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Motivation: SM Flavor Puzzle
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The Standard Model Flavor Puzzle
• Why three generations of matter Fermions?
• Why hierarchical masses of Fermions?
• Why small transition probabilities for qup

i → qdown
j 6=i ?

(
∝ |V CKM

ij |2
)

• Why large transition probabilities for `i → νj?
(
∝ |UPMNS

ij |2
)

• Why CP violation only in combination with flavor violation?

Parametrization independent measure of CP violation:
[Greenberg ’85, Jarlskog ’85]

J33 = det
[
Mu M†u,Md M

†
d

]
∝ Im [V ∗udV

∗
csVusVcd] = 3.08+0.15

−0.13×10
−5 .
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The Standard Model Flavor Puzzle
Robust confirmation at the LHC
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Why use Basis Invariants (BIs)?
• Physical observables must be given as function of BIs.

• Flavor puzzle is plagued by unphysical choice of basis and parametrization.
• BI necessary and sufficient conditions for CPV in SM. . . . [Greenberg ’85; Jarlskog ’85]

. . . and BSM: Multi-scalar 2/3/NHDM, 4th gen., Dirac vs. Majorana ν’s, . . .
[Bernabeau et al. ’86], [Branco, Lavoura, Rebelo ’86], [Botella, Silva ’95], [Davidson, Haber ’05], [Yu, Zhou ’21],. . .

• BIs and their relations, incl. CP-even BIs, allow to detect symmetries in general.
[Ivanov, Nishi, Silva, AT ’19], [de Meideiros Varzielas, Ivanov ’19], [Bento, Boto, Silva, AT ’20]

• BI formulation simplifies RGE’s, RGE running, and derivation of RGE invariants.
[Harrison, Krishnan, Scott ’10], [Feldmann, Mannel, Schwertfeger ’15], [Chiu, Kuo ’15], [Bednyakov ’18], [Wang, Yu, Zhou ’21], . . .

However, no quantitative BI analysis of the flavor puzzle exist.
y This allows an entirely new perspective on the flavor puzzle!

Why hasn’t it been done? Technically challenging:
How to construct BI’s? When to stop?

general answers and technique based on example of 2HDM [AT ’18]
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Outline
– Motivation
– Jargon of invariant theory

I will focus entirely on the quark sector here!

– Standard Model quark sector flavor covariants

– Construction of the complete ring of quark sector orthogonal basis invariants

– Determine the invariants from experimental data

⇒ This gives an entirely basis invariant picture of the quark flavor puzzle.

– CP transformation of invariants & comments
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Jargon of invariant theory
• Algebraic (in-)dependence:

Invariants I1, I2, I3, . . . are algebraically dependent if and only if
∃ Polynomial (I1, I2, I3, . . . ) = 0 .

(⇔ I1, I2, I3, . . . are algebraically independent iff @Pol)

• Primary invariants:
A maximal set of algebraically independent invariants.

# of primary invariants = # of physical parameters.
(a choice of primary invariants is not unique, but the number of invariants is)

• Secondary invariants:
all I ’s that cannot be written as polynomial of other invariants,

Ii 6= Polynomial (Ij , . . . ) .
• Generating set of invariants ≡ all primary + secondary invariants.
⇒ All invariants can be written as a polynomial in the generating set of invariants.

I = Polynomial (I1, I2, . . . ) .
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SO(3) Example for Hilbert Series
and construction of Invariants
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SO(3) Example for Hilbert Series
For example: two vectors ~a, ~b ∈ 3 of SO(3). How many algebraically independent invariants can we construct?

ai ⊗ aj ⊗ · · · ⊗ b` ⊗ bn ⊗ · · ·

“simply contract all indices in all combinations”

~a · ~a , ~b ·~b , ~a ·~b = |~a||~b|cos θ .

“why is this so hard?” High rank tensors Mijkl... ⇒ # of permutations growths ∝ n!

General answer: use Hilbert series (HS) to compute

→ Number of independent invariants and their order.

→ Covariant content of independent invariants.
• HS does not tell us how to “wire up the indices”.

H(a, b) =

∫
dµSO(3) PE [a;3] PE [b;3] =

1

(1− a2)(1− b2)(1− ab)
,

∫
dµSO(3) =

1

2πi

∮
|z|=1

dz

z

(
1− z2

)
, PE [x, r] := exp

( ∞∑
k=1

xk χr(zk)

k

)
,

χ2 = z +
1

z
,

χ3 = z2 + 1 +
1

z2
.
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SM Quark Sector Flavor Invariants
– Systematic Construction
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Standard Model Quark Sector Flavor Covariants

−LYuk. = QL H̃ Yu uR + QLH Yd dR + h.c. ,

Yu =̂ (3,3,1)

Yd =̂ (3,1,3)
of SU(3)QL

⊗ SU(3)uR ⊗ SU(3)dR

Hu := YuY
†
u , Hd := YdY

†
d both transform as 3⊗ 3 of SU(3)QL

.

3⊗ 3 = 1 ⊕ 8 .

Hu =
1

N
Hu +

1

Tr
Hu .

(Hu)1 = TrHu (Hu)8 = Hu − 1Tr
Hu

3

ua = Tr [taHu] = Hu a
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Orthogonal Covariant Projection Operators

What does orthogonal mean here?

Orthogonality on the level of projection operators!

.

P(1) P(8) P(1) · P(8) = 0 (∝ Tr ta)

Projection operators: P 2
i = Pi, TrPi = dim(ri),

Orthogonality: Pi · Pj = 0.

Using orthogonal singlet projectors we find invariants that are ortogonal to each other!
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What is necessary to construct Basis Invariants

8u ⊗ 8u ⊗ . . .8d ⊗ 8d ⊗ · · · = 8⊗ku ⊗ 8⊗`d =
∑
⊕
ri

Singlet projection operators:

8⊗ku ⊗ 8⊗`d ⊃ 1(1) ⊕ 1(2) ⊕ . . .

Singlet projection operators are characterized by factorization. For example:

8⊗3 → 8⊗3 ⇔ 8⊗3 ⊃ 1

How many independent singlets exist? (here: in contractions 8⊗k
u ⊗ 8⊗`

d for all k, `)
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Number and structure of invariants
• How to find the number of primary / secondary invariants?
• How to find their structure in terms of covariants?

Answer: Hilbert series (HS) and Plethystic Logarithm (PL).

The HS/PL combination is a powerful vehicle.
[Noether 1916; Getzler & Kapranov ’94]
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Number and structure of invariants
• How to find the number of primary / secondary invariants?
• How to find their structure in terms of covariants?

Answer: Hilbert series (HS) and Plethystic Logarithm (PL).

• HS/PL input: covariants are 8u and 8d of SU(3).

H(u, d) =

∫
SU(3)

dµSU(3) PE [z1, z2;u;8] PE [z1, z2; d;8] ,

H(u, d) =
1 + u3d3

(1− u2)(1− d2)(1− ud)(1− u3)(1− d3)(1− ud2)(1− u2d)(1− u2d2)
.

PL [H (u, d)] :=

∞∑
k=1

µ(k) lnH
(
uk, dk

)
k

.

PL [H(u, d)] = u2 + ud+ d2 + u3 + d3 + u2d+ ud2 + u2d2 + u3d3 − u6d6 .
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Number and structure of invariants
• How to find the number of primary / secondary invariants?
• How to find their structure in terms of covariants?

Answer: Hilbert series (HS) and Plethystic Logarithm (PL).

• HS/PL input: covariants are 8u and 8d of SU(3).

y HS/PL output: [Jenkins & Manohar ’09]

– # of primary invariants and their sub-structure (covariant content):

(u) (d)

u2 d2 ud

u3 d3 u2d ud2

u2d2 (10 primary invariants =̂ 10 physical parameters).

– 1 secondary invariant of structure: u3d3.

– Relation (Syzygy) of order u6d6 between primaries and the secondary.
Andreas Trautner The Basis Invariant Flavor Puzzle, 18.12.23 15/ 31



Number and structure of invariants
• How to find the number of primary / secondary invariants?
• How to find their structure in terms of covariants?

Answer: Hilbert series (HS) and Plethystic Logarithm (PL).

• HS/PL input: covariants are 8u and 8d of SU(3).

y HS/PL output: [Jenkins & Manohar ’09]

– # of primary invariants and their sub-structure (covariant content):

(u) (d)

u2 d2 ud

u3 d3 u2d ud2

u2d2 (10 primary invariants =̂ 10 physical parameters).

– 1 secondary invariant of structure: u3d3.

– Relation (Syzygy) of order u6d6 between primaries and the secondary.
Andreas Trautner The Basis Invariant Flavor Puzzle, 18.12.23 15/ 31



Projection operators
Note: The HS/PL does not tell us how to construct the invariants or the relations.

For this we use orthogonal projection operators. (here in adjoint space of SU(3)QL
)

[AT ’18]

Those can be constructed via birdtrack diagrams [Cvitanovic ’76 ’08, Keppeler and Sjödahl ’13]

• 8⊗2 → 1

δab = .

• 8⊗3 → 1

a

cb

= i fabc and

a

cb

= dabc .

fabc =
1

iTr
Tr
([
ta, tb

]
tc
)

dabc =
1

Tr
Tr
({
ta, tb

}
tc
)

• 8⊗4 → 1
1 :

8S : 8A :

8A→S : 8S→A :

10 10 27 .

Can understand the different contraction channels from

8⊗2 = 1⊕ 8S ⊕ 8A ⊕ 10⊕ 10⊕ 27 .

• 8⊗6 → 1

many operators exist in 8⊗6 → 1, we only need one:

All of these operators are orthogonal to each other.
We now use them to construct the orthogonal invariants.
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Orthogonal Invariants
The 10 algebraically independent and orthogonal invariants are given by:

I10 ∝ Hu and I01 ∝ Hd .

I20 ∝ HuHu I02 ∝ HdHd I11 ∝ HdHu

I30 ∝

Hu

Hu Hu

I03 ∝

Hd

Hd Hd

I21 ∝

Hd

Hu Hu

I12 ∝

Hu

Hd Hd

I22 ∝
Hu Hd

HdHu

Secondary
invariant:

J33 ∝

Hd

Hd Hu

HdHu

Hu
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Orthogonal Invariants
The 10 algebraically independent and orthogonal invariants are given by:

I10 := Tr H̃u and I01 := Tr H̃d .

I20 := Tr(H2
u) , I02 := Tr(H2

d) , I11 := Tr(HuHd) ,

I30 := Tr(H3
u) , I03 := Tr(H3

d) , I21 := Tr(H2
uHd) , I12 := Tr(HuH

2
d) ,

I22 := 3Tr(H2
uH

2
d)− Tr(H2

u) Tr(H
2
d) .

Secondary invariant: exactly the Jarlskog invariant,

J33 := Tr(H2
uH

2
dHuHd)− Tr(H2

dH
2
uHdHu) ≡

1

3
Tr [Hu, Hd]

3 .

Note: Here H̃u ≡ YuY †u , H̃d ≡ YdY †d , and Hu,d ≡ H̃u,d − 1Tr
H̃u,d

3
. “Traces of traceless matrices”
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The Syzygy
With our orthogonal invariants, the syzygy is given by

(J33)
2
=− 4

27
I3
22 +

1

9
I2
22I

2
11 +

1

9
I2
22I02I20 +

2

3
I22I30I03I11 −

2

3
I22I21I12I11 −

1

9
I22I

2
11I20I02

+
2

3
I22I

2
21I02 +

2

3
I22I

2
12I20 −

2

3
I22I30I12I02 −

2

3
I22I03I21I20

− 1

3
I2
30I

2
03 + I2

21I
2
12 + 2I30I03I21I12 −

4

9
I30I03I

3
11

+
1

18
I2
30I

3
02 +

1

18
I2
03I

3
20 −

4

3
I30I

2
12 −

4

3
I03I

2
21

− 1

3
I30I21I11I

2
02 −

1

3
I03I12I11I

2
20 +

2

3
I30I12I

2
11I02 +

2

3
I03I21I

2
11I20

− 2

3
I21I12I20I02I11 −

1

108
I3
20I

3
02 +

1

36
I2
20I

2
02I

2
11 +

1

6
I2
21I20I

2
02 +

1

6
I2
12I02I

2
20 .

This is the shortest relation ever expressed for the SM quark flavor ring and has 27 terms.
(this should be compared to result of [Jenkins&Manohar’09] with 241 terms using non-orthogonal invariants).
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SM Quark Sector Flavor Invariants
– Quantitative Analysis
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Measuring the Invariants
In order to evaluate the invariants, one can use any parametrization. We use PDG:

H̃u = diag( y2u , y
2
c , y

2
t )

and H̃d = VCKM diag( y2d , y
2
s , y

2
b ) V

†
CKM ,

1. Explore the possible parameter space: scan O(107) uniform random points
• s12, s13, s23 ∈ [−1, 1] and δ ∈ [−π, π] together with:

A) Linear measure: yu,c ∈ [0, 1]yt, yd,s ∈ [0, 1]yb.

B) Log measure: (mu,c/MeV) ∈ 10[−1,log(mt/MeV)], (md,s/MeV) ∈ 10[−1,log(mb/MeV)].

2. “Measure” the parameter point realized in Nature.
We use PDG data and errors and evaluate at the EW scale µ =MZ . see e.g. [Huang, Zhou ’21]

For convenience of the presentation we normalize the invariants as

Îij :=
Iij(

y2t
)i (

y2b
)j .
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Experimental values of the invariants
Invariant best fit and error Normalized invariant best fit and error

I10 0.9340(83) Î10 1.00001358(+85
−88)

I01 2.660(49)× 10−4 Î01 1.000351(+63
−71)

I20 0.582(10) Î20 0.66665761(+59
−57)

I02 4.71(17)× 10−8 Î02 0.666432(+47
−42)

I11 1.651(45)× 10−4 Î11 0.664783(+91
−87)

I30 0.1811(48) Î30 0.22221769(+29
−28)

I03 4.18(23)× 10−12 Î03 0.222105(+24
−21)

I21 5.14(+18
−19)× 10−5 Î21 0.221593(+30

−29)

I12 1.463(+65
−68)× 10−8 Î12 0.221555(+38

−36)

I22 1.366(+73
−76)× 10−8 Î22 0.221554(+38

−36)

J33 4.47(+1.23
−1.58)× 10−24 Ĵ33 2.92(+0.74

−0.93)× 10−13

J 3.08(+0.16
−0.19)× 10−5

Tabelle: Experimental values of the quark sector basis invariants evaluated using PDG data. Uncertainties are
1σ. Left: orthogonal invariants at face value. Right: the same invariants normalized to the largest Yukawa
couplings.
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Experimental values
Î11 ≈ Î20 ≈ Î02 ≈

2

3
,

Î30 ≈ Î03 ≈ Î21 ≈ Î12 ≈ Î22 ≈
2

9
.

(
Îij :=

Iij

(y2
t )

i (y2
b )

j
.

)

• Deviations from maximal values are significant.

• Deviations from each other, e.g. Î21 − Î12 6= 0 and Î12 − Î22 6= 0, are significant.
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Parameter space and experimental values

Error bars: 1σ × 1000
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Parameter space and experimental values
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Results and empirics
• Observed primary invariants are very close to maximal – with small but significant

deviations.
• Explaining the value of the invariants and their misalignment from maximal point

amounts to solving the flavor puzzle in the language of invariants.
• Exact maximization would correspond to SU(2)QL

flavor symmetry.
• Small deviations from max. correspond to 1./2. gen. masses and mixings.

• The invariants are strongly correlated (for the observed hierarchical parameters).
linear scan: log scan:

This is not true for anarchical parameters, or points with increased symmetry.

Andreas Trautner The Basis Invariant Flavor Puzzle, 18.12.23 26/ 31



Results and empirics
• Observed primary invariants are very close to maximal – with small but significant

deviations.
• Explaining the value of the invariants and their misalignment from maximal point

amounts to solving the flavor puzzle in the language of invariants.
• Exact maximization would correspond to SU(2)QL

flavor symmetry.
• Small deviations from max. correspond to 1./2. gen. masses and mixings.
• The invariants are strongly correlated (for the observed hierarchical parameters).

linear scan: log scan:

This is not true for anarchical parameters, or points with increased symmetry.
Andreas Trautner The Basis Invariant Flavor Puzzle, 18.12.23 26/ 31



RGE running of invariants

D := 16π2µ
d

dµ
,

a∆ := −8 g2
s −

9

4
g2 −

17

12
g′

2
,

aΓ := −8 g2
s −

9

4
g2 −

5

12
g′

2
,

aΠ := −
9

4
g2 −

15

4
g′

2
,

tudl := 3TrH̃u + 3TrH̃d +TrH̃` .

DH̃u = 2 (a∆ + tudl) H̃u + 3 H̃2
u −

3

2

(
H̃dH̃u + H̃uH̃d

)
,

DH̃d = 2 (aΓ + tudl) H̃d + 3 H̃2
d −

3

2

(
H̃dH̃u + H̃uH̃d

)
,

DH̃` = 2 (aΠ + tudl) H̃` + 3 H̃2
` ,

Dgs = −7 g3
s , Dg = −

19

6
g3 , Dg′ =

41

6
g′

3
.
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CP transformation of covariants and invariants

CP is trafo under Out (SU(N)) = Z2.
Covariants:

ua 7→ −Rab ub ,

da 7→ −Rab db ,

e.g. in Gell-Mann basis for the generators:
R = diag(−1,+1,−1,−1,+1,−1,+1,−1).

SU(3) tensors (projection ops.):

fabc 7→ Raa′ Rbb′ Rcc′ fa
′b′c′ = fabc ,

dabc 7→ Raa′ Rbb′ Rcc′ da
′b′c′ = − dabc .

CP trafo of invariants is easily read-off from birdtrack projection operator:

Invariants are CP even / CP odd iff their projection operator contains and even / odd # of f tensors.
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⇒ Only CP-odd in SM: J33 ∝

Hd

Hd Hu

HdHu

Hu

BSM: CPV at order 3?
ifabc Tr[taHu] Tr[t

bHd] Tr[t
c H`]

Hu

HℓHd
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Comments
• I01, I02, I03, I10, I20, I30 correspond to masses.

• CP-even I11, I21, I12, I22 correspond to mixings.

• CPV requires interplay of 8 CP-even primary invariants (all besides the “trivial”
invariants I10, I01).

• Non-trivial Îij ’s being close to maximal forces the Jarlskog invariant to be small .

• Any explanation of the flavor structure will have to explain the value of the invariants.

• Any reduction of # of parameters corresponds to relation between invariants.

• All flavor observables can be expressed as

Oflavor = Polynomial1(Iij) + J33 × Polynomial2(Iij) .

This is guaranteed since our primary and secondary invariants form a “Hironaka decomposition” of the ring.

• Our invariants provide easy targets for fits of any BSM model to SM flavor structure.

• Our procedure is completely general, can be applied to all BSM scenarios.
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Outlook

• Ambiguity in choice of I22 needs to be clarified. Contributions to different contraction
channels could be very relevant to decipher flavor puzzle.

• Relative alignments of 8-plet covariants are in 1:1 relation with invariant relations.
see other examples [Merle, Zwicky ’12], [Bento, Boto, Silva, AT ’20]

• Maximization and strong correlation of invariants could point to possible information
theoretic argument to set parameters!→ should be done.

see e.g. [Carena, Low, Wagner, Xiao ’23]

• Extension to lepton sector with orthogonal invariants→ should be done.
for HS/PL and non-orthogonal invariants see [Hanany, Jenkins, Manhoar, Torri ’10], [Wang, Yu, Zhou ’21], [Yu, Zhou ’21].

• Using orthogonal BIs in SU(3)QL
fundamental space→ should be done.

• RGE’s directly in terms of invariants→ should be done.

• Investigation of u↔ d custodial flavor symmetry→ should be done.

• General relation of BI’s to observables→ should be done.
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Conclusion

• We have for the first time obtained a quantitative analysis of the flavor puzzle in terms
of basis invariants.

• This uncovers an entirely new angle on the flavor puzzle that should further be
explored in the future.

• The (quark) flavor puzzle in invariants amounts to explaining:

• Why are the invariants very close to maximal?
• What explains their tiny deviations from the maximal values?
• Why are the (orthogonal, a priori independent) invariants so strongly correlated?

• Any explanation of the flavor structure will have to answer these questions.

This is just the beginning of an entirely new exploration of the flavor puzzle.
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Thank You!
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Backup slides
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General Procedure / Algorithm
for the construction of basis invariants.

Three steps:
1. Construction of basis covariant objects: “building blocks”.

- Determine CP transformation behavior of the building blocks.
2. Derive Hilbert series & Plethystic logarithm.

⇒ # and order of primary invariants.
⇒ # and structure of generating set of invariants.
⇒ interrelations between invariants (≡ syzygies).

3. Construct all invariants and interrelations explicitly.

Application here:
Characterize SM flavor sector invariants.
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Hilbert Series and Plethystic Logarithm
Covariant building blocks as input for the ring:

8u =̂ u , 8d =̂ d.

From input, compute Hilbert series (HS) and Plethystic logarithm (PL):
introduced in math: [Getzler, Kapranov ’94], physics [Benvenuti, Feng, Hanany, He ’06]

H(u, d) =

∫
SU(3)

dµSU(3) PE [z1, z2;u;8] PE [z1, z2; d;8] ,

PL [H (u, d)] :=

∞∑
k=1

µ(k) lnH
(
uk, dk

)
k

.

H(u, d) =
1 + u3d3

(1− u2)(1− d2)(1− ud)(1− u3)(1− d3)(1− ud2)(1− u2d)(1− u2d2)
.

PL [H(u, d)] = u2 + ud+ d2 + u3 + d3 + u2d+ ud2 + u2d2 + u3d3 − u6d6 .

Möbius function µ(n) =

{
+

(−)1, if n is square free with even(odd) # number of prime factors,
0, else.
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CKM in PDG parametrization

VCKM := V †u,LVd,L is the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In PDG
parametrization

VCKM =

1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
−iδ

0 1 0

−s13eiδ 0 c13

 c12 s12 0
−s12 c12 0
0 0 1

 ,

Andreas Trautner The Basis Invariant Flavor Puzzle, 18.12.23 36/ 31



Explicit expressions for Invariants in physical basis
In “physical parameters” of SM the normalized invariants can be apprxoimated using the (empirically observed)
parametric hierarchies yt � yc,u, yb � ys,d and λ� 1,

Î20 =
2

3
− 2

y2
c + y2

u

y2
t

+ h.o. , Î02 =
2

3
− 2

y2
s + y2

d

y2
b

+ h.o. ,

Î30 =
2

9
−
y2
c + y2

u

y2
t

+ h.o. , Î03 =
2

9
−
y2
s + y2

d

y2
b

+ h.o. ,

Î11 =
2

3
−A2λ4 −

y2
c + y2

u

y2
t

−
y2
s + y2

d

y2
b

+ h.o. ,

3 Î21 =
2

3
−A2λ4 − 2

y2
c + y2

u

y2
t

−
y2
s + y2

d

y2
b

+ h.o. ,

3 Î12 =
2

3
−A2λ4 −

y2
c + y2

u

y2
t

− 2
y2
s + y2

d

y2
b

+ h.o. ,

3 Î22 =
2

3
−A2λ4 − 2

y2
c + y2

u

y2
t

− 2
y2
s + y2

d

y2
b

+ h.o. .

h.o. here refers to higher order corrections in λ or higher powers of the Yukawa coupling ratios. This shows that
the values 2/3 and 2/9’ths become exact in the limit of zero mixing and zero 1st and 2nd-generation fermion
masses.
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Correlation of “mass” invariants I10, I20, I30, I01, I02, I03
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Parameter space and experimental values

Arguably even
“more basis
invariant” alter-
native choice of
normalization:

Îaltij :=
Iij

Ii10 I
j
01

.

Andreas Trautner The Basis Invariant Flavor Puzzle, 18.12.23 39/ 31



Birdtrack Identities
We mostly use the conventions of [Keppeler ’17] with the following identities

= Tr with Trδ
ab = Tr[tatb] ,

= CD with CD =
N2 − 4

N
,

= CA with CA = 2TrN .

= CF with CF = Tr
N2 − 1

N
,

= = = 0
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