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An example: di-bosons
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An example: di-bosons
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An example: di-bosons
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> Precision — compute higher orders in expansion

Exact value = 0.142857143 LO NLO NNLO N3LO
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Cumulative sum: 0.1 0.13  0.139  0.1417
Relative error: 30% 9% 3% 1%

> Perturbative expansion in QFT (but, series is asymptotic)
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> Need Monte Carlo events @ higher ordersin «

> Higher-order matrix elements are slow to evaluate
numerically

> Moreover, need to evaluate these matrix elements
many times



The Monte Carlo method




The Monte Carlo method
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For instance, time to generate 1 million events s.t. MC statistical
error1/vVN ~107°

time/point [s] unwgt. efficiency  CPU time

1 100% 12 days
10 100% 116 days
10 1% 32 years

1000 1% 3170 years

This is not just about speeding up - it’s about making the
impossible possible



For instance, time to generate 1 million events s.t. MC statistical
error1/vVN ~107°

time/point [s] unwgt. efficiency  CPU time

1 100% 12 days
10 100% 116 days
10 1% 32 years

1000 1% 3170 years

This is not just about speeding up - it’s about making the
impossible possible

Upshot: neural network CPU time O(1073) s ~ indep.} of amplitude!



process LO runtime estimate  NLO runtime estimate  NNLO runtine estimate
(8{process_id})  for 10~ % uncertainty  far 10~ uncertainty for 10°% uncertainty

‘E’:P‘h;:]’ 2 CPU seconds 1 CPU minute 19 CPU days
‘E':P:;ﬁ 4 CPU seconds 1 CPU minute 11 CPU days
“‘t’p;““;"l] 2 CPU seconds 1 CPU minute 10 CPU days
"(‘;P :xl;l']l 5 CPU seconds 2 CPU minutes 11 CPU days
tpp;a‘x 0;; 28 CPU seconds 12 CPU minutes PU days
Ei:n ;;:;"]’;] 1 CPU minute 4 CPU minutes 18 CPU days
il m‘;a 1 CPU minute 16 CPU minutes 21 CPU days
;’;;;;ﬂ;a 1 CPU minute 15 CPU minutes 214 CPU days
?’;’P; ‘;‘2"]’ 1 CPU minute 19 CPU minutes 6 CPU days
"(‘; ;e;ag__:]"’ 9 CPU minutes 4 CPU hours 167 CPU days
o aar ”";;:] 1 CPU minute 1 CPU hour 17 CPU days
?ﬁp;;xi:] 13 CPU minutes 9 CPU hours CPU days
?:p;;;a:g 17 CPU minutes 1 CPU day 443 CPU days
‘;‘;P ‘Z’Zf?]z 1 CPU minute 4 CPU minutes 25 CPU days
""E;x:ﬂ;‘]’ 1 CPU minute 4 CPU minutes 13 CPU days
B ﬁ;;“:m'ﬂ;]“' 2 CPU minutes 20 CPU minutes 45 CPU days
WE;B‘“;;H:' 6 CPU minutes 1 CPU hour 193 CPU days
ﬁ;ﬁ;n;‘;bi‘] 3 CPU minutes 29 CPU minutes 31 CPU days
‘Eﬁ;ﬂ; n:; :bf]' 7 CPU minutes 4 CPU hours 119 CPU days
‘t’;’;e;m;:o:] 10 CPU minutes 4 CPU hours I days
”(’P;;ﬁ‘;m: D‘ju 3 CPU minutes 26 CPU minutes 19 CPU days
";;) P‘;;"m;c: 4‘_‘]” 6 CPU minutes 1 CPU hour 39 CPU days
”(’P;;m"!:c:‘i‘;" 4 CPU minutes 1 CPU hour 21 CPU days
"a) P‘;;“;;c:;f 6 CPU minutes 4 CPU hours A4 CPU days

- MATRIX
o CPU budget

(total runtime)

[Grazzini, Kallweit, MW "1 7]
from seconds at LO
diphoton ¢4 minutes at NLO
todays at NNLO

Wy (MATRIX not optimized
for simple processes)

diphoton fastest NNLO process
WY slowest NNLO process
(dependents on fiducial cuts!)
off-shell diboson processes
from minutes at LO

to hours at NLO
to days at NNLO

Slide by Marius Wiesemann



ATLAS Computing Budget, e.g.

ATLAS Preliminary
2022 Computing Model - CPU: 2031, Aggressive R&D

2% 11%  Tot: 16.6 MHS06*y

Wall clock consumption per workflow

Data Proc
MC-Full(Sim)
MC-Full(Rec)
MC-Fast(Sim)
MC-Fast(Rec)
EvGen
Heavy lons
Data Deriv
MC Deriv
Analysis

7%

@ MCsimulation @ MC reconstruction @ MC event generation 7%
@ Analysis @ Group production @ Data processing
@ Other

But remember the goal: impossible — possible



Why is it reasonable to approximate?

> There are many sources of error:

— Experimental: statistics, JES/JER, tagging, ...,
— Theoretical: PDF, o, ...,

— Monte Carlo statistics ~ O(1073),
> this guides the approximation precision requirement

> and...
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process Tlooy cu 1) lated
L0 INLO P oo oo Eno  Knnro

(${process_id}) (0100p/ Ao§LO)
pp— 22 +5.2% +2.9% 1-361(1)tf§§,«’: pb +3.2% +3.2% 0,
0z PSBWIERD 10100) 3 b T 16.68() 7320 pb  1667(1) 32 ph  +433%  +182%
pp— WHW™ +5.7% +3.9% 4-091(3)t23?“ pb 2.5% 2.5%
.64(1 “pb  103.2 ?pb 19% 117.1(1) F25% pb 117.1(1) F25% pb 4. 13.4
(ppwx02) 66.64(1) 575, pb  103.2(0) 75 15 pl (29.5%) 7111559 pl TIN5 p +54.9% +13.4%
Grazzini, Kallweit, Wiesemann [1711.06631]
LO (60%)
f—A__\

NLO (25%)

gg 1-loop _|
squared

NNLO (15%)
qq 1-loop__
squared

Tree x 2-loop interference ~20% of the
NNLO contribution...

... but 0(100-1000) times slower than 1-
loop amplitudes
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Machine Learning

© UNIVERSAL APPROXIMATION THEOREM: “...any multivariate
continuous function can be represented as a superposition of
one-dimensional functions” (Neural Networks/sigmoid)
[From Braun, J. & Griebel, M. Constr Approx (2009)]

> In practice, convergence is non-trivial (and not guaranteed)
v/ Gradient boosting machines perform extremely well

v/ Deep neural networks with special architectures do even better
for higher dimensions
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Definition of Machine Learning

The basic concept of machine learning in data science involves using statistical learning and
optimization methods that let computers analyze datasets and identify patterns (view a
visual of machine learning viaR2D3 [4). Machine learning techniques leverage data mining
to identify historic trends and inform future models.

The typical supervised machine learning algorithm consists of roughly three components:

1. Adecision process: A recipe of calculations or other steps that takes in the dataand

“guesses” what kind of pattern your algorithm is looking to find.

2. An error function: A method of measuring how good the guess was by comparing it
to known examples (when they are available). Did the decision process get it right? If
not, how do you quantify “how bad” the miss was?

3. Anupdating or optimization process: A method in which the algorithm looks at
the miss and then updates how the decision process comes to the final decision, so
next time the miss won’t be as great.

[https://ischoolonline.berkeley.edu/blog/what-is-machine-learning/]
13
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Lots of machine learning activity in HEP theory

Approximating amplitudes

see also Badger &
Bullock [2002.07516]

Numerical stability
by well-chosen
integration contour

Winterhalder, Magerya,
Villa, Jones, Kerner,
Butter, Heinrich, Plehn
[2112.09145]

Hadronization
liten, Menzo, Youssef,
Zupan [2203.04983]

Symbolic And much more...

simplification of
polylogs using

language models Integration and sampling efficiency
Dersy, Schwartz, Zhang see e.g., Bendavid [1707.00028]; Klimek,
[2206.04115] Perelstein [1810.11509]; Gao, Isaacson, Krause

[arXiv:2001.05486]; Gao, Hoche, Isaacson,
Krause, Schulz [2001.10028], Maitre, Santos-
Mateos [2211.02834]
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Boosted decision trees with XGBoost

Sequential, additive corrections to previous result
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Neural network with skip connections

i

skip block

skip block

|

”

L

skip block

N
D < |
é*’

dense, fully-
connected layers

skip
connection
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Physics guidance and considerations

Functions span many orders of magnitude, transform

B log(l+2z) >0
f@) = {—log(l —z) <0

Symmetries of the amplitudes — reduce number of functions
needed and necessary calls, even

Improve NN performance by constructing linear combinations
of functions with nicer properties (e.g. even more symmetry)

How to generate a training sample over the domain?
Generally, sample uniformly
Some variables need to be sampled log-uniformly - need to
invert transformation s.t. point density is uniform!

17



> High-Precision Regressors for Particle Physics
F. Bishara, A. Paul, J. Dy. Paper submitted to Nature Scientific
Reports for peer-review (now in 2" round)  [arXiv:2302.00753]

> Skip Connections for High Precision Regressors
F .Bishara, A. Paul, J. Dy. Machine Learning and the Physical
Sciences, Workshop at the 36th Conference on Neural
Information Processing Systems (NeurlPS 2022)

> Machine Learning Amplitudes for Faster Event Generation
F. Bishara and M. Montull. Phys. Rev. D 107 (2023) no.7,
L071901 [arXiv:1912.11055]

18


https://arxiv.org/abs/2302.00753
https://arxiv.org/abs/1912.11055

Proof of Principle



qgqg — 47

[FB & Marc Montull [1912.11055 ]]
> 2myz @ prz > 1GeV,3TeV] — [0, 1]2
- the pr cutregulates an integrable singularity @ cos§ = +1 asin

MCFM and MG5_aMC@NLDO otherwise no cuts on P.S.!
- extending V/5 to the full 14 TeV is trivial

> Phase-space is 2-dimensional: {\/5, cos 0}

- squared/averaged matrix element <|M\2> ‘RZ — R<o
- foron-shell Z’s, invariant under cos 8 — — cos 6

> Itisimportant to normalize (| M|*) because of loss function
- simple sol’n: divide by max. value in large sample
- better: divide by std. deviation of large sample
- even better: take the log

19



> Populate full phase-space uniformly
- Training: 1.5M points
- Validation: 15M points (10x to catch rare events)

> Compute (|M|?) using OpenLoops?2
[Buccioni, Lang, Lindert, Maierhéfer, Pozzorini, Zhang, Zoller [1907.13071]]

> Approximation error defined as

approx.
.. 2PPTOX.
exact

20



Proof of principle: loop-induced matrix element

e L X

(M) /dPS /(| M) e

A*(IMI?)/dPS /(| M) e

— V5=183 GeV

—— VE=2m,

PR

‘1 region’ ‘10 regions’ |e| [%]

1

3.0 E
2.3

0.1

1072

1073

1074
0.0

Exact (OpenLoops2): ~ 10s/ 1k point
Approximate: ~ 10s /1M points

Relative approximation error < 107, speed gain 1000 x

21



qq — ZZ @2L (on-shell)

> Two-loop form-factors from VVAMP (finite remainder)
[Gehrmann, von Manteuffel, Tancredi [1503.04812]]

> Compute and approximate 72 (full or 2L x Born)

|e| [%]
10
g 0-4 T \‘ L. T
0" g No subdivision —
08 203l Subdivided — |
= 0.
0.6 3
10 5
< 0.2
0.4 g
:;-i" 1072 2 01F
0.2 - §
- Z 0 L . ‘
0.0 . 104 3 11 1 1 3
0. 08 10 1 2 1 1 2 1

Relative error [%]

Exact: ~ 16s/point
Approximate: ~ 16s/1M points



The qq — 4¢ Amplitudes



pp — 4/ @ NNLO (double virtual)

n T TS e
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The phase space

on-shell 2 — 4 [8d]
on-shell 2 — 2 [2d] (off-shell 2 — 2 [4d]

B y

1 3 g /’V\

> The resonant-propagator numerators can be rewritten as

A,UfI/ = _g#u + (1 - 5) ngiq;/n/g i _g’ull = Z 6,1)1\,61)/\*
A

24



TWO'IOOp matrIX element 10 tensor structures
@LO Oﬂly4: 17, ... s Tio
form factors = scalar
functions of kinematic vars.

Squared amplitude:
2

10
T (s.t.05,08) = > |DAj(s,t) T X (ps) e (pa)

pols,cols |j=1

Gauge and Lorentz invariant sub-amplitudes

-I_€ ....... @ lepton amps. are simple:
“®;}N<j o (3¢,4] and [3¢,4)
KyA )\®I_\I\<
A

8d P.S. 4d P.S. + 2 x 2d P.S.

25



Two paths to approximation

k-factor .
|

- Couplings cannot be

S
X

—

o

factored out (frozen-in)

- Phase-space is 8-dim.

- Can sum over helicities >
only one function per
process

(sub)-amplitudes

- Couplings can be factored
out (at least when sum of
Qi=0)

- Phase-space is 4-dim.

- Can be recycled for different
vector boson combinations

(A] E

[C]

‘ —pn
—n

26



[Work in progress with Ayan Paul]
> Goal: implement into MC generators, many details to consider
- want functions that can be recycled — couplings factored out
- and for this, approximate amplitudes (i.e. not squared)

- amplitudes are complex objects f : R% — C
- want V1 and V5 off-shell but don’t want leptons so 4d

> Therefore, have 2 x 3 x 3 = 18 amplitudes in principle
v/ Amplitudes have symmetries — reduced set

> Nice choice of reference momenta — more symmetry
- simultaneous light-cone decomposition of p3 and p4 leads to

- (47,3 + (37,4] - (37,,4] + (47,3

€3, = \/§<43> €3, \/5[34} €ap = \/§<34> Cap = \/5[43}

- in C.M. frame with p3 and p4 pointed along +Z direction and
with appropriate choice of spinor phases, (34) = [43]

27



Only 4 / 18 amplitudes can generate the full set

R and & parts of the amplitudes are correlated — natural to
output them together (trivial for NNs)

In the future, could be a good application for complex
activation functions

For now, ignore complications that arise if the two pairs of
leptons have the same flavor

28



Populating the Phase Space



qq — YAV [FB & A. Paul [work in progress 1]

> Map full phase-space to unit hypercube

V812 € [m34 + msg, 14 TeV] — [0, 1]
cosf* € [—1,1] — [0, 1]
msq, Mg € [50, 130] GeV — [0, 1]

- otherwise no cuts on P.S.!
- two options to extend m;; even up to 14 TeV to cover W boson

> The scattering angle of Z(ps4) is defined as

—u
S A

cos 0" =

where s = s15 and A is the Kallén function (1, % \7/’%)

29



Early results: /s{5 up to 500 GeV

Normalized distribution

Normalized distribution

45

35

25

1.5

0.5

0.8

0.6

0.4

0.2

qaL (_’_)

T
Real

Imaginary —— |
! ! ! ! !
4 2 0 2 4

qr (_7 +)
T T T T T
Real

Imaginary — |
Il ] Il
4 2 0 2 4

€ [%]

Normalized distribution

Normalized distribution

16
1.4
1.2

0.8
0.6
0.4
0.2

25

15

05

qr (_’0)

-2 0

qr (9’ 0)

Real
Imaginary ——
L
2 4
T T
Real
Imaginary ——
Il Il
2 4

30



qq — Z* 7" [FB & A. Paul [work in progress ]]

> Amplitudes span many order of magnitude (and can be
negative of course) — transform according to

log(l+xz) >0
flx)=q —log(l—x) x<0
otherwise

s e ~ 0(10%)




> Training the network is done on the full phase-space, uniformly
populated except for s15 because...

10 5 1.0 -
5 2.0
0.8 . 0.8 -
15

0.6 0.6
s | 3 %
> >
| g 1.0

044 9 0.4 1

0.2 1 0.2 - 05

0.0 +— . . . 0 0.0

00 02 04 06 08 10

V/S12

0.0

> Populate 515 log-uniformly
1
CDF(z) = Elog{l +az (e —1)}
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> The mgy — msg is also clearly sparse if PS is uniformly

populated but, for now, keep it as is

1.0 5F T T T ]
0.8 1 ~ 4 '_ h
S
5
=)
0.6 ‘E sk ]
b S
S o
g
0.4 5,1 1
g
s
Z
0.2 N ]
0.0 T T T T 0 L
0.0 0.2 0.4 0.6 0.8 1. =10 —0.5 0.0 0.5

Relative error [%)]

1.0

Trained on uniformly populated masses
predictions in a very small region of PS!

Of course can/should improve this

i.e. by distributing according to a wide Cauchy dist.
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Approximation of
25)?{./\/1(0)./\/1(2)*}

Relative error is sub-percent
(~ 0.01% on total)

Runsin < 2 milliseconds per

phase-space point

compare with 2 seconds for

exact!

Code to produce this:
Fortran prog. (no ext.
dep.)
reads parameter files (a
few MB)
takes in phase-space
coords
outputs helicity
amplitudes

Normalized distribution

'y
T

w
T

&)
T

0 1 L
-1.0 -0.5 0.0 0.5 1.0

Relative error [%)]
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K-Factors



> “Toy” process just to establish generalization to higher dims.
[FB, Ayan Paul, Jennifer Dy; https://ml4physicalsciences.github.
i0/2022/files/NeurIPS_ML4APS_2022_164.pdf]
[FB, Ayan Paul, Jennifer Dy; [2301.XXXXX]]

—_—P\S N\ AN/ \N\N 2
2N X +
—_— S\ SN \N\N

This study only includes N |2

classes [A] + [B]

—N\N\N

> Compute (|[M|?) for gq¢ — ZZ(— 4¢) using VVAMP
- Training: 4.8M points
- Validation: 3.2M
- Testing: 2M

35



§ distribution for 2D sk-DNN regressors 4§ distribution for 2D BDT regressors

baseline (9-28) baseline (50)
[ 9-28 (21,281) 50 1 max-depth: 50
3 4-28 (9,101) 1 max-depth: 20
[ 2-28 (4,229) [ max-depth: 10
40
30
20

A

0
—1.00

cos O

—0.75

0
—0.50  —0.25  0.00 0.25 0.50 0.75 1.00 =1.00  —0.75 =0.50 —0.25  0.00 0.25 0.50 0.75 1.00

5 (%) 5 (%
FB, A. Paul, ). Dy [2302.00753]
sk-DNN_9_28 @ 2D 16] [%] BDT-50 @ 2D 16] (%]
1.0

1 1
0.1 < 0.1
102 1072
1073 1073
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16 4 distribution for 4D sk-DNN regressors 4§ distribution for 4D BDT regressors

16
baseline (9-36) baseline (50)

14 1 9-36 (34,993) 14 [ max-depth: 50

1 436 (15.013) 1 max-depth: 20

12 =3 236 (7,021) 12 1 max-depth: 10
10 10
8 8
6 6
4 4
2 2

( (
S100 =075 —0.50 —0.25  0.00 0.25 0.50 0.75 100 =100 —0.75 —050 —0.25 0.00 0.25 0.50 0.75 1.00

8 (%) o (%)
FB, A. Paul, ). Dy [2302.00753]
sk-DNN_9_36 @ 4D 18] (%] BDT-50 @ 4D 8] (%]
1.0 = e
1 1
0.8
0.1 <06 0.1
8
0.4
1072 1072
0.2
-3 -3
10 0'00.0 02 04 06 08 10 10
V3
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§ distribution for 8D sk-DNN regressors § distribution for 8D BDT regressors

cosf

baseline (9-50) baseline (50)
Lo [ 9-50 (67,201) L0 1 max-depth: 50
[ 4-50 (28,951) [ max-depth: 20
0.8 3 2-50 (13,651) 0.8 [ max-depth: 10
0.6 0.6
0.4 0.4
0.2 0.2
00 —6 —4 -2 0 2 4 6 00 —6 —4 -2 0 2 4 6
8 (%) 0 (%)
FB, A. Paul, ). Dy [2302.00753]
sk-DNN_9_50 @ 8D 18] (%] BDT_20 @ 8D 8] (%]
1.0 T - 5.1- T 1.0 -—rr|Tr1—-—|—.;
- - -
e : Ii L] | - T l‘-‘ 5 o 1 .-. == = - = L] = 1
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0.0 T — . 1073 o0.0lb== — 103
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Summary and outlook

> Approximate double-virtual amplitudes can leapfrog MC
generation times for some processes

> Implementation soon in MCFM, then in GENEVA and hopefully
also MATRIX

> Many many future directions and application to other
amplitudes, e.g., including gluon-induced di-bosons @NLO, top
mass in the loop, 5-point 3-photon two loop amplitude, etc.
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