \left(T + \tilde{T}\right)_{\ell}$$

RI-MOM (no QED)

• Compute amputated green functions:

$$\Lambda_{O}(p) = S^{-1}(p) \left\langle \sum_{x,y} e^{-ip(x-y)} \psi(x) O(0) \psi(y) \right\rangle S^{-1}(p)$$

• Impose RI-MOM condition at given p^2 (average all equivalent momenta)

$$\mathbf{Z}_{O} = \frac{Z_{q}}{\operatorname{Tr}\left[\Lambda_{O}\left(p\right)\Lambda_{O}^{tree}\left(p\right)^{-1}\right]}$$

• Chiral extrapolate $m \to 0$

Matching to the "real world" (continued)

RI-MOM with QED

- As a first step [D.Giusti et al., PRL '18]: RI-MOM for QCD + perturbation theory for QED
- In the coming-soon paper: RI-(S)MOM for QCD + QED

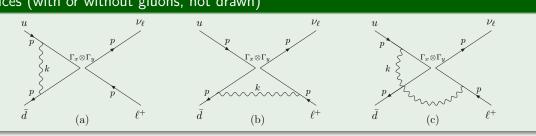
RI-MOM, perturbative expansion: ratio with QCD and QED

$$\frac{\delta Z_{O}^{QED+QCD}}{Z_{O}^{QCD}Z_{O}^{QED}} = \frac{\delta Z_{q}^{QCD+QED}}{Z_{q}^{QCD}Z_{q}^{QED}} - \frac{\operatorname{Tr}\left[\delta \Lambda_{O}^{QCD+QED}\left(p\right) \Lambda_{O}^{tree}\left(p\right)^{-1}\right]}{\operatorname{Tr}\left[\Lambda_{O}^{QCD}\left(p\right) \Lambda_{O}^{tree}\left(p\right)^{-1}\right] \operatorname{Tr}\left[\Lambda_{O}^{QED}\left(p\right) \Lambda_{O}^{tree}\left(p\right)^{-1}\right]}$$

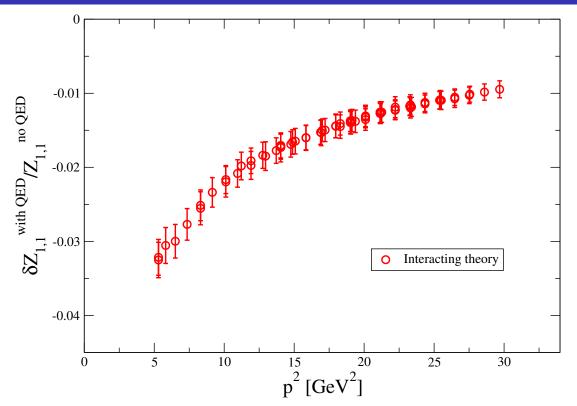
Large cancellation of cut-off effects, anomalous dimensions, noise, etc

Measure of the non-factorizability of the renormalization constants.

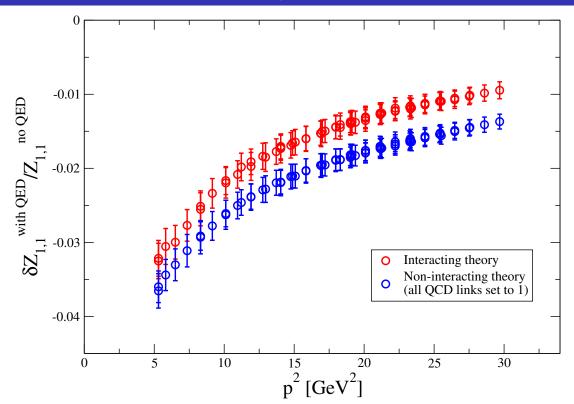
Vertices (with or without gluons, not drawn)



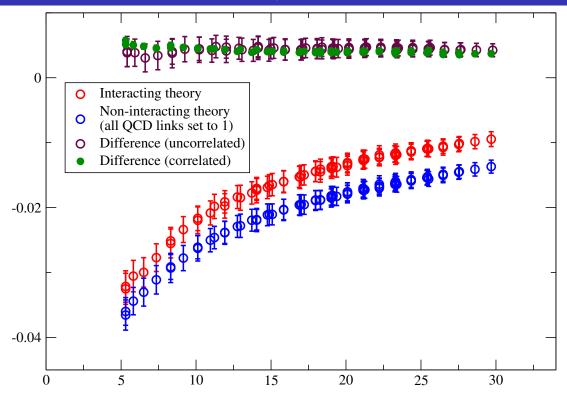
An example: QED correction to $\overline{Z_{1,1}}$



An example: QED correction to $Z_{1,1}$



An example: QED correction to $Z_{1,1}$



An example: QED correction to $Z_{1,1}$

