The Basis Invariant Flavor Puzzle

Andreas Trautner

based on:

arXiv:2308.00019 with Miguel P. Bento and João P. Silva

arXiv:1812.02614 JHEP 1905 (2019) 208

High Energy Theory Seminar BCTP, Bonn

18.12.23

Motivation: SM Flavor Puzzle

- **Why** *three* generations of matter Fermions?
- **Why** *hierarchical* masses of Fermions?
- Why *small* transition probabilities for $q_i^{\rm up} \to q_{j\neq i}^{\rm down}$? $\left(\propto |V^{\rm CKM}_{ij}|^2\right)$
- Why *large* transition probabilities for $\ell_i \to \nu_j?$ $\left(\propto |U_{ij}^{\mathrm{PMNS}}|^2\right)$

• **Why** CP violation *only* in combination with *flavor violation*?

Parametrization independent measure of CP violation:

$$
J_{33} \;=\; \det \left[M_u \, M_u^\dagger, M_d \, M_d^\dagger \right] \;\propto\; \bm{Im} \left[V_{ud}^* V_{cs}^* V_{us} V_{cd} \right] \;=\; 3.08^{+0.15}_{-0.13} \times 10^{-5} \;.
$$

Robust confirmation at the LHC

Why use Basis Invariants (BIs)?

- Physical observables must be given as function of BIs.
- Flavor puzzle is *plagued* by *unphysical* choice of basis and parametrization.
- BI necessary and sufficient conditions for **CPV** in SM. . . . *Greenberg '85; Jarlskog '85]*
	- \ldots and BSM: Multi-scalar 2/3/NHDM, 4th gen., Dirac vs. Majorana ν 's, \ldots

[Bernabeau et al. '86], [Branco, Lavoura, Rebelo '86], [Botella, Silva '95], [Davidson, Haber '05], [Yu, Zhou '21],. . .

- BIs and their relations, incl. CP-even BIs, allow to detect symmetries in general. [Ivanov, Nishi, Silva, AT '19], [de Meideiros Varzielas, Ivanov '19], [Bento, Boto, Silva, AT '20]
- BI formulation simplifies RGE's, RGE running, and derivation of RGE invariants.

[Harrison, Krishnan, Scott '10], [Feldmann, Mannel, Schwertfeger '15], [Chiu, Kuo '15], [Bednyakov '18], [Wang, Yu, Zhou '21], . . .

However, no quantitative BI analysis of the flavor puzzle exist.

 \sim This allows an entirely new perspective on the flavor puzzle!

Why hasn't it been done? Technically challenging:

How to construct BI's? **When** to stop?

general answers and technique based on example of 2HDM [AT '18]

Outline

- **–** Motivation
- **–** Jargon of invariant theory

I will focus entirely on the quark sector here!

- **–** Standard Model quark sector **flavor covariants**
- **–** Construction of the **complete ring** of quark sector *orthogonal* **basis invariants**
- **–** Determine the invariants from experimental data
- \Rightarrow This gives an entirely basis invariant picture of the quark flavor puzzle.
- **–** CP transformation of invariants & comments

• *Algebraic* **(in-)dependence:**

Invariants $\mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \ldots$ are **algebraically dependent** if and only if

 \exists Polynomial $(\mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \dots) = 0$.

 $(\Leftrightarrow \mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \ldots)$ are algebraically independent iff $\#\mathrm{Pol}$

• *Algebraic* **(in-)dependence:**

Invariants $\mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \ldots$ are **algebraically dependent** if and only if

 \exists Polynomial $(\mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \dots) = 0$.

• *Primary* invariants:

 $(\Leftrightarrow \mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \ldots)$ are algebraically independent iff $\#\mathrm{Pol}$

A maximal set of algebraically independent invariants.

of primary invariants $=$ # of physical parameters.

(a choice of primary invariants is *not unique*, but the number of invariants is)

• *Algebraic* **(in-)dependence:**

Invariants $\mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \ldots$ are **algebraically dependent** if and only if

 \exists Polynomial $(\mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \dots) = 0$.

• *Primary* invariants:

 $(\Leftrightarrow \mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \ldots)$ are algebraically independent iff $\#\mathrm{Pol}$

A maximal set of algebraically independent invariants.

of primary invariants $=$ # of physical parameters.

(a choice of primary invariants is *not unique*, but the number of invariants is)

• *Secondary invariants*:

all *T*'s that *cannot* be written as polynomial of other invariants,

 $\mathcal{I}_i \neq$ Polynomial (\mathcal{I}_i , \dots) .

• *Algebraic* **(in-)dependence:**

Invariants $\mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \ldots$ are **algebraically dependent** if and only if

 \exists Polynomial $(\mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \dots) = 0$.

• *Primary* invariants:

 $(\Leftrightarrow \mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \ldots)$ are algebraically independent iff $\#\mathrm{Pol}$

A maximal set of algebraically independent invariants.

of primary invariants $=$ # of physical parameters.

(a choice of primary invariants is *not unique*, but the number of invariants is)

• *Secondary invariants*:

all *T*'s that *cannot* be written as polynomial of other invariants,

 $\mathcal{I}_i \neq$ Polynomial (\mathcal{I}_i , \dots) .

• *Generating set* of invariants ≡ all *primary* **+** *secondary* invariants.

⇒ *All* invariants can be written as a polynomial in the *generating set* of invariants.

 $\mathcal{I} = \text{Polynomial}(\mathcal{I}_1, \mathcal{I}_2, \dots)$.

SO(3) Example for Hilbert Series and construction of Invariants

SO(3) Example for Hilbert Series

For example: two vectors $\vec{a}, \vec{b} \in \vec{3}$ of SO(3). How many algebraically independent invariants can we construct?

SO(3) Example for Hilbert Series

For example: two vectors \vec{a} , $\vec{b} \in 3$ of SO(3). How many algebraically independent invariants can we construct?

 $a_i \otimes a_j \otimes \cdots \otimes b_\ell \otimes b_n \otimes \cdots$

"simply contract all indices in all combinations"

 $\vec{a} \cdot \vec{a}$, $\vec{b} \cdot \vec{b}$, $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$.

"why is this so hard?" High rank tensors $M_{ijkl...} \Rightarrow #$ of permutations growths $\propto n!$

General answer: use Hilbert series (HS) to compute

- Number of independent invariants and their order.
- \rightarrow Covariant content of independent invariants.
- HS does **not** tell us *how* to "wire up the indices".

SO(3) Example for Hilbert Series

For example: two vectors \vec{a} , $\vec{b} \in 3$ of SO(3). How many algebraically independent invariants can we construct?

 $a_i \otimes a_j \otimes \cdots \otimes b_\ell \otimes b_n \otimes \cdots$

"simply contract all indices in all combinations"

$$
\vec{a} \cdot \vec{a} \ , \quad \vec{b} \cdot \vec{b} \ , \quad \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \ .
$$

"why is this so hard?" High rank tensors $M_{ijkl...} \Rightarrow #$ of permutations growths $\propto n!$

General answer: use Hilbert series (HS) to compute

- \rightarrow Number of independent invariants and their order.
- \rightarrow Covariant content of independent invariants.
- HS does **not** tell us *how* to "wire up the indices".

$$
\mathfrak{H}(a, b) = \int d\mu_{\text{SO}(3)} \text{PE}[a; 3] \text{PE}[b; 3] = \frac{1}{(1 - a^2)(1 - b^2)(1 - ab)},
$$
\n
$$
\int d\mu_{\text{SO}(3)} = \frac{1}{2\pi i} \oint \frac{dz}{z} (1 - z^2), \qquad \text{PE}[x, r] := \exp\left(\sum_{k=1}^{\infty} \frac{x^k \chi_r(z^k)}{k}\right), \qquad \chi_3 = z + \frac{1}{z},
$$
\n
$$
\chi_3 = z^2 + 1 + \frac{1}{z^2}.
$$

Z

SM Quark Sector Flavor Invariants – Systematic Construction

$$
-\mathcal{L}_{\text{Yuk.}} = \overline{Q}_{\text{L}} \widetilde{H} \, \mathbf{Y_u} \, u_{\text{R}} + \overline{Q}_{\text{L}} \, H \, \mathbf{Y_d} \, d_{\text{R}} + \text{h.c.} \,,
$$

$$
-\mathcal{L}_{\text{Yuk.}} = \overline{Q}_{\text{L}} \widetilde{H} \mathbf{Y}_{\boldsymbol{u}} u_{\text{R}} + \overline{Q}_{\text{L}} H \mathbf{Y}_{\boldsymbol{d}} d_{\text{R}} + \text{h.c.} ,
$$

\n
$$
Y_{u} \widehat{=} (\overline{\mathbf{3}}, \mathbf{3}, \mathbf{1})
$$
 of
$$
\text{SU}(3)_{Q_{\text{L}}} \otimes \text{SU}(3)_{u_{\text{R}}} \otimes \text{SU}(3)_{d_{\text{R}}}
$$

Andreas Trautner 1986 12/ 31 12/ 31 12/ 31 12/ 31 12/ 31 12/ 31 12/ 31 12/ 31 12/ 31 12/ 31 12/ 31 12/ 31 12/ 31

Orthogonal Covariant Projection Operators

What does orthogonal mean here?

Orthogonality on the level of **projection operators**!

P(1) P(8) P(1) · P(8) = 0 (∝ Trt a)

Projection operators: $P_i^2 = P_i$, $\text{Tr } P_i = \dim(\boldsymbol{r}_i)$, Orthogonality: $P_i \cdot P_j = 0$.

Using orthogonal **singlet** projectors we find invariants that are ortogonal to each other!

.

What is necessary to construct **Basis Invariants**

$$
\mathbf{8}_u \otimes \mathbf{8}_u \otimes \ldots \mathbf{8}_d \otimes \mathbf{8}_d \otimes \cdots = \mathbf{8}_u^{\otimes k} \otimes \mathbf{8}_d^{\otimes \ell} = \sum_{\oplus} \mathbf{r}_i
$$

Singlet projection operators:

$$
{\bf 8}_u^{\otimes k} \otimes {\bf 8}_d^{\otimes \ell} \supset {\bf 1}_{(1)} \oplus {\bf 1}_{(2)} \oplus \ldots
$$

Singlet projection operators are characterized by *factorization*. For example:

How many *independent* singlets exist? (here: in contractions $\mathbf{8}_{u}^{\otimes k} \otimes \mathbf{8}_{d}^{\otimes \ell}$ for all k,ℓ)

Andreas Trautner The Basis Invariant Flavor Puzzle, 18.12.23 14/ 31

- **How to find the number of primary / secondary invariants?**
- **How to find their structure in terms of covariants?**

- **How to find the number of primary / secondary invariants?**
- **How to find their structure in terms of covariants?** Answer: *Hilbert series (HS)* and *Plethystic Logarithm (PL)*.

- **How to find the number of primary / secondary invariants?**
- **How to find their structure in terms of covariants?**

Answer: *Hilbert series (HS)* and *Plethystic Logarithm (PL)*.

The HS/PL combination is a powerful vehicle.

[Noether 1916; Getzler & Kapranov '94]

- **How to find the number of primary / secondary invariants?**
- **How to find their structure in terms of covariants?** Answer: *Hilbert series (HS)* and *Plethystic Logarithm (PL)*.

The HS/PL combination is a powerful vehicle.

[Noether 1916; Getzler & Kapranov '94]

- **How to find the number of primary / secondary invariants?**
- **How to find their structure in terms of covariants?** Answer: *Hilbert series (HS)* and *Plethystic Logarithm (PL)*.

The HS/PL combination is a powerful vehicle.

[Noether 1916; Getzler & Kapranov '94]

- **How to find the number of primary / secondary invariants?**
- **How to find their structure in terms of covariants?** Answer: *Hilbert series (HS)* and *Plethystic Logarithm (PL)*.
- HS/PL input: covariants are $\mathbf{8}_u$ and $\mathbf{8}_d$ of SU(3).

$$
\mathfrak{H}(u,d) = \int_{SU(3)} d\mu_{SU(3)} \, PE \left[z_1, z_2; u; \mathbf{8}\right] \, PE \left[z_1, z_2; d; \mathbf{8}\right],
$$
\n
$$
\mathfrak{H}(u,d) = \frac{1 + u^3 d^3}{(1 - u^2)(1 - d^2)(1 - u d)(1 - u^3)(1 - d^3)(1 - u d^2)(1 - u^2 d)(1 - u^2 d^2)}.
$$
\n
$$
PL \left[\mathfrak{H}(u,d)\right] := \sum_{k=1}^{\infty} \frac{\mu(k) \, \ln \mathfrak{H}(u^k, d^k)}{k}.
$$
\n
$$
PL \left[\mathfrak{H}(u,d)\right] = u^2 + u d + d^2 + u^3 + d^3 + u^2 d + u d^2 + u^2 d^2 + u^3 d^3 - u^6 d^6.
$$

- **How to find the number of primary / secondary invariants?**
- **How to find their structure in terms of covariants?** Answer: *Hilbert series (HS)* and *Plethystic Logarithm (PL)*.
- HS/PL input: covariants are $\mathbf{8}_u$ and $\mathbf{8}_d$ of SU(3).
- \curvearrowright HS/PL output: \curvearrowright is a set of the s

 $-$ # of primary invariants and their sub-structure (covariant content):

$$
\begin{array}{ccc}\n(u) & (d) \\
u^2 & d^2 & ud \\
u^3 & d^3 & u^2d & ud^2 \\
u^2d^2\n\end{array}
$$

(10 primary invariants $\hat{=}$ 10 physical parameters).

- $-$ 1 secondary invariant of structure: u^3d^3 .
- $-$ Relation (*Syzygy*) of order u^6d^6 between primaries and the secondary.

- **How to find the number of primary / secondary invariants?**
- **How to find their structure in terms of covariants?** Answer: *Hilbert series (HS)* and *Plethystic Logarithm (PL)*.
- HS/PL input: covariants are $\mathbf{8}_u$ and $\mathbf{8}_d$ of SU(3).
- \curvearrowright HS/PL output: \curvearrowright is a set of the s

 $-$ # of primary invariants and their sub-structure (covariant content):

$$
\begin{array}{ccc}\n(u) & (d) \\
u^2 & d^2 & ud \\
u^3 & d^3 & u^2d & ud^2 \\
u^2d^2\n\end{array}
$$

(10 primary invariants $\hat{=}$ 10 physical parameters).

- $-$ 1 secondary invariant of structure: u^3d^3 .
- $-$ Relation (*Syzygy*) of order u^6d^6 between primaries and the secondary.

Note: The HS/PL does **not** tell us *how* to construct the invariants or the relations.

Note: The HS/PL does **not** tell us *how* to construct the invariants or the relations.

For this we use **orthogonal projection operators**. (here in adjoint space of $\text{SU}(3)_{Q_\text{L}}$)

Those can be constructed via **birdtrack** diagrams [Cvitanovic '76 '08, Keppeler and Sjödahl '13]

[AT '18]

Note: The HS/PL does **not** tell us *how* to construct the invariants or the relations.

For this we use **orthogonal projection operators**. (here in adjoint space of $\text{SU}(3)_{Q_\text{L}}$)

Those can be constructed via **birdtrack** diagrams [Cvitanovic '76 '08, Keppeler and Sjödahl '13]

[AT '18]

$$
\delta^{ab} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$

 $\bullet\;\,8^{\otimes 2} \to 1$

Note: The HS/PL does **not** tell us *how* to construct the invariants or the relations.

For this we use **orthogonal projection operators**. (here in adjoint space of $\text{SU}(3)_{Q_\text{L}}$)

Those can be constructed via **birdtrack** diagrams [Cvitanovic '76 '08, Keppeler and Sjödahl '13]

[AT '18]

- $\bullet\;\,8^{\otimes 2} \to 1$
- $\bullet\;\,8^{\otimes 3} \to 1$

Note: The HS/PL does **not** tell us *how* to construct the invariants or the relations.

For this we use **orthogonal projection operators**. (here in adjoint space of $\text{SU}(3)_{Q_\text{L}}$)

Those can be constructed via **birdtrack** diagrams [Cvitanovic '76 '08, Keppeler and Sjödahl '13]

[AT '18]

Andreas Trautner The Basis Invariant Flavor Puzzle, 18.12.23 16/ 31 November 16/ 31

Note: The HS/PL does **not** tell us *how* to construct the invariants or the relations.

For this we use **orthogonal projection operators**. (here in adjoint space of $\text{SU}(3)_{Q_\text{L}}$)

Those can be constructed via **birdtrack** diagrams *Covitanovic '76 '08, Keppeler and Siödahl '13]* **Those Can be constructed via** *birdtrack* **diagrams**

[AT '18]

- $\bullet\;\,8^{\otimes 2} \to 1$ many operators exist in $8^{\otimes 6} \rightarrow 1$, we only need one:
- $\bullet\;\,8^{\otimes 3} \to 1$
- $\bullet\;\,8^{\otimes 4} \to 1$
- $\bullet\ 8^{\otimes 6} \rightarrow 1$

Note: The HS/PL does **not** tell us *how* to construct the invariants or the relations.

For this we use **orthogonal projection operators**. (here in adjoint space of $\text{SU}(3)_{Q_\text{L}}$)

Those can be constructed via **birdtrack** diagrams [Cvitanovic '76 '08, Keppeler and Sjödahl '13]

[AT '18]

All of these operators are **orthogonal** to each other. We now use them to construct the orthogonal invariants.

$$
I_{10} \propto \left(\begin{array}{ccc} H_u & \text{and} & I_{01} \propto \end{array}\right) \left(\begin{array}{ccc} H_d & \end{array}\right).
$$

$$
I_{10} \propto \begin{pmatrix} H_u & \text{and} & I_{01} \propto \begin{pmatrix} H_d \\ H_d \end{pmatrix} \end{pmatrix}
$$

\n
$$
I_{20} \propto \begin{bmatrix} H_u & \text{for } H_u \end{bmatrix} \quad I_{02} \propto \begin{bmatrix} H_d & \text{for } H_d \end{bmatrix} \quad I_{11} \propto \begin{bmatrix} H_u & \text{for } H_u \end{bmatrix}
$$

\n
$$
I_{30} \propto \begin{bmatrix} \frac{H_u}{H_u} & \frac{H_d}{H_u} \\ \frac{H_d}{H_u} & \frac{H_d}{H_u} \end{bmatrix} \quad I_{21} \propto \begin{bmatrix} \frac{H_d}{H_u} & \frac{H_d}{H_u} \\ \frac{H_d}{H_u} & \frac{H_d}{H_u} \end{bmatrix}
$$

\n
$$
I_{12} \propto \begin{bmatrix} \frac{H_u}{H_u} & \frac{H_u}{H_u} \\ \frac{H_d}{H_u} & \frac{H_d}{H_u} \end{bmatrix}
$$

$$
I_{10} \propto \begin{pmatrix} H_u & \text{and} & I_{01} \propto \begin{pmatrix} H_d \end{pmatrix} .
$$

\n
$$
I_{20} \propto \begin{bmatrix} H_u & \text{0000 } H_u \end{bmatrix} \quad I_{02} \propto \begin{bmatrix} H_d & \text{0000 } H_d \end{bmatrix} \quad I_{11} \propto \begin{bmatrix} H_u & \text{0000 } H_d \end{bmatrix} .
$$

\n
$$
I_{30} \propto \begin{bmatrix} \frac{H_u}{H_u} & \frac{H_u}{H_u} \\ \frac{H_u}{H_u} & \frac{H_u}{H_u} \end{bmatrix} \quad \begin{bmatrix} \frac{H_d}{H_u} & \frac{H_u}{H_u} \\ \frac{H_d}{H_u} & \frac{H_u}{H_u} \end{bmatrix} \quad \begin{bmatrix} \frac{H_u}{H_u} & \frac{H_u}{H_u} \\ \frac{H_u}{H_u} & \frac{H_u}{H_u} \end{bmatrix} \quad \begin{bmatrix} \frac{H_u}{H_u} & \frac{H_u}{H_u} \\ \frac{H_u}{H_u} & \frac{H_u}{H_u} \end{bmatrix}
$$

$$
I_{10} \propto \begin{pmatrix} H_u & \text{and} & I_{01} \propto \sqrt{H_d} \\ H_u & \text{and} & I_{01} \propto \sqrt{H_d} \\ \hline \frac{H_u}{\text{cos}} & \text{cos} \frac{H_u}{\text{cos}} & \text{cos} \frac{H_u}{\text{cos}} \end{pmatrix}
$$
\n
$$
I_{20} \propto \begin{bmatrix} \frac{H_u}{\text{cos}} \\ \frac{H_u}{\text{cos}} \\ \frac{H_u}{\text{cos}} \end{bmatrix}
$$
\n
$$
I_{03} \propto \begin{bmatrix} \frac{H_u}{\text{cos}} \\ \frac{H_u}{\text{cos}} \end{bmatrix}
$$
\n
$$
I_{21} \propto \begin{bmatrix} \frac{H_u}{\text{cos}} \\ \frac{H_u}{\text{cos}} \end{bmatrix}
$$
\n
$$
I_{12} \propto \begin{bmatrix} \frac{H_u}{\text{cos}} \\ \frac{H_u}{\text{cos}} \end{bmatrix}
$$
\n
$$
I_{22} \propto \begin{bmatrix} \frac{H_u}{\text{cos}} \\ \text{cos} \frac{H_u}{\text{cos}} \\ \text{cos} \frac{H_u}{\text{cos}} \end{bmatrix}
$$
\n
$$
I_{23} \propto \begin{bmatrix} \frac{H_u}{\text{cos}} \\ \frac{H_u}{\text{cos}} \end{bmatrix}
$$
\n
$$
I_{33} \propto \begin{bmatrix} \frac{H_u}{\text{cos}} \\ \frac{H_u}{\text{cos}} \end{bmatrix}
$$
\n
$$
I_{34} \propto \begin{bmatrix} \frac{H_u}{\text{cos}} \\ \frac{H_u}{\text{cos}} \\ \frac{H_u}{\text{cos}} \end{bmatrix}
$$
\n
$$
I_{35} \propto \begin{bmatrix} \frac{H_u}{\text{cos}} \\ \frac{H_u}{\text{cos}} \\ \frac{H_u}{\text{cos}} \end{bmatrix}
$$

The 10 algebraically independent and orthogonal invariants are given by:

$$
I_{10} := \mathrm{Tr}\,\widetilde{H}_u \qquad \text{and} \qquad I_{01} := \mathrm{Tr}\,\widetilde{H}_d \ .
$$

$$
I_{20} := \text{Tr}(H_u^2), \quad I_{02} := \text{Tr}(H_d^2), \quad I_{11} := \text{Tr}(H_u H_d),
$$

\n
$$
I_{30} := \text{Tr}(H_u^3), \quad I_{03} := \text{Tr}(H_d^3), \quad I_{21} := \text{Tr}(H_u^2 H_d), \quad I_{12} := \text{Tr}(H_u H_d^2),
$$

\n
$$
I_{22} := 3 \text{Tr}(H_u^2 H_d^2) - \text{Tr}(H_u^2) \text{Tr}(H_d^2).
$$

Secondary invariant: exactly the Jarlskog invariant,

$$
J_{33} := \text{Tr}(H_u^2 H_d^2 H_u H_d) - \text{Tr}(H_d^2 H_u^2 H_d H_u) \equiv \frac{1}{3} \text{Tr} [H_u, H_d]^3.
$$

Note: Here $\widetilde{H}_u\equiv Y_uY_u^\dagger$, $\widetilde{H}_d\equiv Y_dY_d^\dagger$, and $H_{u,d}\equiv \widetilde{H}_{u,d} - \mathbb{1}{\text{Tr}}\frac{H_{u,d}}{3}$ 3

. **"Traces of traceless matrices"**

The Syzygy

With our orthogonal invariants, the syzygy is given by

$$
(J_{33})^{2} = -\frac{4}{27}I_{22}^{3} + \frac{1}{9}I_{22}^{2}I_{11}^{2} + \frac{1}{9}I_{22}^{2}I_{02}I_{20} + \frac{2}{3}I_{22}I_{30}I_{03}I_{11} - \frac{2}{3}I_{22}I_{21}I_{12}I_{11} - \frac{1}{9}I_{22}I_{11}^{2}I_{20}I_{02} + \frac{2}{3}I_{22}I_{21}^{2}I_{02} + \frac{2}{3}I_{22}I_{12}^{2}I_{20} - \frac{2}{3}I_{22}I_{30}I_{12}I_{02} - \frac{2}{3}I_{22}I_{03}I_{21}I_{20} - \frac{1}{3}I_{30}^{2}I_{03}^{2} + I_{21}^{2}I_{12}^{2} + 2I_{30}I_{03}I_{21}I_{12} - \frac{4}{9}I_{30}I_{03}I_{11}^{3} + \frac{1}{18}I_{30}^{2}I_{02}^{3} + \frac{1}{18}I_{03}^{2}I_{20}^{3} - \frac{4}{3}I_{30}I_{12}^{2} - \frac{4}{3}I_{03}I_{21}^{2} - \frac{1}{3}I_{30}I_{21}I_{11}I_{02}^{2} - \frac{1}{3}I_{03}I_{12}I_{11}I_{20}^{2} + \frac{2}{3}I_{30}I_{12}I_{11}^{2}I_{02} + \frac{2}{3}I_{03}I_{21}I_{11}^{2}I_{20} - \frac{2}{3}I_{21}I_{12}I_{20}I_{02}I_{11} - \frac{1}{108}I_{20}^{3}I_{02}^{3} + \frac{1}{36}I_{20}^{2}I_{02}^{2}I_{11}^{2} + \frac{1}{6}I_{21}^{2}I_{20}I_{02}^{2} + \frac{1}{6}I_{12}^{2}I_{02}I_{20}^{2}.
$$

This is the **shortest relation ever** expressed for the SM quark flavor ring and has 27 terms. (this should be compared to result of [Jenkins&Manohar'09] with 241 terms using non-orthogonal invariants).

SM Quark Sector Flavor Invariants – Quantitative Analysis

Measuring the Invariants

In order to evaluate the invariants, one can use *any* parametrization. We use PDG:

$$
\widetilde{H}_u = \text{diag}(y_u^2, y_c^2, y_t^2)
$$

and
$$
\widetilde{H}_d = V_{\text{CKM}} \text{ diag}(y_d^2, y_s^2, y_b^2) V_{\text{CKM}}^{\dagger},
$$

1. **Explore the** *possible* **parameter space**: scan O(10⁷) uniform random points

- $s_{12}, s_{13}, s_{23} \in [-1, 1]$ and $\delta \in [-\pi, \pi]$ together with:
- A) Linear measure: $y_{u,c} \in [0,1]y_t$, $y_{d,s} \in [0,1]y_b$.
- B) Log measure: $(m_{u,c}/{\rm MeV}) \in 10^{[-1,\log(m_t/{\rm MeV})]}, (m_{d,s}/{\rm MeV}) \in 10^{[-1,\log(m_b/{\rm MeV})]}.$

Measuring the Invariants

In order to evaluate the invariants, one can use *any* parametrization. We use PDG:

$$
\widetilde{H}_u = \text{diag}(y_u^2, y_c^2, y_t^2)
$$

and
$$
\widetilde{H}_d = V_{\text{CKM}} \text{ diag}(y_d^2, y_s^2, y_b^2) V_{\text{CKM}}^{\dagger},
$$

1. **Explore the** *possible* **parameter space**: scan O(10⁷) uniform random points

- $s_{12}, s_{13}, s_{23} \in [-1, 1]$ and $\delta \in [-\pi, \pi]$ together with:
- A) Linear measure: $y_{u,c} \in [0,1]y_t$, $y_{d,s} \in [0,1]y_b$.
- B) Log measure: $(m_{u,c}/{\rm MeV}) \in 10^{[-1,\log(m_t/{\rm MeV})]}, (m_{d,s}/{\rm MeV}) \in 10^{[-1,\log(m_b/{\rm MeV})]}.$

2. **"Measure" the parameter point realized in Nature**.

We use PDG data and errors and evaluate at the EW scale $\mu = M_Z$. see e.g. [Huang, Zhou '21]

Measuring the Invariants

In order to evaluate the invariants, one can use *any* parametrization. We use PDG:

$$
\widetilde{H}_u = \text{diag}(y_u^2, y_c^2, y_t^2)
$$

and
$$
\widetilde{H}_d = V_{\text{CKM}} \text{ diag}(y_d^2, y_s^2, y_b^2) V_{\text{CKM}}^{\dagger},
$$

1. **Explore the** *possible* **parameter space**: scan O(10⁷) uniform random points

- $s_{12}, s_{13}, s_{23} \in [-1, 1]$ and $\delta \in [-\pi, \pi]$ together with:
- A) Linear measure: $y_{u,c} \in [0,1]y_t$, $y_{d,s} \in [0,1]y_b$.
- B) Log measure: $(m_{u,c}/{\rm MeV}) \in 10^{[-1,\log(m_t/{\rm MeV})]}, (m_{d,s}/{\rm MeV}) \in 10^{[-1,\log(m_b/{\rm MeV})]}.$

2. **"Measure" the parameter point realized in Nature**.

We use PDG data and errors and evaluate at the EW scale $\mu = M_Z$. see e.g. [Huang, Zhou '21]

For convenience of the presentation we normalize the invariants as

$$
\hat{I}_{ij}:=\frac{I_{ij}}{\left(y_t^2\right)^i\left(y_b^2\right)^j}
$$

.

Tabelle: Experimental values of the quark sector basis invariants evaluated using PDG data. Uncertainties are 1σ. Left: orthogonal invariants at face value. Right: the same invariants normalized to the largest Yukawa couplings.

$$
\begin{array}{ll}\n\text{Experimental values} \\
\hat{I}_{11} \approx \hat{I}_{20} \approx \hat{I}_{02} \approx \frac{2}{3}, \\
\hat{I}_{30} \approx \hat{I}_{03} \approx \hat{I}_{21} \approx \hat{I}_{12} \approx \hat{I}_{22} \approx \frac{2}{9}.\n\end{array}\n\left(\n\begin{array}{l}\n\hat{I}_{ij} := \frac{I_{ij}}{(y_t^2)^i (y_b^2)^j}.\n\end{array}\n\right)
$$

- Deviations from maximal values are significant.
- Deviations from each other, e.g. $\hat{I}_{21} \hat{I}_{12} \neq 0$ and $\hat{I}_{12} \hat{I}_{22} \neq 0$, are significant.

Parameter space and experimental values

Error bars: $1\sigma \times 1000$

Parameter space and experimental values

Results and empirics

- Observed primary invariants are *very close to* maximal with small but significant deviations.
- Explaining the value of the invariants and their misalignment from maximal point amounts to solving the flavor puzzle in the language of invariants.
- Exact maximization would correspond to $\mathrm{SU}(2)_{Q_\mathrm{L}}$ flavor symmetry.
- Small deviations from max. correspond to 1./2. gen. masses and mixings.

Results and empirics

- Observed primary invariants are *very close to* maximal with small but significant deviations.
- Explaining the value of the invariants and their misalignment from maximal point amounts to solving the flavor puzzle in the language of invariants.
- Exact maximization would correspond to $\mathrm{SU}(2)_{Q_\mathrm{L}}$ flavor symmetry.
- Small deviations from max. correspond to 1./2. gen. masses and mixings.
- The invariants are **strongly correlated** (for the observed hierarchical parameters).

This is **not** true for anarchical parameters, or points with increased symmetry.

Andreas Trautner The Basis Invariant Flavor Puzzle, 18.12.23 26/ 31 26/ 31 26/ 31

RGE running of invariants

$$
\begin{split} \mathcal{D}\tilde{H}_u&=2\left(a_{\Delta}+t_{udl}\right)\,\tilde{H}_u+3\,\tilde{H}_u^2-\frac{3}{2}\left(\tilde{H}_d\tilde{H}_u+\tilde{H}_u\tilde{H}_d\right)\;,\\ \mathcal{D}\tilde{H}_d&=2\left(a_{\Gamma}+t_{udl}\right)\,\tilde{H}_d+3\,\tilde{H}_d^2-\frac{3}{2}\left(\tilde{H}_d\tilde{H}_u+\tilde{H}_u\tilde{H}_d\right)\;,\\ \mathcal{D}\tilde{H}_\ell&=2\left(a_{\Pi}+t_{udl}\right)\,\tilde{H}_\ell+3\,\tilde{H}_\ell^2\;, \end{split}
$$

$$
\mathcal{D}g_s = -7 g_s^3
$$
, $\mathcal{D}g = -\frac{19}{6}g^3$, $\mathcal{D}g' = \frac{41}{6}g'^3$.

Andreas Trautner The Basis Invariant Flavor Puzzle, 18.12.23 27/ 31 27/ 31

CP transformation of covariants and invariants

CP is trafo under Out $(SU(N)) = \mathbb{Z}_2$. Covariants:

> $\boldsymbol{u}^a \ \mapsto \ -R^{ab}\,\boldsymbol{u}^b\,,$ $\boldsymbol{d}^{a} \ \mapsto \ -R^{ab}\,\boldsymbol{d}^{b}\,,$

e.g. in Gell-Mann basis for the generators: $R = diag(-1, +1, -1, -1, +1, -1, +1, -1).$

SU(3) tensors (projection ops.):

 f^{abc} \mapsto $R^{aa'} R^{bb'} R^{cc'} f^{a'b'c'} = f^{abc}$, $d^{abc} \rightarrow R^{aa'} R^{bb'} R^{cc'} d^{a'b'c'} = -d^{abc}$.

CP trafo of invariants is easily read-off from birdtrack projection operator:

Invariants are **CP even / CP odd** iff their projection operator contains and **even / odd # of** f **tensors**.

CP transformation of covariants and invariants

CP is trafo under Out $(SU(N)) = \mathbb{Z}_2$. Covariants:

> $\boldsymbol{u}^a \ \mapsto \ -R^{ab}\,\boldsymbol{u}^b\,,$ $\boldsymbol{d}^{a} \ \mapsto \ -R^{ab}\,\boldsymbol{d}^{b}\,,$

e.g. in Gell-Mann basis for the generators: $R = diag(-1, +1, -1, -1, +1, -1, +1, -1).$

SU(3) tensors (projection ops.):

 $f^{abc} \; \mapsto \; R^{aa'} \, R^{bb'} \, R^{cc'} \, f^{a'b'c'} \; = \; f^{abc} \, , \hspace{1cm} {\rm i} f^{abc} \, \, {\rm Tr}[t^a \, H_u] \, {\rm Tr}[t^b \, H_d] \, {\rm Tr}[t^c \, \bm{H}_{\bm{\ell}}]$ $d^{abc} \rightarrow R^{aa'} R^{bb'} R^{cc'} d^{a'b'c'} = -d^{abc}$.

BSM: CPV at order 3 ?

CP trafo of invariants is easily read-off from birdtrack projection operator:

Invariants are **CP even / CP odd** iff their projection operator contains and **even / odd # of** f **tensors**.

Comments

- I_{01} , I_{02} , I_{03} , I_{10} , I_{20} , I_{30} correspond to masses.
- CP-even I_{11} , I_{21} , I_{12} , I_{22} correspond to mixings.
- CPV requires interplay of 8 CP-even primary invariants (all besides the "trivial" invariants I_{10} , I_{01}).
- Non-trivial \hat{I}_{ij} 's being close to maximal forces the Jarlskog invariant to be **small**.
- **Any** explanation of the flavor structure will have to explain the value of the invariants.
- Any reduction of # of parameters corresponds to relation between invariants.
- **All** flavor observables can be expressed as

 $\mathcal{O}_{\text{flavor}} = \text{Polynomial}_1(I_{ij}) + J_{33} \times \text{Polynomial}_2(I_{ij}).$

This is guaranteed since our primary and secondary invariants form a "Hironaka decomposition" of the ring.

- Our invariants provide easy targets for fits of any BSM model to SM flavor structure.
- Our procedure is *completely general*, can be applied to all BSM scenarios.

Outlook

- Ambiguity in choice of I_{22} needs to be clarified. Contributions to different contraction channels could be very relevant to decipher flavor puzzle.
- Relative alignments of 8-plet covariants are in 1:1 relation with invariant relations. see other examples [Merle, Zwicky '12], [Bento, Boto, Silva, AT '20]
- Maximization and strong correlation of invariants could point to possible **information theoretic** argument to set parameters! \rightarrow should be done.

see e.g. [Carena, Low, Wagner, Xiao '23]

- Extension to lepton sector with **orthogonal** invariants → should be done. for HS/PL and non-orthogonal invariants see [Hanany, Jenkins, Manhoar, Torri '10], [Wang, Yu, Zhou '21], [Yu, Zhou '21].
- Using orthogonal BIs in $\mathrm{SU}(3)_{Q_\mathrm{L}}$ fundamental space \to should be done.
- RGE's directly in terms of invariants \rightarrow should be done.
- Investigation of $u \leftrightarrow d$ custodial flavor symmetry \rightarrow should be done.
- General relation of BI's to observables \rightarrow should be done.

Conclusion

- We have for the first time obtained a quantitative analysis of the flavor puzzle in terms of basis invariants.
- This uncovers an entirely new angle on the flavor puzzle that should further be explored in the future.
- The (quark) flavor puzzle in invariants amounts to explaining:
	- **Why** are the invariants very close to maximal?
	- **What** explains their tiny deviations from the maximal values?
	- **Why** are the (*orthogonal, a priori independent*) invariants so strongly correlated?
- **Any** explanation of the flavor structure will have to answer these questions.

This is just the beginning of an entirely new exploration of the flavor puzzle.

Thank You!

Backup slides

General Procedure / Algorithm

for the construction of basis invariants.

Three steps:

- 1. Construction of *basis covariant* objects: "building blocks".
	- Determine CP transformation behavior of the building blocks.
- 2. Derive Hilbert series & Plethystic logarithm.
	- \Rightarrow # and order of primary invariants.
	- \Rightarrow # and structure of generating set of invariants.
	- \Rightarrow interrelations between invariants (\equiv syzygies).
- 3. Construct all invariants and interrelations explicitly.

Application here: Characterize SM flavor sector invariants.

Hilbert Series and Plethystic Logarithm

Covariant building blocks as **input** for the ring:

$$
\boxed{\mathbf{8}_u \ \widehat{=}\ u\ ,\quad \mathbf{8}_d \ \widehat{=}\ d.}
$$

From input, compute Hilbert series (HS) and Plethystic logarithm (PL): introduced in math: [Getzler, Kapranov '94], physics [Benvenuti, Feng, Hanany, He '06]

$$
\mathfrak{H}(u,d) = \int_{\text{SU(3)}} d\mu_{\text{SU(3)}} \, \text{PE}\left[z_1, z_2; u; \mathbf{8}\right] \, \text{PE}\left[z_1, z_2; d; \mathbf{8}\right] \,,
$$
\n
$$
\text{PL}\left[\mathfrak{H}\left(u,d\right)\right] := \sum_{k=1}^{\infty} \frac{\mu(k) \, \ln \mathfrak{H}\left(u^k, d^k\right)}{k} \,.
$$
\n
$$
\mathfrak{H}(u,d) = \frac{1 + u^3 d^3}{(1 - u^2)(1 - d^2)(1 - ud)(1 - u^3)(1 - d^3)(1 - ud^2)(1 - u^2d)(1 - u^2d^2)} \,.
$$
\n
$$
\text{PL}\left[\mathfrak{H}(u,d)\right] = u^2 + ud + d^2 + u^3 + d^3 + u^2d + ud^2 + u^2d^2 + u^3d^3 - u^6d^6 \,.
$$
\n
$$
\text{Möbius function } \mu(n) = \begin{cases} \frac{1}{(1 - u^2)^2}, & \text{if } n \text{ is square free with even (odd) } \text{# number of prime factors,} \\ 0, & \text{else.} \end{cases}
$$

CKM in PDG parametrization

 $V_{\text{CKM}} := V_{u}^{\dagger}$ $V^{\top}_{u,\text{L}}V_{d,\text{L}}$ is the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In PDG parametrization

$$
V_{\text{CKM}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} ,
$$

Explicit expressions for Invariants in physical basis

In "physical parameters" of SM the normalized invariants can be apprxoimated using the (empirically observed) parametric hierarchies $y_t \gg y_{c,u}$, $y_b \gg y_{s,d}$ and $\lambda \ll 1$,

$$
\hat{I}_{20} = \frac{2}{3} - 2\frac{y_c^2 + y_u^2}{y_t^2} + \text{h.o.}, \qquad \hat{I}_{02} =
$$
\n
$$
\hat{I}_{30} = \frac{2}{9} - \frac{y_c^2 + y_u^2}{y_t^2} + \text{h.o.}, \qquad \hat{I}_{03} =
$$
\n
$$
\hat{I}_{11} = \frac{2}{3} - A^2\lambda^4 - \frac{y_c^2 + y_u^2}{y_t^2} - \frac{y_s^2 + y_d^2}{y_b^2} + \text{h.o.},
$$
\n
$$
3\hat{I}_{21} = \frac{2}{3} - A^2\lambda^4 - 2\frac{y_c^2 + y_u^2}{y_t^2} - \frac{y_s^2 + y_d^2}{y_b^2} + \text{h.o.},
$$
\n
$$
3\hat{I}_{12} = \frac{2}{3} - A^2\lambda^4 - \frac{y_c^2 + y_u^2}{y_t^2} - 2\frac{y_s^2 + y_d^2}{y_b^2} + \text{h.o.},
$$
\n
$$
3\hat{I}_{22} = \frac{2}{3} - A^2\lambda^4 - 2\frac{y_c^2 + y_u^2}{y_t^2} - 2\frac{y_s^2 + y_d^2}{y_b^2} + \text{h.o.}.
$$

$$
\hat{I}_{02} = \frac{2}{3} - 2\frac{y_s^2 + y_d^2}{y_b^2} + \text{h.o.} \,,
$$
\n
$$
\hat{I}_{03} = \frac{2}{9} - \frac{y_s^2 + y_d^2}{y_b^2} + \text{h.o.} \,,
$$

h.o. here refers to higher order corrections in λ or higher powers of the Yukawa coupling ratios. This shows that the values $2/3$ and $2/9$ 'ths become exact in the limit of zero mixing and zero 1st and 2nd-generation fermion masses.

Andreas Trautner The Basis Invariant Flavor Puzzle, 18.12.23 37/ 31 312.23 37/ 31

Correlation of "mass" invariants I_{10} , I_{20} , I_{30} , I_{01} , I_{02} , I_{03}

Andreas Trautner The Basis Invariant Flavor Puzzle, 18.12.23 38/ 31 31 31 32 38/ 31

Parameter space and experimental values

Arguably even "more basis invariant" alternative choice of normalization:

$$
\hat{I}_{ij}^{\text{alt}} := \frac{I_{ij}}{I_{10}^i I_{01}^j} \ .
$$

Andreas Trautner The Basis Invariant Flavor Puzzle, 18.12.23 39/ 31 31 31 31 32.39

Birdtrack Identities

We mostly use the conventions of [Keppeler '17] with the following identities

$$
\begin{aligned}\n\text{and} & \text{if } x \to e^a \text{ and } x \to e^b = \text{Tr}[t^a t^b], \\
\text{and} & \text{if } x \to e^a \text{ and } x \to e^b = \text{Tr}[t^a t^b], \\
\text{and} & \text{if } x \to e^a \text{ and } x \to e^b = \text{Tr}[t^a t^b], \\
\text{and} & \text{if } x \to e^a \text{ and } x \to e^b = \text{Tr}[t^a t^b], \\
\text{and} & \text{if } x \to e^a \text{ and } x \to e
$$