

UNI BONN – PARTICLE PHYSICS SEMINAR THE LOHENGRIN EXPERIMENT

P. Bechtle, K. Desch, H. Dreiner, O. Freyermuth, M. Gruber, H. Hajjar, <u>M. Hamer</u>, J. Heinrichs, J. Kaminski, M. Lupberger, T. Schiffer, P. Schwäbig, M. Schürmann, S. Vashishta

- motivation for Lohengrin: light dark matter

- general principle of Lohengrin

- studies done so far
 - detector layout
 - tracker development
 - ECAL development

- latest ideas and changes to the experiment layout

DARK MATTER

DARK MATTER

Matthias Hamer - Lohengrin Experiment - Particle Physics Seminar Bonn 09.11.2023

DARK MATTER -CANDIDATES?

- the SM cannot explain dark matter

- we require one or multiple extensions to the SM in order to do that!

- what do we know about dark matter?
 - no so much, but we can infer some of its properties if we make certain assumptions

- relic density depends on annihilation crosssection, but not directly on the mass of the dark matter particle
 - $n_x / s \propto 1/M_x$ $\Omega \propto Mx * n_x$
- coupling of sole DM
 candidate → mass of
 DM candidate

- thermal equilibrium
 - annihilation and production balance
- T dominated region
 - production is suppressed due to available energy
- H dominated region
 - annihilation is suppressed due to number density

Matthias Hamer - Lohengrin Experiment - Particle Physics Seminar Bonn 09.11.2023

DARK MATTER - WISPS AND LDM

- dark matter from light particles?
 - need a fitting interaction between dark matter and SM sector
 - models with vector or scalar portals \rightarrow can tune interaction strength to get right relic density
- one of the more simple models: massive boson from spontaneously broken U(1)_D as portal \rightarrow "dark photon"
- minimal model: SM + DM + U(1)_D \rightarrow introduce coupling between DS and SM through kinetic mixing

DARK MATTER – DARK PHOTONS

- dark photon phenomenology
 - fundamental distinction: "visible" and "invisible" dark photons
 - "visible" dark photons: $m_{AD} < m_{\chi}$:
 - dark matter annihilation through pair production of A'
 - A' decays into SM particles, decays into DM kinematically forbidden

prompt limits correspond to regions near the masses of the QCD vector mesons.

- prompt A' decays:
 - irreducible $\gamma \rightarrow$ ff background $n(A' \rightarrow \ell^+ \ell^-) = \varepsilon^2 n(\gamma^* \rightarrow \ell^+ \ell^-) \mathcal{F}(m_{A'})/2\Delta m$
- displaced A' decays
 - $\ \ \tau_{A'} \, \pmb{\propto} \, [\epsilon^2 \, m_{A'}]^{\text{--}1}$
 - beam dump experiments with baselines up to O(100m)
 - collider searches with displaced vertices

DARK MATTER – DARK PHOTONS

 $n_{vis} / n_{invis} \propto \varepsilon^2$

- dark photon phenomenology _
 - fundamental distinction: "visible" and "invisible" dark photons
 - "invisible" dark photons: $m_{AD} > m_{\gamma}$:
 - dark matter annihilation through s-channel A' into fermions
 - once produced, dark photon and its decay products do not necessarily produce any detectable signal

- collider searches, beam dump experiments (with and without direct detection) and direct detection experiments
- in particles for DM masses < 1 GeV, i.e. mA' < 3_ GeV, sizeable gap to relic target

11

- inspired by the proposal for the LDMX experiment
 - electron beam-dump experiment with 4-16 GeV electrons and up to ~tens of electrons on target per spill (see <u>arXiv:1808.05219</u>)
 - Phase I: μ_e = 1 @ 50 MHz
 - Phase II+: μ_e = 2-10 @ 50 MHz -200 MHz
- can do the same thing in Bonn at lower energies, possibly lower number of electrons on target per extraction
 - started to study the feasibility of a DM experiment at ELSA in 2019
 - general parameters:
 - benefit from electron energy resolution of ELSA
 - "cheap" experiment built from as many existing parts as possible
 - study orthogonal approach to LDMX calorimeter triggered approach

DARK PHOTON SEARCH AT ELSA: LOHENGRIN

model used in this presentation

hopefully not the final thing

two equally likely options for the final thing

ELSA – ELEKTRONEN STRETCHER ANLAGE

UNIVERSITÄT BONN

DARK PHOTON PRODUCTION AT ELSA

UNIVERSITÄT BONN

- how many electrons on target do we need (10% X0 tungsten target) to produce 1 dark photon with right "relic target properties"?
- how many full days of beam time would we need to produce 100 dark photons at 100 MHz EoT rate?

	Scalar			Majorana			Pseudo-Dirac		
mA [Mev]	ε ²	EoT1	t ₁₀₀ 2 [days]	ε ²	EoT1	t ₁₀₀ 2 [days]	ε ²	EoT1	t ₁₀₀ 2 [days]
4.5	4.3E-11	4.9E+12	112	2.2E-11	9.6E+12	221	2.9E-12	7.4E+13	1709
10	2.0E-10	4.7E+12	110	9.8E-11	9.7E+12	225	1.3E-11	7.5E+13	1729
100	2.6E-08	1.0E+13	238	1.2E-08	2.1E+13	495	1.2E-09	2.2E+14	5205
1000	5.4E-07	1.0E+19	238388060	2.7E-07	2.0E+19	472519191	2.5E-08	2.2E+20	5188446020

there is hope to find dark photons at ELSA with the right properties if we can control our backgrounds!

BACKGROUNDS

LOHENGRIN – WHAT HAS BEEN DONE SO FAR?

- goal posts are set
 - strategy to get there in Bonn, considering the constraints?
 - initial approach:
 - shoot single electrons on target → use "tag tracker" to establish the presence of one or more incoming electrons in the event
 - use ultrafast, ultrathin untriggered tracker to identify events with strongly scattered outgoing electrons
 - veto events with hadronic activity (HCAL)
 - search for events with a significant amount of missing energy in the final state
 - \rightarrow critical input: layout of the experiment
 - divide and conquer:
 - start with certain assumptions, possibly unrealistic
 - determine parameters for critical elements (magnet, tracker, calorimeter)
 - iterate!

Jan Heinrichs

STUDIES ON DETECTOR LAYOUT - MAGNET

- started with implementation of simple magnet and a few thin silicon tracking planes in ExPIORA framework

- 1 m long permanent dipol magnet (Halbach array), 0.5 T orthogonal to beam axis (thanks to our colleagues from the FASER collaboration)
- 6 layers of pixel tracking detectors in front of target
- 6 layers of pixel tracking detectors behind target
- thin tungsten target
- particle gun producing ELSA quality electrons with a momentum of 3.2 GeV

Jan Heinrichs

STUDIES ON DETECTOR LAYOUT – TRACKER AND TRACKING

- started with implementation of simple magnet and a few thin silicon tracking planes in ExPIORA framework
 - electron tracking: Kalman filter with smoothing steps for tag- and recoil-tracker
 - started to look into Gaussian sum filter and higher order effects to improve tracking
 - performance so far is an excellent starting point for improvements

LOHENGRIN – RATE TESTS WITH TIMEPIX3 MINITRACKER

Leonie Richarz Markus Gruber Tobias Schiffer

- started focusing on the tracker
 - implementation of a Kalman filter in simulation
 - production of a mini-tracker using untriggered TimePix3 silicon modules with beam telescope
 - rate capabilities of TimePix3 tested
 - first analysis of multiple scattering done

LOHENGRIN – RATE TESTS WITH TIMEPIX3 MINITRACKER

Leonie Richarz Markus Gruber Tobias Schiffer

- detector development: tracker

- first testbeam in 2020 with 3 Timepix3 silicon assemblies

2.5 GeV electron beam, 100 kHz

tracking resolution not perfectly understood yet (MS? track reco?)

Jan Heinrichs **Christoph Schmidt**

LOHENGRIN – ECAL

Matthias Hamer - Lohengrin Experiment - Particle Physics Seminar Bonn 09.11.202

 with enough information from tracking, do we have to measure the electrons in the center of the beam profile in the ECAL?

- missing a significant amount of energy from electrons and photons if we cut a hole in the ECAL
- we have to reconstruct the photons from SM
 bremsstrahlung to be sensitive to dark bremsstrahlung!
- considering the beam divergence, a central hole in the ECAL probably not the best idea

- Si-W sampling calorimeter could remedy radiation hardness issues
- readout speed and rate remains an issue

LOHENGRIN – ECAL

Jan Heinrichs Dirk Zerwas Roman Pöschl Jihane Maalmi Dominique Breton

- implementation of ECAL in simulation: CALICE
 - CALICE ECAL looks like a promising candidate for the Lohengrin ECAL
 - inclusion of a simple 15 layer ECAL in the Lohengrin simulation

- 5.5 x 5.5 mm2 silicon pixels
- modular design, 16 readout chips per ~16x16 cm2 plane
- chips can buffer integrated readout data for some time
- implementation of a "clear command" for use of Lohengrin DAQ strategy under study

Patrick Schwäbig

LOHENGRIN – TRIGGER

- use of AI engine driven track trigger for Lohengrin?
 - pattern recognition for multi-track events
 - implementation of track building and track fitting, e.g.
 Kalman filter

Matthias Hamer - Lohengrin Experiment - Particle Physics Seminar Bonn 09.11.2023

- ECAL that "catches" the full electron beam challenging
 - rates and radiation hardness
- tracker with fast readout in combination with an online track trigger of some sorts seems possible
 - AI engines as L1 trigger after a fast "LUT"-like Level 0 trigger -
- shape, size and strength of magnet critical to achieve good sensitivity
 - started to study a scenario in which the electron beam is bent around the ECAL _
 - will explain a somewhat more recent study in a bit detail now _
 - inputs for this study: —
 - 3.2 GeV electron beam on 10% X0 tungsten target
 - 4e14 electrons on target (@100 MHz: 50 days of beam time) _

LOHENGRIN – EVENT VARIABLES AND COORDINATE SYSTEM

- event variables:
 - y: fraction of scattered electron energy y = E_e / Ebeam
 - θ_e : polar angle of scattered electron with respect to the beam axis
 - x: fraction of photon energy $x = E_{\gamma}/Ebeam$
 - θ_{γ} : polar angle of radiated photon with respect to the beam axis
- z-axis is the incident electron beam axis
- magnetic field in tracker points in positive y direction

∕∕∖×
Nº I
$\left(\begin{array}{c} 0 \\ \end{array} \right) \longrightarrow 2$
אב-

- assumed setup:

Martin Schürmann

LOHENGRIN – LAYOUT AND SENSITIVITY STUDY

- "coarse-tuning" the experiment
 - using "masterfunction" to calculate the expected number of SM bremsstrahlung events where
 - $y \in [y_{\min}; y_{\max}]$
 - $\quad \theta_{e} \in [\theta_{e\min}; \theta_{e\max}]$
 - $x \in [x_{min}; x_{max}]$
 - $-\quad \theta_{\gamma} \in [\theta_{\gamma \min}; \, \theta_{\gamma \max}]$

can already guess potential signal regions:

- (very) low y
- high scattering angle → more signal events, but for fixed, low y, also more potential background events

Matthias Hamer - Lohengrin Experiment - Particle Physics Seminar Bonn 09.11.2023

Martin Schürmann

LOHENGRIN – LAYOUT AND SENSITIVITY STUDY

- "coarse-tuning" the experiment
 - used 4000 bins to define three baseline benchmarks for our experiment:
 - y = [1.6e-4; 0.95] in 40 bins
 - x = [0;1] in 1 bin (x = 1-y is, very roughly, a good approximation for non-pathological (i.e. boring) events)
 - θ_{e} = [1.e-5;0.25] in 10 bins
 - θ_{γ} = [1.e-5;0.25] in 10 bins
 - "masterfunction" predicts 3.08 x 10¹⁴ events in the above region
 - added 9.02 x 10^{13} "boring" events with y = 1, x = 0, θ_e = 0 to cover the phase space gap the masterfunction had problems calculating
 - for all events, electrons and photons are equally distributed in 100 ϕ -bins
 - looking at electron beam propagation and photon distribution to estimate rate in ECAL

z = 0.0 m

z = 0.5 m

z = 0.6 m

z = 0.7 m

z = 0.8 m

z = 1.5 m

z = 2.2

z = 3.0 m

z = 5.0 m

z = 6.0 m

z = 8.0 m

z = 10.0 m

- ECAL counting rates
 - incident electron rate: 100 MHz
 - each photon or electron that hits the ECAL counts as a hit, no matter the energy of said photon or electron
 - actual ECAL threshold: ~MIP

QED bremsstrahlung

B = 0.9 T

dECAL = 1.2 m

B = 0.9 T

dECAL = 1.5 m

dECAL = 3.2 m

dECAL = 4.0 m

ECAL HITRATE AS FUNCTION OF DECAL

- decided to study 3 benchmark scenarios for a start
 - all assuming rECAL = 0.16 m
 - 1) zBmax = 0.6 m B = 0.7 T dECAL = 7 m
 - 2) zBmax = 1.0 m B = 0.9 T dECAL = 3.5 m
 - 3) zBmax = 1.2 m B = 1.2 T dECAL = 2.5 m

					1	1		
rBmax [m]	zBmax [m]	$\theta_{\gamma}^{\text{max}} = \theta_{\gamma}^{\text{ECAL}}$ [rad]	d _{ECAL} [m]	r _{ECAL} [m]	B [T]	θ _e (zBmax, y=1)	r _e (zBmax) [m]	r _e (dECAL) [m]
0.1	0.6	0.165	7	1.167	0.7	0.039	0.012	0.264
0.1	1.0	0.100	3.5	0.350	0.9	0.084	0.042	0.254
0.1	1.2	0.083	2.5	0.208	1.2	0.135	0.081	0.258
	rBmax [m] 0.1 0.1 0.1	rBmax [m] zBmax [m] 0.1 0.6 0.1 1.0 0.1 1.2	rBmax [m] zBmax [m] $\theta_{\gamma}^{max} = \theta_{\gamma}^{ECAL}$ [rad] 0.1 0.6 0.165 0.1 1.0 0.100 0.1 1.2 0.083	rBmax [m] zBmax [m] $\theta_{\gamma}^{max} = \theta_{\gamma}^{ECAL}$ [rad] d_{ECAL} [m] 0.1 0.6 0.165 7 0.1 1.0 0.100 3.5 0.1 1.2 0.083 2.5	rBmax [m]zBmax [m] $\theta_{\gamma}^{max} = \theta_{\gamma}^{ECAL}$ [rad] d_{ECAL} [m] r_{ECAL} [m]0.10.60.16571.1670.11.00.1003.50.3500.11.20.0832.50.208	rBmax [m]zBmax [m] $\theta_{\gamma}^{max} = \theta_{\gamma}^{ECAL}$ [rad] d_{ECAL} [m] r_{ECAL} [m]B [T]0.10.60.16571.1670.70.11.00.1003.50.3500.90.11.20.0832.50.2081.2	rBmax [m] zBmax [m] θ _γ ^{max} = θ _γ ^{ECAL} [rad] d _{ECAL} [m] r _{ECAL} [m] B [T] θ _e (zBmax, y=1) 0.1 0.6 0.165 7 1.167 0.7 0.039 0.1 1.0 0.100 3.5 0.350 0.9 0.084 0.1 1.2 0.083 2.5 0.208 1.2 0.135	rBmax [m] zBmax [m] $\theta_{\gamma}^{max} = \theta_{\gamma}^{ECAL}$ [rad] d_{ECAL} [m] r_{ECAL} [m] B [T] θ_e (zBmax, y=1) r_e (zBmax) [m] 0.1 0.6 0.165 7 1.167 0.7 0.039 0.012 0.1 1.0 0.100 3.5 0.350 0.9 0.084 0.042 0.1 1.2 0.083 2.5 0.208 1.2 0.135 0.081

Matthias Hamer - Lonengrin Experiment - Particle Physics Seminar Bonn 09.11.2023

- used benchmark scenarios to get a feeling for the sensitivity reach of Lohengrin
 - used "master-function" to calculate expected number of signal and background events in finer binning, covering the entire phase space
 - geometry based approach to estimate number of fake signal events
 - assuming an HCAL can veto all events with hadronic activity
 - assuming perfect detector resolution
- tentative Signal Region defined using
 - outgoing electron momentum (p and $\theta)$
 - energy of photons that hit the ECAL
 - TLDR for Lohengrin SR:
 - very tight cut on outgoing electron energy
 - moderate cut on ECAL energy
 - ECAL covering a large polar angle crucial for efficient veto on fake missing E backgrounds

reminder

LOHENGRIN – SENSITIVITY RANGE ESTIMATE

- showing results for benchmark 2
 - mixture of optimistic and conservative choices
- tentative signal region
 - y < 0.024
 - E_e < ~ 75 MeV
 - bending radius in 0.9 T magnetic field R = 0.5m
 - difficult!
 - E_{ECAL} < 640 MeV
 - possibly a mA' dependent, two-sided cut on $\theta_{\rm e}$
 - "global" SR without this cut
 - "local" SR including this cut

- benchmark 2, rECAL = 0.16m, various DM masses
 - ϵ^2 set to value for which S/V(S+B) = 1 for the θ_e < 0.25

Benchmark 2

Benchmark 2

Benchmark 2

LOHENGRIN -SENSITIVITY RANGE ESTIMATE

rejection of hadronic backgrounds

- keeping cuts on electron and ECAL (global SR)
- assuming the energy of 1 in n radiated photons that would normally hit the ECAL is missed in the reconstruction
- n is a blackbox for electro-nuclear, photo-nuclear crosssections and the veto efficiency of the HCAL

hadronic backgrounds clearly need a dedicated study

Jan Heinrichs Andreas Salzburger

- focus to implement ACTS in our analysis framework for tracking

- focus to implement ACTS in our analysis framework for tracking
- started feasibility study on magnet with CERN TE-MSC-NSM (P. Thonet)

Matthias Hamer - Lohengrin Experiment - Particle Physics Seminar Bonn 09.11.2023

Hazem Hajjar

- focus to implement ACTS in our analysis framework for tracking
- started feasibility study on magnet with CERN TE-MSC-NSM (P. Thonet)
- scheduled a test beam with our collaborators from LAL Orsay for the CALICE ECAL prototype at ELSA (rate capability, resolution)
- started looking into requirements for the HCAL

- focus to implement ACTS in our analysis framework for tracking
- started feasibility study on magnet with CERN TE-MSC-NSM (P. Thonet)
- scheduled a test beam with our collaborators from LAL Orsay for the CALICE ECAL prototype at ELSA (rate capability, resolution)
- started looking into requirements for the HCAL
- continue to follow alternative approaches (hole in calorimeter, magnet shape and size, etc....)

- focus to implement ACTS in our analysis framework for tracking
- started feasibility study on magnet with CERN TE-MSC-NSM (P. Thonet)
- scheduled a test beam with our collaborators from LAL Orsay for the CALICE ECAL prototype at ELSA (rate capability, resolution)
- started looking into requirements for the HCAL
- continue to follow alternative approaches (hole in calorimeter, magnet shape and size, etc....)
- developments for a hardware track trigger proceeding in parallel

- a light dark matter search experiment at ELSA (Lohengrin) could be sensitive in the cosmologically preferred phase space
- feasibility study and layout optimization for Lohengrin yield promising results
- still in the very early stage of conceiving a conceptual design for Lohengrin
- studying possible technical solutions for our requirements
 - ultrathin, ultrafast, triggerless tracker
 - AI driven L1 track trigger
 - magnetic field strong enough to allow ~100 MeV electron tracking and bend primary beam around the ECAL
 - ECAL and HCAL with appropriate rate capabilities
 - DAQ system with online capabilities to be competitive with single EoT rate in the GHz regime
 - hope to publish a whitepaper soon
 - working on securing funding for a full blown CDR

Bonus slides

- assumed setup:

- as an example:
 - B = 0.9 T zBmax = 1.0 m
 - green: electron escapes the magnet
 - red: electron hits the magnet somewhere

y = 1.0

- as an example:
 - B = 0.9 T zBmax = 1.0 m
 - green: electron escapes the magnet
 - red: electron hits the magnet somewhere

- as an example:
 - B = 0.9 T zBmax = 1.0 m
 - green: electron escapes the magnet
 - red: electron hits the magnet somewhere

LOHENGRIN – LAYOUT AND SENSITIVITY STUDY

- as an example:
 - B = 0.9 T zBmax = 1.0 m
 - green: electron escapes the magnet
 - red: electron hits the magnet somewhere

y = 0.2