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An example: di‐bosons
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An example: di‐bosons
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Precision→ compute higher orders in expansion

LO

0.1
30%

Cumulative sum:
Relative error:

NLO NNLO N3LO
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0.139
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Perturbative expansion in QFT (but, series is asymptotic)
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Need Monte Carlo events @ higher orders in α

Higher‑order matrix elements are slow to evaluate
numerically

Moreover, need to evaluate these matrix elements
many times
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The Monte Carlo method

Cauchy‑Lorentz dist’n∝ γ

π
[
γ2 + (x− µ)2

] with µ = 1
2
, γ = 1

16
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The Monte Carlo method

un‑weighting efficiency≡ # accepted
# thrown

= 18%
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The Monte Carlo method

un‑weighting efficiency≡ # accepted
# thrown

= X%
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For instance, time to generate 1 million events s.t. MC statistical
error 1/

√
N ∼ 10−3

time/point [s] unwgt. efficiency CPU time

1 100% 12 days
10 100% 116 days
10 1% 32 years

1000 1% 3170 years

This is not just about speeding up – it’s about making the
impossible possible (1% eff. is quite optimistic)

Upshot: neural network CPU timeO(10−3) s∼ indep.‡ of amplitude!
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Slide by Marius Wiesemann 8



ATLAS Computing Budget, e.g.

But remember the goal: impossible→ possible
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Why is it reasonable to approximate?

There are many sources of error:

Experimental: statistics, JES/JER, tagging, …,

Theoretical: PDF, αs, …,

Monte Carlo statistics ∼ O(10−3),

this guides the approximation precision requirement

and…
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Grazzini, Kallweit, Wiesemann [1711.06631]
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Grazzini, Kallweit, Wiesemann [1711.06631]
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Machine Learning

UNIVERSAL APPROXIMATION THEOREM: “…anymultivariate
continuous function can be represented as a superposition of
one–dimensional functions” (Neural Networks/sigmoid)
[From Braun, J. & Griebel, M. Constr Approx (2009)]

In practice, convergence is non‑trivial (and not guaranteed)

Gradient boosting machines perform extremely well

Deep neural networks with special architectures do even better
for higher dimensions
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[https://ischoolonline.berkeley.edu/blog/what-is-machine-learning/]
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Lots of machine learning activity in HEP theory

see e.g., Bendavid [1707.00028]; Klimek, 
Perelstein [1810.11509];  Gao, Isaacson, Krause 
[arXiv:2001.05486]; Gao, Höche, Isaacson, 
Krause, Schulz [2001.10028], Maitre, Santos-
Mateos [2211.02834]

Integration and sampling efficiency

Symbolic 
simplification of 
polylogs using 
language models
Dersy, Schwartz, Zhang 
[2206.04115]

Approximating amplitudes
see also Badger & 
Bullock [2002.07516]

Numerical stability 
by well-chosen 
integration contour
Winterhalder, Magerya, 
Villa, Jones, Kerner, 
Butter, Heinrich, Plehn
[2112.09145]

Ilten, Menzo, Youssef, 
Zupan [2203.04983]

Hadronization

And much more...
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Boosted decision trees with XGBoost

Sequential, additive corrections to previous result

D
ep
th
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Neural network with skip connections
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Physics guidance and considerations
Functions spanmany orders of magnitude, transform

f(x) =

{
log(1 + x) x > 0

− log(1− x) x < 0

Symmetries of the amplitudes→ reduce number of functions
needed and necessary calls, even

Improve NN performance by constructing linear combinations
of functions with nicer properties (e.g. evenmore symmetry)

How to generate a training sample over the domain?
‑ Generally, sample uniformly
‑ Some variables need to be sampled log‑uniformly – need to
invert transformation s.t. point density is uniform!
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High‑Precision Regressors for Particle Physics
F. Bishara, A. Paul, J. Dy. Paper submitted to Nature Scientific
Reports for peer‑review (now in 2nd round) [arXiv:2302.00753]

Skip Connections for High Precision Regressors
F .Bishara, A. Paul, J. Dy. Machine Learning and the Physical
Sciences, Workshop at the 36th Conference on Neural
Information Processing Systems (NeurIPS 2022)

Machine Learning Amplitudes for Faster Event Generation
F. Bishara and M. Montull. Phys. Rev. D 107 (2023) no.7,
L071901 [arXiv:1912.11055]
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Proof of Principle



gg → ZZ

[FB & Marc Montull [1912.11055 ]]

[2mZ ⊕ pT,Z > 1 GeV, 3 TeV] 7→ [0, 1]2

– the pT cut regulates an integrable singularity @ cos θ = ±1 as in
MCFM and MG5_aMC@NLO otherwise no cuts on P.S.!

– extending
√
ŝ to the full 14 TeV is trivial

Phase‑space is 2‑dimensional: {
√
ŝ, cos θ}

– squared/averagedmatrix element 〈|M|2〉 : R2 7→ R>0

– for on‑shellZ’s, invariant under cos θ → − cos θ

It is important to normalize 〈|M|2〉 because of loss function
– simple sol’n: divide by max. value in large sample
– better: divide by std. deviation of large sample
– even better: take the log
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Populate full phase‑space uniformly
– Training: 1.5M points
– Validation: 15M points (10× to catch rare events)

Compute 〈|M|2〉 using OpenLoops2
[Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, Zoller [1907.13071]]

Approximation error defined as

ε = 1− approx.
exact

20



Proof of principle: loop‐induced matrix element
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21



q �q → ZZ @2L (on‐shell)
Two‑loop form‑factors from VVAMP (finite remainder)
[Gehrmann, von Manteuffel, Tancredi [1503.04812]]

Compute and approximate T (2) (full or 2L× Born)
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The q �q → 4ℓ Amplitudes



pp → 4ℓ@ NNLO (double virtual)

[A] [B] [C]

[F]

2L2L

TL

23



The phase space

1

2

3

4

The resonant‑propagator numerators can be rewritten as

∆µν = −gµν + (1− ξ)
qµqν

q2 −m2

e.o.m.−−−→ −gµν =
∑
λ

ϵλµϵ
λ∗
ν
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Two‐loop matrix element

Squared amplitude:

T
(
s, t, p23, p

2
4

)
=

∑
pols,cols

∣∣∣∣∣∣
10∑
j=1

Aj (s, t)T
µν
j εµλ (p3) ε

ν
λ′ (p4)

∣∣∣∣∣∣
2

Gauge and Lorentz invariant sub‑amplitudes

form factors = scalar
functions of kinematic vars.

10 tensor structures
@LO only 4: T7, . . . , T10
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Two paths to approximation

k-factor

(sub)-amplitudes [A] [B]

[C]

– Couplings cannot be 
factored out (frozen-in)

– Phase-space is 8-dim.
– Can sum over helicities → 

only one function per 
process

– Couplings can be factored 
out (at least when sum of 
Qi=0)

– Phase-space is 4-dim.
– Can be recycled for different 

vector boson combinations
26



[Work in progress with Ayan Paul]

Goal: implement into MC generators, many details to consider
– want functions that can be recycled→ couplings factored out
– and for this, approximate amplitudes (i.e. not squared)
– amplitudes are complex objects f : Rd 7→ C
– want V1 and V2 off‑shell but don’t want leptons so 4d

Therefore, have 2× 3× 3 = 18 amplitudes in principle
Amplitudes have symmetries→ reduced set

Nice choice of reference momenta→more symmetry
– simultaneous light‑cone decomposition of p3 and p4 leads to

ϵ−3,µ =
〈4γµ3]√
2〈43〉

, ϵ+3,µ =
〈3γµ4]√
2[34]

, ϵ−4,µ =
〈3γµ4]√
2〈34〉

, ϵ+4,µ =
〈4γµ3]√
2[43]

– in C.M. frame with p3 and p4 pointed along±ẑ direction and
with appropriate choice of spinor phases, 〈34〉 = [43]
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Only 4 / 18 amplitudes can generate the full set

< and= parts of the amplitudes are correlated→ natural to
output them together (trivial for NNs)

In the future, could be a good application for complex
activation functions

For now, ignore complications that arise if the two pairs of
leptons have the same flavor
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Populating the Phase Space



qq → Z∗Z∗ [FB & A. Paul [work in progress ]]

Map full phase‑space to unit hypercube
√
s12 ∈ [m34 +m56, 14 TeV] 7→ [0, 1]

cos θ∗ ∈ [−1, 1] 7→ [0, 1]

m34,m56 ∈ [50, 130] GeV 7→ [0, 1]

– otherwise no cuts on P.S.!
– two options to extendmij even up to 14 TeV to coverW boson

The scattering angle ofZ(p34) is defined as

cos θ∗ = t− u

s λ

where s ≡ s12 and λ is the Källén function λ(1, m34√
s12

, m56√
s12

)

29



Early results:
√s12 up to 500 GeV
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Training the network is done on the full phase‑space, uniformly
populated except for s12 because...
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CDF(x) =
1
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Them34 −m56 is also clearly sparse if PS is uniformly
populated but, for now, keep it as is

Trained on uniformly populated masses
predictions in a very small region of PS!

Of course can/should improve this
i.e. by distributing according to a wide Cauchy dist.
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Approximation of
2<{M(0)M(2)∗}
Relative error is sub‑percent
(∼ 0.01% on total)
Runs in< 2milliseconds per
phase‑space point
compare with 2 seconds for
exact!
Code to produce this:

‑ Fortran prog. (no ext.
dep.)

‑ reads parameter files (a
few MB)

‑ takes in phase‑space
coords

‑ outputs helicity
amplitudes
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K‐Factors



This study only includes 
classes [A] + [B]
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FB, A. Paul, J. Dy [2302.00753]
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FB, A. Paul, J. Dy [2302.00753]
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FB, A. Paul, J. Dy [2302.00753]
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Summary and outlook
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