

MASTER-COLLOQUIUM 17.11.23

PXD EMERGENCY SHUTDOWN SIMULATION

Paula Scholz

Motivation

2

3

4

Transmission Line Theory

Cable Models & Parameter Measurements

Simulation of Full Setup

SUPERKEKB AND BELLE II

BELLE II PIXEL DETECTOR (PXD)

– DCD, DHP, Switchers

MOTIVATION

[4]

- Switchers vulnerable to large radiation
- <u>Example</u>: Beam loss event in 2020
 - Estimated dose: 500 rad for PXD1 in 40 μs
 - Increased number of inefficient rows
 - In total 89 inefficient rows → efficiency drop of 3%
 - blue flags: freshly emerged inefficient rows
- Damage can be prevented when Switchers are turned off
- → Shutdown as fast and safe as possible

Paula Scholz

REGULAR SHUTDOWN

- Regular shutdown applied at PXD1:
 - Switch off power
- Example: Shutdown of Switcher voltages
- Long discharge time due to capacitors
 - Shutdown time in ms-range

FAST SHUTDOWN BOARD

- <u>Idea</u>:
 - Short all channels with FET to respective ground
 - → Active pull-down
 - Add resistor to influence pull-down time
- <u>Problem</u>: Required resistor values unclear yet

FAST SHUTDOWN MEASUREMENT

- <u>Example</u>: Shutdown of Switcher voltages (Clear On/ Clear Off), **measured at Power Supply level**
- $R_{clear on} = 0 \Omega$, $R_{clear off} = 0 \Omega$
- $V_{clear on}$ drops below $V_{clear off} \rightarrow$ violation of shutdown sequence

RESULTS FROM FAST SHUTDOWN

- Testing of **fast shutdown** board resulted in high Switcher currents
- Example:
 - Compare hitmaps before and after using fast shutdown board
 - Detected inefficient rows
- If done wrongly:
 - Fast shutdown has same effects as a beam loss event
- Testing on module is harmful

[5]

Influence of cables on fast shutdown unknown: in total **>15m**

- Simulate powering scheme of single module
 - Understand limitations
 - Find hardware modifications

[6]

[1]

- 23 different voltages required for operation
- DC/DC converters
- Dedicated power-up and power-down sequence

• 30 conductors with four different wire gauges (given in AWG)

17.11.23

- Joins power cables and data cables
- Decoupling capacitors on almost every line

- Glen-Air cable (GA-cable): 51 identical cores
- Terminates in Patch Panel (PP)

- Kapton flex cable
- Rigid PCB area with capacitors to ground lines
- Attachment to module via wire bonds

CABLE CHARACTERISTICS

• Characterstics proportional to cable length:

Resistance

- DC Resistance
- Skin-effect $\propto \sqrt{f}$
- Proximity-effect $\propto \sqrt{f}$
- No phase shift between current and voltage

Inductance

- Mutual inductance
 - Magnetic field of neighbouring conductors
- Self inductance ($\propto \sqrt{f}$)
 - Magnetic field within the conductor
- Phase shift between current and voltage

Capacitance

- Conductors save charge and discharge it when opposed to AC
- Phase shift between current and voltage

CABLE CHARACTERISTICS

• Characterstics proportional to cable length:

Resistance

- DC Resistance
- Skin-effect $\propto \sqrt{f}$
- Proximity-effect $\propto \sqrt{f}$
- No phase shift between current and voltage

Inductance

- Mutual inductance
 - Magnetic field of neighbouring conductors
- Self inductance ($\propto \frac{1}{\sqrt{f}}$)
 - Magnetic field within the conductor
- Phase shift between current and voltage

Capacitance

- Conductors save charge and discharge it when opposed to AC
- Phase shift between current and voltage

CABLE CHARACTERISTICS

• Characterstics proportional to cable length:

Resistance

- DC Resistance
- Skin-effect $\propto \sqrt{f}$
- Proximity-effect $\propto \sqrt{f}$
- No phase shift between current and voltage

Inductance

- Mutual inductance
 - Magnetic field of neighbouring conductors
- Self inductance ($\propto \sqrt{f}$)
 - Magnetic field within the conductor
- Phase shift between current and voltage

Capacitance

- Conductors save charge and discharge it when opposed to AC
- Phase shift between current and voltage

TRANSMISSION LINE THEORY

- Equivalent circuit diagram of a cable
 - dR, dL, dG and dC per **cable segment** dl
 - Complete cable: cascade of equivalent circuit diagrams
- Impedance: relation between *complex* voltage and current

•
$$Z = \sqrt{\frac{i\omega \cdot L' + R'}{i\omega \cdot C' + G'}}$$
 where $X' = \frac{X}{l}$

CABLE MODEL

SIMULATION VERIFICATION

- Comparison with measurement to verify
 - Falling edge of a squared pulse
 - Function generator used for creating squared pulse
 - View transmitted signal on oscilloscope
- Verify each cable segment individually
- For quantification:
 - Compute difference in voltage between simulation and measurement data
 - Both data sets are interpolated linearly

CABLE MODELS

Ltline

Simple Line

- \rightarrow LTSpice
- Inductance ٠
- Capacitance •
- **DC-Resistance** •

- \rightarrow HyperLynx
- Impedance •
- **Delay time** •
- **DC-Resistance** •

S2spice

- \rightarrow LTSpice
- **S-Parameters** •

- **S-Parameter**
- \rightarrow HyperLynx
- **S-Parameters** •

CABLE MODELS

Ltline

Simple Line

- \rightarrow LTSpice
- Inductance
- Capacitance
- DC-Resistance

- \rightarrow HyperLynx
- Impedance
- Delay time
- sistance DC-Resistance

S-PARAMETERS

- Describe electrical behaviour of cable
- Measure incoming (\vec{a}) and outgoing (\vec{b}) wave for various frequencies
- Magnitude and phase information
- 2-port measurement:
 - Port 1: Cable Input
 - Port 2: Cable Output

$$S_{11} = \frac{b_1}{a_1}$$
 $S_{12} = \frac{b_1}{a_2}$
 $S_{21} = \frac{b_2}{a_1}$ $S_{22} = \frac{b_2}{a_2}$

TIME DOMAIN REFLECTOMETER (TDR) VS VECTOR NETWORK ANALYSER (VNA)

TDR

- **Time** domain → Fast Fourier Transform
- Reflection at open cable end (and transmission)
- Step signal as stimulus
- Measures reflection coefficient ρ

VNA

- Frequency domain
- Reflection and transmission
- Sine wave as stimulus
- Measures S-parameters

TDR VS VNA: S-PARAMETERS

VNA

VNA

TDR

- TDR

- Example for 26 AWG-line in PS-cable
- Reflection measurement (S11):
 - Slight shift in phase
- Transmission measurement (S21):
 - Magnitudes diverge
 - Higher dampening for TDR S-parameters

S-PARAMETER SIMULATION: TDR VS VNA

- Simulation of Bulk-line in PS-cable
- HyperLynx S-parameter model in simple transmission setup
- Good agreement in **rising edge** for both measurments (TDR and VNA)
- Amplitude differs by ~20 mV
- Higher damping for TDR-measurement
- Physical setup is better described by VNA S-parameters

S-Parameter

S2SPICE MODEL

- No direct possibility to include S-parameters in LTSpice → Create own cable model
- Based on voltage dependent voltage sources
- On first glance: good match with physical setup
 - Average voltage deviation (0-40 μs): 3.94 mV
- On second glance: deviation in result with change in simulation time
 - Could also be observed with a single voltage dependent voltage source
 - \rightarrow Only suitable if simulation can be verified and simulation time can be adjusted flexibly

S2spice

 \rightarrow LTSpice

S-Parameters

CABLE MODELS

Ltline

\rightarrow LTSpice

- Inductance
- Capacitance
- DC-Resistance
- Delay timeDC-Resistance

Impedance

 \rightarrow HyperLynx

•

Simple Line

S2spice

S-Parameter

 \rightarrow LTSpice

- S-Parameters
- \rightarrow HyperLynx
- S-Parameters

R_{DC}, L & C VALUES

- Four-wire sensing for DC-resistance
- Extract inductance and capacitance from S-parameter measurement
- Result: frequency dependent values per length
 unit
- Example: different lines of PS-cable
 - \uparrow AWG ⇒ ↓cross section
- For cable model: average over frequency

- Four-wire sensing for DC-resistance
- Extract inductance and capacitance from S-parameter measurement
- Result: **frequency dependent values** per length unit
- Example: different lines of PS-cable
 - \uparrow AWG ⇒ ↓cross section

• For cable model: **average** over frequency

For comparison: **two-wire system** (radii *r*, distance *d*)

$$L' = \frac{\mu}{4\pi} + \frac{\mu}{\pi} \ln(\frac{d}{\sqrt{r_1 r_2}})$$
 [8]

- Four-wire sensing for DC-resistance
- Extract inductance and capacitance from S-parameter measurement
- Result: **frequency dependent values** per length unit
- Example: different lines of PS-cable
 - \uparrow AWG ⇒ ↓cross section

• For cable model: **average** over frequency

For comparison: **plate capacitor** (area *A*, distance *d*)

$$C=\frac{\epsilon A}{d}$$

[9]

DELAY TIME AND IMPEDANCE

- Needed for Simple Line model
- Use TDR: reflection at open cable end
- Impedance profile: view cable as cascade of cable segments
 - Reflection at cable connection
 - Average over cable length
 - Rise in impedance due to DC-resistance
- **Delay time**: $\tau_l = (75.5 \pm 0.5)$ ns

Z

 Z_{coh}

DELAY TIME AND IMPEDANCE

- Needed for Simple Line model
- Use TDR: reflection at open cable end
- Impedance profile: view cable as cascade of cable segments
 - Reflection at cable connection
 - Average over cable length
 - Rise in impedance due to DC-resistance
- **Delay time**: $\tau_l = (75.5 \pm 0.5)$ ns

DELAY TIME AND IMPEDANCE

- Needed for Simple Line model
- Use TDR: reflection at open cable end
- Impedance profile: view cable as cascade of cable segments
 - Reflection at cable connection
 - Average over cable length
 - Rise in impedance due to DC-resistance
- **Delay time**: $\tau_l = (75.5 \pm 0.5)$ ns

LTSPICE LTLINE & HYPERLYNX SIMPLE LINE MODEL

- Simulation model using measured parameters
- Rising edge is not captured accurately
- **BUT** looking at nanosecond regime
- Average voltage deviation (not including falling edge)
 - Ltline: 3.11 mV for 0-40μs
 - Simple Line: 3.38 mV for 0-40 μs

SIMULATION METHODS

	LTSpice: Ltline model	HyperLynx: Simple Line model				
•	Frequency independent values as input	 Frequency independent values as input 	• Fr S-		•	
•	Less accurate in rising edge	 Less accurate in rising edge 	• De ac m → am		•	
۰	High standard deviation for L and C- values	 Simulation duration is limited to 500 μs 	• Ur so du	nreliable, as voltage ources are simulation uration dependent	•	Simulation duration is limited to 500 μs

SIMULATION METHODS

			LTSpice: s2spice model	HyperLynx: S-parameter model
٥	Frequency independent values as input	 Frequency independent values as input 	 Frequency dependent S-parameters 	 Frequency dependent S-parameters
•		 Less accurate in rising edge 	 Dependent on accurate S-parameter measurement → amplitude 	 Dependent on accurate S-parameter measurement → amplitude
•	High standard deviation for L and C- values	 Simulation duration is limited to 500 μs 	• Unreliable, as voltage sources are simulation duration dependent	 Simulation duration is limited to 500 μs

MODULE MOCKUP

- Verification of simulation: Module mockup PCB
 - Connection to all of the lines of Kapton (1)
 - Wire bonding necessary
 - Module mockup (2)
 - Resistors and capacitors mimic module properties after the Kapton connection

FULL CABLE PATH: POWERING OF TWO LINES

- Not only powered lines need to be simulated because of **capacitive coupling**
- Replication of load with custom made PCB
- Average voltage deviation:
 - Bulk line.: 8.7 mV
 - Clear On line: 13.26 mV

SHUTDOWN PROCEDURE

ACTIVE SHUTDOWN

- Active shutdown \rightarrow **short** force and ground line
- Simulate by time dependent resistor which switches from 100 G Ω to 0 Ω

SUMMARY AND CONCLUSION

- Goal is prevention of switcher damage in beam loss events
- Fast shutdown \rightarrow avoid power-down sequence violation
- Testing of **different cable models**
- Promising results of full simulatiuon with Simple Line model
 - Physical measurement can be replicated by simulation
- $V_{clear on} < V_{clear off}$

➔ Use Simulation to determine optimal resistance value on Fast Shutdown Board

THANK YOU!

SOURCES

Number	Slide	Description	Source
[1]	3, 11, 16	Super KEKB, Belle II	P. Ahlburg. Development of a Laboratory Readout System for DEPFET Pixel Detector Modules and Investigation of Radiation Backgrounds at the SuperKEKB Accelerator
[2]	4	Picture Belle II	F. Müller. "Characterization and Optimization of the Prototype DEPFET Modules for the Belle II Pixel Vertex Detector". PhD thesis. Ludwig- Maximilians-Universität München, 2017
[3]	4	Picture DEPFET Pixel	M. Koch. "Development of a Test Environment for the Characterization of the Current Digitizer Chip DCD2 and the DEPFET Pixel System for Belle II Experiment at SuperKEKB". PhD thesis, Uni Bonn, 2011
[4]	5,6,8	Fast Shutdown Studies	Jannes Schmitz. "Irradiation Burst Studies on Belle II PXD Module Components". Master's thesis. Rheinische Friedrich-Wilhelm-Universität, 2020
[5]	9	Hitmap Fast Shutdown	P. Leitl

Number	Slide	Description	Source
[6]	10	Photo Belle II	B. Paschen
[7]	12, 13	Photo PS-Cable Fast Shutdown	C. Bespin
[8]	32	Inductance formula	H. Katzier. "Elektrische Kabel und Leitungen". Eugen G. Leuze Verlag, 2015
[9]	33	Equation formula	M. Albach. "Elektrotechnik". Pearson Education, 2011

- Size : 50 x 55 x 75 μ m³
- P-channel MOSFET on depleted Bulk
- n⁺-dopded internal gate
- n⁺-doped Clear
- → detection of particles and amplification

AFTER BEAM LOSS EVENT

X1012

- 89 inefficient Switcher channels (→ 89x4 matrix rows)
- 15 modules of inner layer: 192x15=2880 Switcher channels

CONFIRMATION OF RESULTS

- Irradiation with electron beam
- Fine scan of ASIC area
 - July 2020 with H5029
 - Colour coded measurement points
 - red => permanent damage
- Raw data difference of 15 raw frames during injection
 - Second to last Switcher channel is damaged permanently
- Switcher only vulnerable when turned on

Paula Scholz

POWERING SCHEME

- Dedicated power-up and power-down sequence
- Range between +19V and -7V
- Switcher switches between high voltages

[7]

FAST SHUTDOWN MEASUREMENT

• Example: shutdown of voltage required for Switcher (Clear-on/ Clear-off), measured at Power Supply

- $R_{clear-on} = 10 \Omega$, $R_{clear-off} = 10 \Omega$
- Decreased shutdown time
- Influence of FET visible

- $R_{clear-on} = 0 \Omega$, $R_{clear-off} = 0 \Omega$
- V_{clear-on} drops below V_{clear-off} → violation of shutdown sequence

SIMULATION PROCESS

→ Example: Reflection at open cable end (HyperLynx and s2spice-model)

Fourier transformed into **frequency domain**

→ Scattering Parameters

Reflection of PS-cable (dcdas13)

Use S-parameters in **timedomain** transient simulation

TDR S-PARAMETER SIMULATIONS

S-PARAMETER SIMULATION: TDR VS VNA

- Simulation of Bulk-line in PS-cable
- HyperLynx S-parameter model in simple transmission setup
- Voltage Deviation

Time window	VNA	TDR
$0-40\mu s$	3.8 mV	22.8 mV
0 — 1.5µs	4.28 mV	14.1 mV
1.5µs — 40µs	3.81mV	23.1mV

S-Parameter

 \rightarrow HyperLynx

S-Parameters

S2SPICE PROBLEM

- Smallest segment of cable model: voltage dependent voltage source
 - Shows same behaviour
 - \rightarrow Only suitable if simulation can be verified and simulation time can be adjusted flexibly

PIN HEADER VS SMA

INDUCTANCE AND CAPACITANCE OF GA AND KAPTON

 $L_{AWG \ 26} = (379.25 \pm 81.1) \text{ nH}$ $L_{AWG \ 20} = (288.6 \pm 67.68) \text{ nH}$ $L_{AWG \ 18} = (262.69 \pm 54.40) \text{ nH}$ $L_{AWG \ 14} = (265.34 \pm 54.43) \text{ nH}$

 $C_{AWG \ 26} = (86.92 \pm 17.9) \text{pF}$ $C_{AWG \ 20} = (115.63 \pm 31.09) \text{pF}$ $C_{AWG \ 18} = (137.13 \pm 27.89) \text{pF}$ $C_{AWG \ 14} = (139.72 \pm 26.71) \text{pF}$

Time window	Ltline	Simple Line
$0-40\mu s$	3.11 mV	3.38 mV
$0-1.5\mu s$	4.3 mV	4.58 mV
1.5μs — 40μs	1.556 mV	1.729 mV

TOLERANCE OF CAPACITORS

- +5 % and -5% on every capacitor in full simulation
- Oscilloscope measurement lies within tolerance band

ACTIVE SHUTDOWN: ZOOM IN

SYSTEM SIMULATION

- Influence of cables on fast shutdown unknown: in total >15m
- Simulate powering scheme of single module
 - understand limitations
 - find hardware modifications
- Use cable characteristics in simulation

PASSIVE SHUTDOWN

- Passive shutdown → separate force line from power supply
- Simulate by time dependent resistor which switches from 0 Ω to 100 G Ω

NETWORK SIMULATION

- Solving circuit equations (Maxwell equations)
- Netlist turned into matrix -> solve differential equations
- Ltline model:
 - Transmission line theory
 - One dimensional wave equation $\frac{d^2 V(x)}{dx^2} \gamma^2(x) = 0$ and $\frac{d^2 V(x)}{dx^2} \gamma^2(x) = 0$
 - With $\gamma^2 = (i\omega L + R)(i\omega C + G)$
- Simple Line model:
 - Transmission Line theory
 - W-element algorithm
 - Initial seuqnce of elements which are compared and swapped for better results

- S-parameter model in HyperLynx:
 - ADMS simulator
 - Convert to complex pole model
 - Representation of impedance in frequency domain
 - Poles and Zeros of Impedance
 - Fast Fourier Transform