Bayesian Inference in Analysing Results from Lattice QCD

ETMC Meeting Fall 2019

Matthias Fischer

Bonn University

23. September 2019

Introduction

Problem to Solve the Bayesian Way Bayes' Theorem and its Application in Data Science

Newly Developed Method

Results

Pion Data

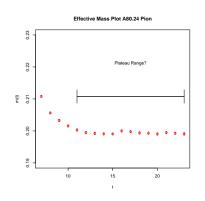
Rho Data

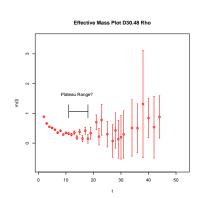
Conclusion

Exemplary Effective Mass Data

Main aim in LQCD data analysis:

Find valid model range, estimate parameters and reliable error estimates.





 \Rightarrow **Solution**: joint posterior distribution, e.g.: $\pi(m, \vec{t}|\mathcal{D}, I)$

Bayes' Theorem and Bayesian Inference

Modified Bayes' Theorem

$$P(X|Y,I) = \frac{P(Y|X,I)P(X|I)}{P(Y|I)}$$
, I contains background information.

Bayes' Theorem in Parameter Estimation

$$\pi(\theta_1, ..., \theta_d | \mathcal{D}, I) = \pi(\vec{\theta} | \mathcal{D}, I) = \frac{\pi(\mathcal{D} | \vec{\theta}, I) \pi(\vec{\theta} | I)}{\pi(\mathcal{D} | I)}$$

- $\pi(\vec{\theta}|\mathcal{D},I) = \mathsf{posterior}$
- $\pi(\mathcal{D}|\vec{\theta}, I) = \text{likelihood}$
- $\pi(\vec{\theta}|I) = \text{prior}$
- $\pi(\mathcal{D}|I)$ = evidence, marginalized likelihood

Some Basic Probability Theory

Fully marginalized posterior distribution for θ_i :

$$\int \pi(\theta_1, ..., \theta_d | \mathcal{D}, I) \prod_{j \neq i} d\theta_j = \pi(\theta_i | \mathcal{D}, I)$$

Aiming for fully marginalized effective mass distribution:

$$\pi(m|\mathcal{D},I)$$
.

 \Rightarrow Median provides effective mass parameter value and width error estimate.

Advantage: Error estimate incorporates statistical and systematical error. Disadvantage: Fully marginalized distribution not analytically solvable. 4 Apply Monte Carlo Methods.

Markov Chain Monte Carlo in Bayesian Inference

Draw samples from joint posterior distribution: $\pi(\vec{\theta}|\mathcal{D}, I)$.

- HMC Algorithm: Appropriate for high dimensional parameter space.
- Random Walk Metropolis Algorithm: Simplest sampling scheme.

Algorithm 1 Random Walk Metropolis-Hastings Algorithm

- 1: Input: $\vec{\theta}_n$
- 2: Draw: $\vec{ heta}^\star \sim \mathcal{N}(\vec{ heta}_n, \vec{ heta})$
- 3:

$$\vec{\theta}_{n+1} = \begin{cases} \vec{\theta^{\star}} & \text{with probability:} & \min\left\{\frac{\pi(\mathcal{D}|\vec{\theta^{\star}}, I)\pi(\vec{\theta^{\star}}|I)}{\pi(\mathcal{D}|\vec{\theta}_{n}, I)\pi(\vec{\theta}_{n}|I)}, \ 1\right\} \\ \vec{\theta}_{n} & \text{otherwise} \ . \end{cases}$$

 \Rightarrow Histogram of θ_i provides estimate of fully marginalized distribution.

Assumed Model

Signal function: $f(\vec{\theta}, t) = m_{eff}^{(1)}(t) = m \cdot (1 + Ae^{(-\delta E \cdot t)}), \ \vec{\theta} = (m, A, \delta E).$

- Valid within possible plateau range $I_t = [t_0, t_1]$.
- Describes subset $\mathcal{D}_{[t_0,t_1]}$ of \mathcal{D} .
- Fit range parameter $\vec{t}=(t_0,t_1)$, $t_0,t_1\in\mathbb{N}$.

Need model ${\mathcal M}$ which describes ${\mathcal D}$ and not just subsets:

- \Rightarrow Introduce artificial functions $f_1(\vec{\alpha},t)$ and $f_2(\vec{\alpha},t)$ describing left out data.
- \Rightarrow Fit range parameter \vec{t} becomes usual model function parameter.

$$M(\vec{\theta}, \vec{t}, \vec{\alpha}, t) = f_1(\vec{\alpha}, t)\Theta((t_0 - 1) - t)$$

$$+ f(\vec{\theta}, t)\Theta(t - t_0)\Theta(t_1 - t)$$

$$+ f_2(\vec{\alpha}, t)\Theta(t - (t_1 + 1)).$$

• $\Theta(\cdot)$ denotes *Heaviside-Theta*.

Bayes' Theorem for the Assumed Model

$$\pi(\vec{\theta}, \vec{t}, \vec{\alpha} | \mathcal{D}, \mathcal{M}, I') = \frac{\pi(\mathcal{D} | \vec{\theta}, \vec{t}, \vec{\alpha}, \mathcal{M}, I') \pi(\vec{\alpha} | \vec{\theta}, \vec{t}, \mathcal{M}, I') \pi(\vec{\theta}, \vec{t} | \mathcal{M}, I')}{\pi(\mathcal{D} | \mathcal{M}, I')}$$

Task: Find describing likelihood and priors.

- Latter equation contains artificial parameter $\vec{\alpha}$.
- Separated prior for $\vec{\alpha}$ because not accessible to us.
- Prior for $\vec{\theta}$, \vec{t} can be assigned as usual.

Solution:

- Uniform priors for $\vec{\theta}$ and \vec{t} .
- Prior for $\vec{\alpha}$ will be implicitly incorporated into likelihood.

Likelihood for the Assumed Model

$$\pi(\mathcal{D}|\vec{\theta}, \vec{t}, \vec{\alpha}, \mathcal{M}, I') = C \cdot \underbrace{\exp(-\chi_1^2/2)}_{\text{from } f_1(\vec{\alpha}, t)} \cdot \underbrace{\exp(-\chi^2/2)}_{\text{from } f(\vec{\theta}, t)} \cdot \underbrace{\exp(-\chi_2^2/2)}_{\text{from } f_2(\vec{\alpha}, t)}$$

- C: normalization constant.
- Different model ranges assumed to be uncorrelated.

$$\chi^2 = \sum_{i,j=t_0}^{t_1} (\mathcal{D}_i - f(\vec{\theta},t_i)) \Sigma_{ij,\mathcal{D}_{[t_0,t_1]}}^{-1} (\mathcal{D}_j - f(\vec{\theta},t_j)),$$

$$\Sigma_{ij,\mathcal{D}_{[t_0,t_1]}}^{-1} \quad \text{inverse covariance matrix}.$$

• χ_1^2 and χ_2^2 drawn from corresponding χ^2 -distribution.

Likelihood for the Artificial Functions

Definition χ^2 -distribution, $x=\chi^2$ and ν being the degrees of freedom:

$$b(x,\nu) = \begin{cases} \frac{x^{\frac{\nu}{2}-1}\exp(-x/2)}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})} \;, & \text{for } x > 0 \;, \\ 0 \;, & \text{otherwise} \;. \end{cases}$$

Artificial functions are the true underlying model in the left out parts: $\Rightarrow \chi^2_{1,2}$ are χ^2 distributed.

$$\chi_1^2 \sim b(\chi_1^2, t_0 - 1)$$
 and $\chi_2^2 \sim b(\chi_2^2, N_T - t_1 - 1)$

What about the degree of freedom?:

 \Rightarrow Taken care of by prior $\pi(\vec{\alpha}|\vec{\theta}, \vec{t}, \mathcal{M}, I')$.

Newly Developed Algorithm

Algorithm 2 Fit Range and Parameter Sampling Algorithm

- 1: Start with an initial configuration $\{\vec{\theta}, \vec{t}\}$.
- 2: while Statistic not sufficient do
- 3: **for** θ_i in $\vec{\theta}$ **do**
- 4: Draw: $\chi_1^2 \sim b(\chi_1^2, t_0 1), \ \chi_2^2 \sim b(\chi_2^2, N_T t_1 1), \theta_i^* \sim \mathcal{N}(\theta_i, \delta_i)$
- 5: Compute $\pi(\vec{\theta}^{\star}, \vec{t}, \vec{\alpha} | \mathcal{D}, \mathcal{M}, I')$, do Metropolis update.
- 6: end for
- 7: Draw $\Delta t_i \sim \mathcal{N}(0, \delta_t), \ \chi_1^2 \sim b(\chi_1^2, t_0^{\star} 1), \ \chi_2^2 \sim b(\chi_2^2, N_T t_1^{\star} 1)$
- 8: Compute $\pi(\vec{\theta}, \vec{t}^*, \vec{\alpha} | \mathcal{D}, \mathcal{M}, I')$, do Metropolis update.
- 9: Store Metropolis updates.
- 10: end while

Fit range update: $\vec{t}^* = \vec{t} + \vec{\Delta t}$. Minimal plateau range: four data points.

Summary of the New Method

- Aiming for desired joint posterior distribution $\pi(m, \vec{t}|\mathcal{D}, \mathcal{M}, I')$.
- Adding artificial functions to signal function describes all data.
- Through artificial functions, \vec{t} does not affect the data.
- $\chi^2_{1,2}$ serves as a penalty for shrinking the fit range.
- MC Simulation samples fit range and signal function parameters.
- ullet Histogram of m yields desired fully marginalized distribution.

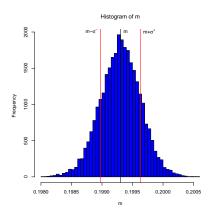


Figure: Effective mass distribution for sampled t_0 and t_1 for an A80.24 pion.

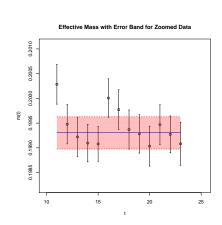


Figure: Error band received from the effective mass distribution.

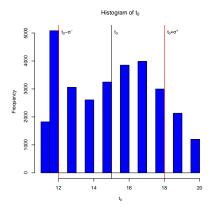


Figure: Distribution of t_0 for a pion in A80.24

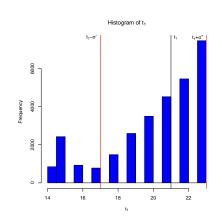


Figure: Distribution of t_1 for a pion in A80.24

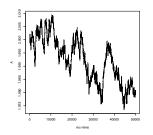


Figure: History of Markov chain of A for a pion in A80.24.

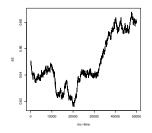


Figure: History of Markov chain of δE for a pion in A80.24.

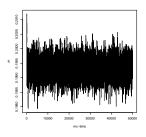


Figure: History of Markov chain of *m* for a pion in A80.24.

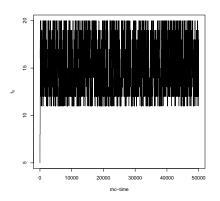


Figure: History of Markov chain of t_0 for a pion in A80.24.

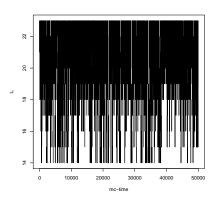


Figure: History of Markov chain of t_1 for a pion in A80.24.

Pion Data in A80.24, Different Methods

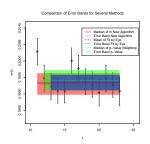


Figure: Effective mass estimates and error bands for t_0 and t_1 variation.

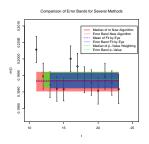


Figure: Effective mass estimates and error bands for t_0 variation and fixed t_1 .

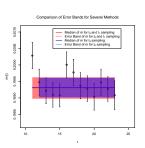


Figure: Comparison of t_0 and t_1 sampling to sample t_0 and fix t_1 to the end for the new method.

Rho Data in B55.32, Sample t_0 and t_1

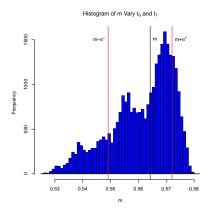


Figure: Distribution of m for one ρ -pc in B55.32.

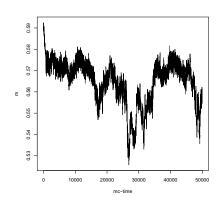


Figure: MCMC history of m for one ρ -pc in B55.32.

Rho Data in B55.32, Sample t_0 and t_1

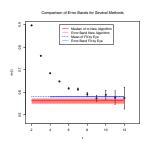


Figure: Error bands from the different analysis methods for one ρ -pc in B55.32.

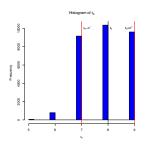


Figure: Distribution of t_0 for one ρ -pc in B55.32.

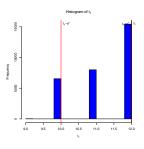


Figure: Distribution of t_1 for one ρ -pc in B55.32.

Rho Data Spectrum Comparison

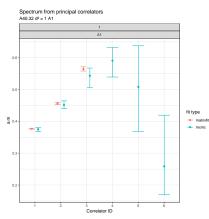


Figure: Spectrum for a ρ -GEVP in A40.32, $P^2 = 1$, projected to irrep A1 and a StN-ratio noise cut at 50 %.

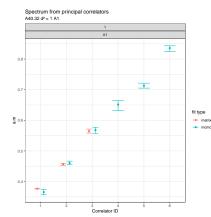


Figure: Spectrum for a ρ -GEVP in A40.32, $P^2 = 1$, projected to irrep A1 and a StN-ratio noise cut at 20 %.

Summary, Conclusion and Outlook

- Developed algorithm samples signal function and fit range parameters.
- Error estimates larger than for one fit range.
- Effective mass distribution not necessarily normally distributed.
- Results dependent on noise cut.
- Model selection to compare 0th to 1st order effective mass expansion.
- Extension to correlator fits.
- Improve sampling scheme.

Introduction Newly Developed Method Results Conclusion

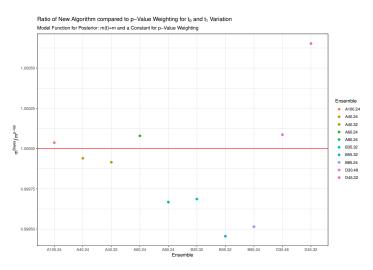
Thank you for your attention! Do you have questions?

Literature

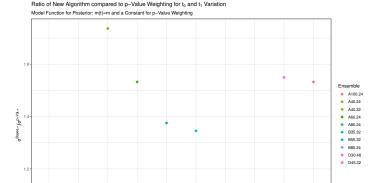
- Sivia, Data Analysis A Bayesian Tutorial, 2. edition, Oxford University Press
- Carlin & Louis, Bayesian Methods for Data Analysis, 3. edition, CRC Press

Appendix

Ratio Plots Median Pion, Compare p-value



Ratio Plots Upper Error Pion, Compare p-value



A100.24

A40.24

A40.32

A60.24

Ensemble

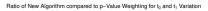
B35.32

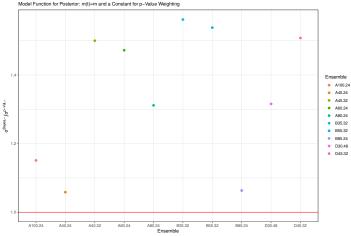
B55.32

D30.48

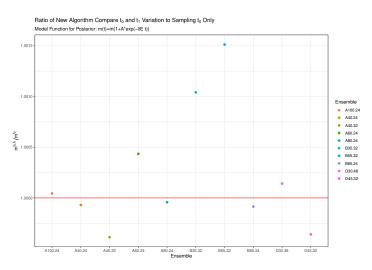
D45.32

Ratio Plots Lower Error Pion, Compare p-value

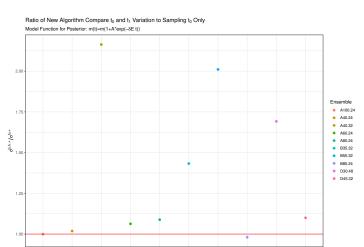




Ratio Plots Median Pion, \vec{t} to t_0 Sampling



Ratio Plots Upper Error Pion, \vec{t} to t_0 Sampling



B35.32

B55.32

B85.24

D30.48

D45.32

A100.24

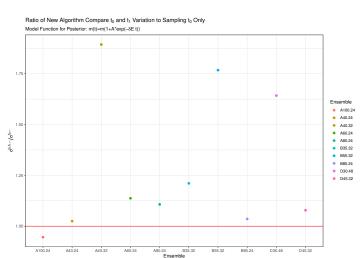
A40.24

A40.32

A60.24

Ensemble

Ratio Plots Lower Error Pion, \vec{t} to t_0 Sampling



Pion Data in A80.24, Sample t_0

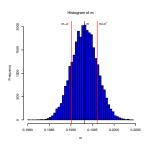


Figure: Effective mass distribution for sampling t_0 and fix t_1 for an A80.24 pion.

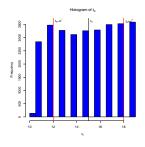


Figure: Distribution of t_0 for a pion in A80.24, sampling t_0 , fix t_1

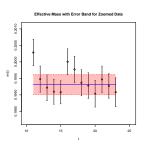


Figure: Error band received from the effective mass distribution.

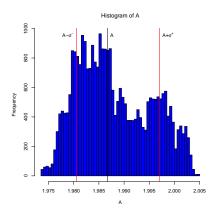


Figure: Distribution of A for a pion in A80.24

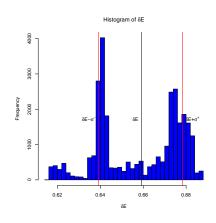


Figure: Distribution of δE for a pion in A80.24

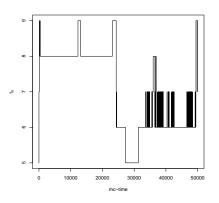


Figure: MCMC history of t_0 for one ρ -pc in A60.24.

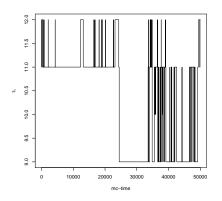


Figure: MCMC history of t_1 for one ρ -pc in A60.24.

Landscape Plots A80.24



Figure: Posterior potential for A and δE with t_0 in the plateau.

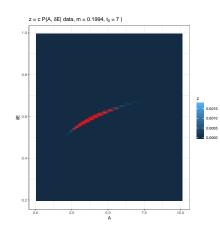


Figure: Posterior potential for A and δE with t_0 before the plateau.

Landscape Plots A80.24

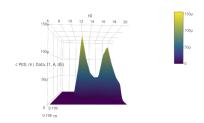


Figure: Posterior potential for t_0 and m. Projection of t_0 .

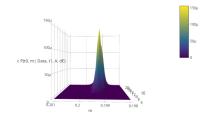


Figure: Posterior potential for t_0 and m. Projection of m.

Change-Point Analysis A80.24

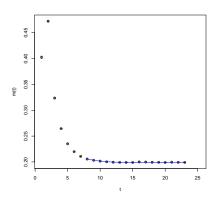


Figure: Fit result with medians of distributions for a pion

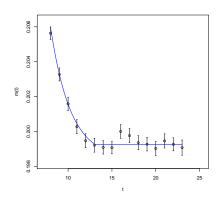


Figure: Zoomed fit result with medians of distributions for a pion

Change-Point Analysis A80.24

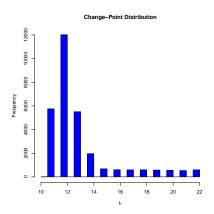


Figure: Change-point distribution with $t_0 = 8$ and $t_2 = 23$ for A80.24.

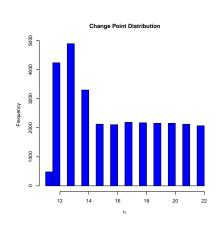


Figure: Change-point distribution with $t_0 = 5$ and $t_2 = 23$ for A80.24.