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SUPERKEKB AND BELLE II 
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• SuperKEKB: 

− Asymmetric e+-e- collider 

− Peak luminosity L = 4.7 x 1034 cm-2s-1  

• Belle II: 

− Contains vertex detector including 
pixel detector  
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BELLE II PIXEL DETECTOR (PXD) 
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• Three types of Application Specific Integrated 
Circuits (ASICs) are responsible for readout:  

− DCD, DHP, Switchers 
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• PXD: two layers of DEPFET 
modules at radii of 14 mm and  
22 mm 

 • 50 μm x 75 μm pixels thinned to 75 μm  
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MOTIVATION 
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• Switchers vulnerable to large radiation  

• Example: Beam loss event in 2020 

− Estimated dose: 500 rad for PXD1 in 40 μs 

− Increased number of inefficient rows 

− In total 89 inefficient rows  efficiency 
drop of 3% 

− blue flags: freshly emerged inefficient rows 

• Damage can be prevented when Switchers 
are turned off 

 Shutdown as fast and safe as possible 
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REGULAR SHUTDOWN 
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• Regular shutdown applied at PXD1: 

− Switch off power 

• Example: Shutdown of Switcher voltages 

• Long discharge time due to capacitors 

− Shutdown time in ms-range  
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FAST SHUTDOWN BOARD 
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• Idea: 

− Short all channels with FET to respective ground  

 Active pull-down 

− Add resistor to influence pull-down time 

• Problem: Required resistor values unclear yet 

 

 

 

 

 

 

 



FAST SHUTDOWN MEASUREMENT 
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• Example: Shutdown of Switcher voltages (Clear 
On/ Clear Off), measured at Power Supply level 

• 𝑅𝑐𝑙𝑒𝑎𝑟 𝑜𝑛 =  0 Ω,  𝑅𝑐𝑙𝑒𝑎𝑟 𝑜𝑓𝑓 =  0 Ω 

• 𝑉𝑐𝑙𝑒𝑎𝑟 𝑜𝑛  drops below 𝑉𝑐𝑙𝑒𝑎𝑟 𝑜𝑓𝑓  violation of 
shutdown sequence 

[4] 



RESULTS FROM FAST SHUTDOWN 
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• Testing of fast shutdown board 
resulted in high Switcher currents 

• Example: 

− Compare hitmaps before and after using 
fast shutdown board 

− Detected inefficient rows  

• If done wrongly: 

− Fast shutdown has same effects as a 
beam loss event 

• Testing on module is harmful 

 

 

 

Before fast shutdown After fast shutdown [5] 
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Influence of cables on fast shutdown 

unknown: in total >15m 

 Simulate powering scheme of 

single module 

− Understand limitations 

− Find hardware modifications 

[6] 



SIGNAL PATH 
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• 23 different voltages required for 
operation 

• DC/DC converters 

• Dedicated power-up and power-down 
sequence 
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SIGNAL PATH 
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• Two Power-Supply cables (PS-cables) 

• 30 conductors with four different wire 
gauges (given in AWG) 
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SIGNAL PATH 

• Joins power cables and data cables 

• Decoupling capacitors on almost every 
line 
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SIGNAL PATH 
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• Glen-Air cable (GA-cable): 51 identical 
cores 

• Terminates in Patch Panel (PP) 
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SIGNAL PATH 
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• Kapton flex cable 

• Rigid PCB area with capacitors to 
ground lines 

• Attachment to module via wire bonds 
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SIGNAL PATH 
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CABLE CHARACTERISTICS 

• Characterstics proportional to cable length: 
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Resistance 

• DC –Resistance 

• Skin-effect  ∝ 𝑓 

• Proximity-effect ∝ 𝑓 

• No phase shift between 
current and voltage 

 

 

 

  
Inductance 

• Mutual inductance 

− Magnetic field of 
neighbouring conductors 

• Self inductance (∝ 𝑓) 

− Magnetic field within 
the conductor 

• Phase shift between current 
and voltage 

 

 

 

Capacitance 

• Conductors save charge and 

discharge it when opposed to 

AC 

• Phase shift between current 
and voltage 
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Resistance 
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Resistance 
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Inductance 

• Mutual inductance 

− Magnetic field of 
neighbouring conductors 

• Self inductance (∝ 𝑓) 

− Magnetic field within 
the conductor 

• Phase shift between current 
and voltage 

 

 

 

Capacitance 

• Conductors save charge and 

discharge it when opposed to 

AC 

• Phase shift between current 
and voltage 

 

 

 



TRANSMISSION LINE THEORY 
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• Equivalent circuit diagram of a cable 

− d𝑅, d𝐿, d𝐺 and d𝐶 per cable segment 𝐝𝒍 

− Complete cable: cascade of equivalent circuit 
diagrams 

 

• Impedance: relation between complex voltage 
and current 

• 𝑍 =
i𝜔⋅𝐿′+ 𝑅′

i𝜔⋅C′+ 𝐺′   where  𝑋′ =  
𝑋

𝑙
 



CABLE MODEL 
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SIMULATION VERIFICATION 

• Comparison with measurement to verify 

− Falling edge of a squared pulse 

− Function generator used for creating squared pulse 

− View transmitted signal on oscilloscope 

• Verify each cable segment individually 

• For quantification: 

− Compute difference in voltage between simulation 
and measurement data 

− Both data sets are interpolated linearly 
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CABLE MODELS 
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Simple Line 

→ HyperLynx 

• Impedance 

• Delay time 

• DC-Resistance 

Ltline 

  → LTSpice 

• Inductance 

• Capacitance 

• DC-Resistance 

S-Parameter 

→ HyperLynx 

• S-Parameters 

S2spice 

→ LTSpice 

• S-Parameters 

 



CABLE MODELS 
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S-PARAMETERS 
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𝑆11 =  
𝑏1

𝑎1

 𝑆12 =  
𝑏1

𝑎2

 

𝑆21 =  
𝑏2

𝑎1

 𝑆22 =  
𝑏2

𝑎2

 

 

• Describe electrical behaviour of cable 

• Measure incoming (𝒂) and outgoing (𝒃)  wave 
for various frequencies 

• Magnitude and phase information 

• 2-port measurement: 

− Port 1: Cable Input 

− Port 2: Cable Output 



TIME DOMAIN REFLECTOMETER (TDR) 
 VS VECTOR NETWORK ANALYSER (VNA) 
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• Time domain →  Fast Fourier Transform 

• Reflection at open cable end (and transmission) 

• Step signal as stimulus 

• Measures reflection coefficient 𝜌 

 

• Frequency domain 

• Reflection and transmission 

• Sine wave as stimulus 

• Measures S-parameters 

 

 𝜌 =  
𝑈𝑟𝑒𝑓𝑙

𝑈𝑖𝑛

 𝑆11 =  
𝑈𝑟𝑒𝑓𝑙

𝑈𝑖𝑛

 

TDR VNA 



TDR VS VNA: S-PARAMETERS 
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 • Example for 26 AWG-line in PS-cable 

• Reflection measurement (S11): 

− Slight shift in phase 

• Transmission measurement (S21): 

− Magnitudes diverge 

− Higher dampening for TDR S-parameters 

 



S-PARAMETER SIMULATION: TDR VS VNA 
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 • Simulation of Bulk-line in PS-cable 

• HyperLynx S-parameter model in simple 
transmission setup   

• Good agreement in rising edge for both 
measurments (TDR and VNA) 

• Amplitude differs by ~20 mV 

• Higher damping for TDR-measurement 

• Physical setup is better described by VNA 
S-parameters 

 

 

 



S2SPICE MODEL 
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• No direct possibility to include S-parameters in 
LTSpice → Create own cable model 

• Based on voltage dependent voltage sources  

• On first glance: good match with physical setup 

− Average voltage deviation (0-40 μs): 3.94 mV 

• On second glance: deviation in result with change in 
simulation time 

− Could also be observed with a single voltage dependent 
voltage source 

→ Only suitable if simulation can be verified and 
simulation time can be adjusted flexibly 

 

 

 



CABLE MODELS 
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Simple Line 

→ HyperLynx 

• Impedance 

• Delay time 

• DC-Resistance 

Ltline 

  → LTSpice 

• Inductance 

• Capacitance 

• DC-Resistance 

S-Parameter 

→ HyperLynx 

• S-Parameters 

S2spice 

→ LTSpice 

• S-Parameters 

 



RDC, L & C VALUES 
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• Four-wire sensing for DC-resistance 

• Extract inductance and capacitance from                    
S-parameter measurement 

• Result: frequency dependent values per length 
unit 

• Example: different lines of PS-cable  

− ↑AWG  ⇒   ↓cross section 

• For cable model: average over frequency 

 

 



RDC, L & C VALUES 
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For comparison: two-wire system (radii 𝑟,  distance 𝑑) 

𝐿′ =  
𝜇

4𝜋
+ 

𝜇

𝜋
 ln (

𝑑

𝑟1𝑟2

) 

• Four-wire sensing for DC-resistance 

• Extract inductance and capacitance from                    
S-parameter measurement  

• Result: frequency dependent values per length 
unit 

• Example: different lines of PS-cable  

− ↑AWG  ⇒   ↓cross section 

 

 

• For cable model: average over frequency 

 

 
[8] 



RDC, L & C VALUES 
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For comparison: plate capacitor (area 𝐴, distance 𝑑) 

𝐶 =  
𝜖𝐴

𝑑
 

• Four-wire sensing for DC-resistance 

• Extract inductance and capacitance from                    
S-parameter measurement  

• Result: frequency dependent values per length 
unit 

• Example: different lines of PS-cable  

− ↑AWG  ⇒   ↓cross section 

 

 

• For cable model: average over frequency 
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DELAY TIME AND IMPEDANCE 
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• Needed for Simple Line model 

• Use TDR: reflection at open cable end 

• Impedance profile: view cable as cascade of cable 
segments 

− Reflection at cable connection 

− Average over cable length 

− Rise in impedance due to DC-resistance 

• Delay time:  𝜏𝑙 = 75.5 ± 0.5  ns 
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• Needed for Simple Line model 

• Use TDR: reflection at open cable end 
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− Reflection at cable connection 

− Average over cable length 

− Rise in impedance due to DC-resistance 

• Delay time:  𝜏𝑙 = 75.5 ± 0.5  ns 

 

 

 

 

 

 

Reflection at cable 
connection 

Open cable end 



DELAY TIME AND IMPEDANCE 
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• Needed for Simple Line model 

• Use TDR: reflection at open cable end 

• Impedance profile: view cable as cascade of cable 
segments 

− Reflection at cable connection 

− Average over cable length 

− Rise in impedance due to DC-resistance 

• Delay time:  𝜏𝑙  = 75.5 ± 0.5  ns 

 

 

 

 

 

2 ⋅ 𝜏𝑙 



LTSPICE LTLINE   
& HYPERLYNX SIMPLE LINE MODEL 
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• Simulation model using measured parameters 

• Rising edge is not captured accurately 

• BUT looking at nanosecond regime 

• Average voltage deviation (not including falling edge) 

−  Ltline:   3.11 mV for 0-40μs 

− Simple Line:   3.38 mV for 0-40μs 

 

 

 

 

 



SIMULATION METHODS 
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LTSpice: 

 Ltline model 

HyperLynx:  

Simple Line model 

LTSpice:  

s2spice model 

HyperLynx:  

S-parameter model 

• Frequency 
independent values as 
input 

• Frequency 
independent values as 
input 

• Frequency dependent 
S-parameters 

• Frequency dependent 
S-parameters 

• Less accurate in rising 
edge 
 

• Less accurate in rising 
edge 

• Dependent on 
accurate S-parameter 
measurement  

→  amplitude 

• Dependent on 
accurate S-parameter 
measurement  

→  amplitude 

• High standard 
deviation for L and C-
values 

• Simulation duration is 
limited to 500 μs 

• Unreliable, as voltage 
sources are simulation 
duration dependent 

• Simulation duration is 
limited to 500 μs 



SIMULATION METHODS 
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MODULE MOCKUP 
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2 2 

 
• Verification of simulation: Module mockup PCB 

− Connection to all of the lines of Kapton  (1) 

− Wire bonding necessary 

− Module mockup (2) 

− Resistors and capacitors mimic module properties 
after the Kapton connection 
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Full cable path 

Simulation of all lines 



FULL CABLE PATH: POWERING OF TWO LINES 
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• Not only powered lines need to be simulated 
because of capacitive coupling  

• Replication of load with custom made PCB 

• Average voltage deviation:  

− Bulk line.: 8.7 mV 

− Clear On line: 13.26 mV 
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SHUTDOWN PROCEDURE 
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 ACTIVE SHUTDOWN 

 

• Active shutdown →  short force and ground line 

• Simulate by time dependent resistor which 
switches from 100 GΩ to 0 Ω 



SUMMARY AND CONCLUSION 
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• Goal is prevention of switcher damage in beam loss events 

• Fast shutdown  avoid power-down sequence violation 

• Testing of different cable models 

• Promising results of full simulatiuon with Simple Line model 

− Physical measurement can be replicated by simulation 

• 𝑉𝑐𝑙𝑒𝑎𝑟 𝑜𝑛  < 𝑉𝑐𝑙𝑒𝑎𝑟 𝑜𝑓𝑓 

 

 Use Simulation to determine optimal resistance value on Fast 
Shutdown Board 



THANK YOU! 
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• Size : 50 x 55 x 75 μm3 

• P-channel MOSFET on depleted Bulk 

• n+-dopded internal gate 

• n+-doped Clear 

• → detection of particles and 
amplification 



AFTER BEAM LOSS EVENT 
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• 89 inefficient Switcher 
channels ( 89x4 matrix 
rows) 

• 15 modules of inner layer: 
192x15=2880 Switcher 
channels 

 



CONFIRMATION OF RESULTS  
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• Irradiation with electron beam 

• Fine scan of ASIC area 

− July 2020 with H5029 

− Colour coded measurement points 

−  red => permanent damage 

• Raw data difference of 15 raw frames 
during injection 

− Second to last Switcher channel is 
damaged permanently 

• Switcher only vulnerable when turned 
on 

 [5] [6] 



POWERING SCHEME 
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• Dedicated power-up and power-down 
sequence 

• Range between +19V and -7V 

• Switcher switches between high 
voltages 
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FAST SHUTDOWN MEASUREMENT 
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• Rclear-on = 0 Ω, Rclear-off = 0 Ω 

• Vclear-on  drops below Vclear-off  violation of 
shutdown sequence 

 

 

• Example: shutdown of voltage required for Switcher (Clear-on/ Clear-off), measured at Power Supply 

 

 

• Rclear-on = 10 Ω, Rclear-off = 10 Ω 

• Decreased shutdown time 

• Influence of FET visible 



SIMULATION PROCESS 
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Measure with time domain 
reflectometer 

Fourier transformed into 
frequency domain 

 Scattering Parameters 

Use S-parameters in time-
domain transient simulation 

 Example:  Reflection at open cable end (HyperLynx and s2spice-model) 



TDR S-PARAMETER SIMULATIONS 
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S-PARAMETER SIMULATION: TDR VS VNA 
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 • Simulation of Bulk-line in PS-cable 

• HyperLynx S-parameter model in simple 
transmission setup   

• Voltage Deviation 

 

 

Time window VNA TDR 

0 − 40μs 3.8 mV 22.8 mV 

0 − 1.5μs 4.28 mV 14.1 mV 

1.5μs − 40μs 3.81mV 23.1mV 
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S2SPICE PROBLEM 
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• Smallest segment of cable model: voltage 
dependent voltage source 

− Shows same behaviour 

 

→ Only suitable if simulation can be verified 
and simulation time can be adjusted flexibly 

 

 

 



PIN HEADER VS SMA 
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INDUCTANCE AND CAPACITANCE OF GA AND 
KAPTON  
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𝐿𝐴𝑊𝐺  26 
=  (379.25 ±  81.1) nH 

𝐿𝐴𝑊𝐺  20 =  
(288.6 ± 67.68) nH 

𝐿𝐴𝑊𝐺 18 =  
(262.69 ± 54.40) nH 

𝐿𝐴𝑊𝐺 14 =  
(265.34 ± 54.43) nH 

 

 

 
𝐶𝐴𝑊𝐺  26 =  

86.92 ± 17.9 pF 

𝐶𝐴𝑊𝐺  20 =  
115.63 ± 31.09 pF 

𝐶𝐴𝑊𝐺 18 =  
(137.13 ± 27.89) pF 

𝐶𝐴𝑊𝐺 14 =  
(139.72 ± 26.71) pF 

 

 

 



17.11.23 Paula Scholz 64 

Time window Ltline Simple Line 

0 − 40μs 3.11 mV 3.38 mV 

0 − 1.5μs 4.3 mV 4.58 mV 

1.5μs − 40μs 1.556 mV 1.729 mV 



TOLERANCE OF CAPACITORS 
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• +5 % and -5% on every capacitor in 
full simulation 

• Oscilloscope measurement lies within 
tolerance band 



ACTIVE SHUTDOWN: ZOOM IN  
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SYSTEM SIMULATION 
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• Influence of cables on fast shutdown 

unknown: in total >15m 

 Simulate powering scheme of single 
module 

− understand limitations 

− find hardware modifications 

• Use cable characteristics in simulation 



17.11.23 Paula Scholz 68 

PASSIVE SHUTDOWN 

 

• Passive shutdown →  separate force line from 
power supply 

• Simulate by time dependent resistor which 
switches from 0 Ω to 100 GΩ  
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NETWORK SIMULATION 

• Solving circuit equations (Maxwell equations) 

• Netlist turned into matrix -> solve differential equations  

• Ltline model: 

− Transmission line theory 

− One dimensional wave equation  
𝑑2𝑉(𝑥)

𝑑𝑥2  − 𝛾2 𝑥 = 0  and  
𝑑2𝑉(𝑥)

𝑑𝑥2  − 𝛾2 𝑥 = 0 

− With 𝛾2 = 𝑖𝜔𝐿 + 𝑅 𝑖𝜔𝐶 + 𝐺  

• Simple Line model: 

− Transmission Line theory 

− W-element algorithm 

− Initial seuqnce of elements which are compared and swapped for better results  
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• S-parameter model in HyperLynx:  

− ADMS simulator 

− Convert to complex pole model 

− Representation of impedance in frequency domain 

− Poles and Zeros of Impedance 

− Fast Fourier Transform 
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