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Introduction



• Fishnet Feynman integrals [A. Zamolodchikov], [O. Gürdoğan,

V. Kazakov] of various shapes are known to be Yangian
invariant [Chicherin,Kazakov, Loebbert, Müller, Zhong]

• Yangian symmetry appears to be powerful tool for
bootstrapping integrals [F.Loebbert, D.Müller, H.Münkler ]

and intimately related to geometry [C. Duhr, A. Klemm, F.

Loebbert, C. Nega, F. Porkert ] , recall Christoph’s talk .

• It naturally prompts to look for the most general graphs that
would have Yangian symmetry and study the general structure
of the differential equations



• Reminder: what it means to be Yangian invariant

• Part 1: Yangian symmetry of Loom graph integrals

• Part 2: General Yangian differential equations



Yangian symmetry



Conformal invariance

• Conformal so(D, 2) symmetry can be represented as:

Pµ
j = −i∂xµj

, Dj = xµj ∂xµj
− i∆j , Lµνj = . . . , Kµ

j = . . .

PµIΓ (D,∆i |xi ) =
∑
j

Pµ
j IΓ (D,∆i |xi ) = 0

where the sum goes over all external vertices.

• Massless integrals are conformal if the sum of propagator
dimensions in each vertex is D



Yangian invariance

Additional symmetry :

P̂µIΓ(D,∆|x) = 0

with

P̂µ = − i

2

∑
j<k

[(Lµνj + gµνDj)Pk,ν − (j ↔ k)] +
∑
j

sj(Γ)P
µ
j

where Pµ
j etc. act on the j ’th external leg and parameters sj(Γ)

depend on the graph.



Yangian invariance

For any Lie algebra g one can construct an infinite algebra (not a
Lie algebra) Y (g) generated by: Ja -level zero, Ĵa - level one
generators, with relations [V. Drinfeld] :

[Ja, Jb] = f abc Jc , [Ja, Ĵb] = f abc Ĵc ,

[Ja, [Ĵb, Jc ]] + [Jb, [Ĵc , Ja]] + [Ĵc , [Ja, Jb]] =

= f apd f
b
qx f

c
ry f

xyd Sym (Jp, Jq, J r )

+ . . .



• It can be realized as:

Ja =
n∑

j=1

Jaj , Ĵa =
n∑

j<k=1

f abcJ
b
j J

c
k +

n∑
j=1

ujJj

where Jai form n copies of the initial algebra.

• In terms of spin chain n is the length of the chain. In terms of
diagrams - the number of external legs.

• A single level one generator is enough to generate the Yangian
- in our case the P̂µ



Part 1: Yangian invariance of Loom graph integrals

[2304.04654, V.Kazakov, F.Levkovich-Maslyuk,V.M.]



• Fishnets graphs are the only graphs present in the planar
fishnet theory [O. Gürdoğan, V. Kazakov]

• [V. Kazakov,E.Olivucci] have constructed a generalization - the
so called Loom CFT’s in any dimensional with more generic
graphs that dominate the planar limit.

• In our case we focus on single graphs and show that Loom
graph integrals are Yangian invariant



The graphs

Graph drawn on a Baxter lattice





The graphs
• Vertices on the faces of a lattice made up from straight lines

• Internal vertex (the one integrated over) should necessarily
connect to all neighbors

• External legs can also go in an ”open” face

• Propagators
1

|x1 − x2|2∆
,

- where ∆ is determined by the angle of the polygon through
which the propagator passes as

∆α = D
π − α

2π
.

• For a graph Γ we have:

IΓ (D,∆|x) =
∫ ∏

k∈internal
dDxk

∏
⟨i ,j⟩

1

(xi − xj)
2∆ij



The graphs

Fragment of a Feynman graph. The propagator between points x1, x2 is
given by (x1 − x2)

−2∆ with the power determined by the angle α through
which it passes according to ∆ = D π−α

2π .



The graphs

Graph drawn on a Baxter lattice



The graphs

Δ1

Δ1'

Δ2

Δ3

Δ2'

Δ3'

Graph with external legs on open faces

Notice that in addition to constraints coming from each vertex:

∆1+∆′
1+∆′

3 = D , ∆2+∆′
1+∆′

2 = D , ∆3+∆′
2+∆′

3 = D ,

we have an extra ’non-local’ (i.e. not associated to a single
internal vertex) constraint

∆′
1 +∆′

2 +∆′
3 = D/2 .



The graphs
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The same Feynman graph drawn on two different looms.



Conformal invariance

• The construction ensures that

n∑
i=1

∆αi = D
n∑

i=1

π − αi

2π
= D

• The star-triangle transform can be utilized and corresponds to
moving the lines of the Baxter lattice.



The graphs

There are two main constraints on the integral that are considered

• The graph is necessarily drawn on the Baxter lattice

• The propagator powers are determined by the respective
angles.

The combination of the two constrains leads to ”non-local”
relations between propagator powers of the graph.



Lasso method



• Usual origin of Yangian symmetry in spin-chains/integrable
field theories is the RLL/RTT relation Enrico’s talk .

Lax operator (RLL) : L(u)

⇓

Monoromy matrix (RTT) : T (u) =
∏
i∈ext.

Li (u + δi )



Conformal Lax operator

• In the case at hand, the Lax operator explicitly given by [D.
Chicherin, S. Derkachov, A.P. Isaev]:

Lαβ
(
u+ = u + δ+, u− = u + δ−

)
=

(
u+ − px p

x(u+ − u−)− xpx xp+ u−

)
αβ

.

with

x = −i σ̄µxµ , p = − i

2
σµ∂xµ ,

• Spinor representation in the auxiliary space, and an infinite
dimensional representation in the physical space



Yangian symmetry

• One shows that the Feynman graph is an eigenvector of the
whole monodromy matrix [D.Chicherin, V. Kazakov,

,F.Loebbert, D. Müller,D.-l. Zhong] :

Tαβ(u, δ⃗)IΓ = λΓ(u, δ⃗)δαβIΓ

• As usually, the monodromy is constructed via a chain of Lax
operators:

T (u, δ⃗) =
next∏
i=1

Li (u + δ+i , u + δ−i ) =

=
next∏
i=1

L[δ+i , δ
−
i ]

over all external lines.



Yangian symmetry

• According to the general prescription :

T (u, δ⃗) ∼ un
(
1+

1

u
J +

1

u2
Ĵ(δ⃗) + . . .

)

• Shift δi ⇒ sj(Γ) in the equations.



The Lasso method

• To prove Yangian symmetry (and determine the sj
parameters) we generalize the ”Lasso method” [D.Chicherin,

V. Kazakov, ,F.Loebbert, D. Müller,D.-l. Zhong] , which relies on
the intertwining relations:

L1(u +∆, u′)L2(v , u)
1

x2∆12
=

1

x2∆12
L1(u, u

′)L2(v , u +∆) ,

and action at special points:

Lαβ(u, u + D/2) · 1 = (u + D/2)δαβ ,



• Consistency of using consequent intertwining relations ⇔
choice of δ± on each leg.

• After that one has to still show that the relations between
distant legs are consistent



Example: cross

• Consider the cross integral (all ∆i = 1,D = 4):

I+(x1, . . . x4) =

∫
d4x0

1

x201x
2
02x

2
03x

2
04

• The Lax chain is given by:

L4[4, 5]L3[3, 4]L2[2, 3]L1[1, 2]I+ = [3]4][5][4]I+

• Notation [δ] ≡ u + δ



Example: cross

• First we insert a total derivative

I+(x1, . . . x4) =

∫
d4x0

1

x201x
2
02x

2
03x

2
04

(
LT0 [2, 0] · 1

[2]

)
=

=
1

[2]

∫
d4x0L0[2, 0]

1

x201x
2
02x

2
03x

2
04

.

• Then one pushes the Lax operators through the propagators:

L1[∆1, 2]L0[2, 0]
1

x210
=

1

x210
L1[0, 2]L0[2, 1]

The parameters are suited in such way that we obtain
L1[0, 2] · 1 = [2]1 · 1



The Lasso method

From [D.Chicherin, V. Kazakov, ,F.Loebbert, D. Müller,D.-l. Zhong] .
Lasso for square 4D fishnets



The Lasso method

Represent the Lax chain graphically:

The blue ”interval” represent Lax operators acting on the propagator
which they cross. The ”Lasso” represents their product, aka the
monodromy matrix.



The Lasso method

Lk+1[w +∆k +∆k+1,w +∆k + D/2]

L
k+

2 [w
+
∆

k +
∆

k+
1 +

∆
k+

2 ,w
+
∆

k +
∆

k+
1 +

D
/2]

L k
[w

+
∆
k
,w

+
D
/2
]

xk

xk+1

xk+2

Labels for consecutive Lax operators, that share a common vertex. Three
of the vertices are depicted with the corresponding Lax operators



The Lasso method
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The Lasso method

The move corresponds to the following transformation:

∫
dDx0

(
next∏
i=1

Li

[
w +

i∑
k=1

∆ext
k ,w +

D

2
+

i−1∑
k=1

∆ext
k

])
×

×
next∏
i=1

1

(xext
0i )2∆

ext
i

·
nint∏
j=1

1

(x int
0j )2∆

int
j

=

=

next∏
i=1

[
w +∆ext

j +
D

2

]
×

×
∫

dDx0

next∏
i=1

1

(xext
0i )2∆

ext
i

· L0

[
w +

D

2
,w +

next∑
j=1

∆ext
j

]
·
nint∏
j=1

1

(x int
0j )2∆

int
j

.



The Lasso method

∆′
1

∆′
2

∆′
3

[w +∆k ,w + D/2]
[w̃ +∆k+1, w̃

+ D/2]

x0

xk

x0̃

xk+1

Prescription of labels for the Lax operator for consecutive external legs
Here w̃ is given by w̃ = w +∆k +

∑p
i=1(∆

′
i − D/2) with p = 3.



The Lasso method
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The Lasso method
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The Lasso method

x0
int

x1
ext

x1
int x4

int

x2
int

Δ1
ext

Δ2
ext

Δj
ext

Δ1
int

Δ2
int

Δ3
int

Δ3
int

The Lax chain of the lasso after transformation has been applied to x0
and x intnint , for nint = 4. As clearly seen from the picture, after applying it
to all vertices x intj the lasso won’t act on the the coordinate x0 anymore.



The Lasso method

• A minor modification from [Chicherin,Kazakov, Loebbert,
Müller, Zhong] allows also to find eigenvalues and hence
obtain the sj(Γ) parameters:

sj =
1

2

∑
j ̸=j

(δ+k + δ−k + D/2)



• At least locally we prove that the Lasso method works, hence
generic Loom fishnets are Yangian invariant

• We get the shift prescriptions for Lax for generic loom graphs
⇒ explicit si (Γ) in Yangian equations from the graph



The Lasso method: example

Δ1

Δ1'

Δ2

Δ3Δ2'

Δ3'

Δ4'

Δ4

Δ5
Δ6

x1

x2
x3

x6

x4

x5

Square with 6 legs.

In addition to local relations between dimension for each vertex we
have:

∆6 +∆2 +∆5 = D ⇒ 5 independent parameters.



The Lasso method: example

• The monodromy matrix:

L6[∆(11′) + D/2,∆(121′5)]L5[∆(121′5) − D/2,∆(121′)]×
× L4[D,∆(13) + D/2]L3[∆(13),∆1 + D/2]×
× L2[∆(121′) − D/2,∆(11′)]L1[∆1,D/2]

• The parameters

sj =

{
0,−∆′

1 −
∆1

2
− ∆2

2
+ D/2,−∆1

2
− ∆3

2
,−∆3

2
− D/2,

−∆′
1 −

∆1

2
−∆2 −

∆5

2
+ D/2,−∆′

1 −
∆1

2
− ∆2

2
− ∆5

2

}



Infinite-dimensional auxiliary space

• One can take the auxiliary space to be infinite dimensional.



Part 2: Studying Yangian invariant integrals

[to appear, F.Levkovich-Maslyuk,V.M.]



• Which kinds of graphs are in the class of Loom graphs and
hence Yangian symmetric?

• For a given graph, how many free parameters?

• Is the Loom equivalent to dual conformal symmetry?

• What if we look for Yangian or Yangian like symmetry - will we
recover the Loom?

• What is the structure of the Yangian equations?

• How many independent constraints?

• Are they always consistent?

• What is the space of solutions?

Question where analyzed in [F.Loebbert, D.Müller, H.Münkler]



Structure of the equations

• Explicit form of the level one momentum generators:

P̂µ =
1

2

∑
j<k

(
δµαδλν − δναδµλ − δµνδαλ

)
(xj − xk)

α ∂2

∂xλj ∂x
ν
k

+

+
∑
j

sj
∂

∂xµj



• Conformal symmetry implies that:

IΓ(x) =
∏
i<j

x
2βij

ij I
(0)
Γ (ξA)

Cross ratios:
ξA =

∏
i<j

x
2αij

ij

with

αA
ij = αA

ji , αA
ii = 0 ,

∑
i

αA
ij = 0

Where A labels different N(N−3)
2 cross ratios(

ND − (D+1)(D+2)
2

)
• Conformal weights satisfy

βij = βji βii = 0
∑
i

βij = −∆i



• The level one generator then rewrites in terms of cross ratios
as [F.Loebbert, D.Müller, H.Münkler ]:

P̂µ =
∑
jk

xµjk
x2jk

PDEjk

• Equations PDEjk are purely in terms of cross ratios



Example: The cross

• Following [F.Loebbert, D.Müller, H.Münkle]

I+(x) =

∫
dDx0

x2∆1
10 x2∆2

20 x2∆3
30 x2∆4

40

=

= x2∆2+2∆3−D
14 x2∆4−D

13 x−2∆3−2∆4+D
34 x−2∆2

24 I
(0)
+ (u, v)

• Cross ratios are chosen as:

u =
x212x

2
34

x213x
2
24

, v =
x214x

2
23

x213x
2
24

α1
12 = α1

34 = −α1
13 = −α1

24 = 1

α2
14 = α1

23 = −α1
13 = −α1

24 = 1



• Out of 4 · 3/2 = 6 PDEik only 2 are independent

0 = (αβ + (α+ β)(u∂u + v∂v )+

+(u∂u + v∂v )
2 − u∂2

u − γ∂u
)
I
(0)
+ (u, v)

0 = (αβ + (α+ β)(u∂u + v∂v )+

+(u∂u + v∂v )
2 − v∂2

v − γ′∂v
)
I
(0)
+ (u, v).

• 4-dim solution space - Appel F4 functions

• + choice of convergence region + symmetries + boundary
conditions [F.Loebbert, D.Müller, H.Münkler]



• Invert logic - suppose we have a Yangian invariant function,
i.e. we don’t know the graph and the ∆i , si are generic.

In the previous example si are fixed and ∆i satisfy the
conformal condition.

• Are the equations consistent?

• How do equation look for generic number of points and choice
of cross ratios.



• Start with 4-point again. The system PDEik is
overdetermined in general.

• In particular a linear combination of equations produces

∂

∂u
I (0)(u, v) = 0



• Demand that there are no equations of first order, this is
possible only in three cases :

4∑
i=1

∆i = D ,

∆1 +∆2 = ∆3 +∆4

∆1 +∆4 = ∆2 +∆3

and si parameters are fixed.

• We obtain the same conditions if we look for a non-zero series
solution.



1

5

2

6

3

4



Higher points

• Higher points - long equations, many cross ratios. We need
general form of PDEik .

• Six-points - 9 cross ratios, 15 PDEik . [F.Loebbert, D.Müller,

H.Münkler]



General equation

• General form of the equation

PDEik = 2

 ∑
l>j>i

−
∑
l<j<i

+
∑

l<k<i ,j

−
∑

l>k>i ,j

χikljθilθjk+

+
∑
j ̸=i

(δj>i − δj<i )θikθij + δi>k

2
i−1∑

j=k+1

∆j +∆i + D

 θik−

− δi<k

2
k−1∑
j=i+1

∆j +∆i + D

 θik + 2(sk − si )θik

where:

χiklj =
x2ikx

2
lj

x2il x
2
kj

, θij =
∑
A

αA
ij ξ

A ∂

∂ξA
+ βij



• Given any specific choice of cross-ratios the equations above
are immediately rewritten. The equations itself is written in
an invariant form. Reproduce 15 eq-s of [F.Loebbert, D.Müller,

H.Münkler]

• Asking for consistency conditions at higher N is still hard.

• Instead notice:

Liklj = θikθlj − χikljθilθkj

Which are just:

Liklj =
∂2

∂(x2ik)∂(x
2
lj )

− ∂2

∂(x2il )∂(x
2
kj)



• Liklj lie in the GKZ [I.Gel’fand, A. Zelevinskii, M. Kapranov

(1989)] differential ideal (conjecturaly equivalent)
[A.Pal,K.Ray]

• GKZ equations have known solutions in therms of
A-hypergeometric functions and can be treated with
hypergeometric methods



GKZ systems

• GKZ system of differential equations is defined with a n × N
matrix A and a n vector b, such that vector (1, . . . , 1) is in
the row span of A.

• For all ℓ ∈ ZN and
Aℓ = 0

set: ∏
ℓi>0

∂ℓi
zi
−

∏
ℓi<0

∂−ℓi
zi

and ∑
j

Aijzj
∂

∂zj
− bi



• GKZ system has a finite space of solutions, convergent series
representations are determined from the data.

• Solutions come in form of generalized hypergeometric series:∑
u∈kerA

1∏N
i=1 Γ(γi + ui + 1)

zui+γi
i

where Aγ = bT



• GKZ systems coming from Yangian correspond to matrices A

of size N × N(N − 1)

2
:

Ai ,jk = δik + δij

• The equations look like [A.Pal,K.Ray]

N∑
j ,k=1
j<k

Ai ,jkx
2
jk∂jk +∆i , ∀i

∏
ℓAij>0

∂
ℓAij
ij −

∏
ℓAij<0

∂
−ℓAij
ij ,A = 1, 2, · · · ,N0

for ∑
(jk)|j<k

j ,k=1,2,··· ,N

Ai ,jkℓ
A
jk = 0 ⇔ ℓAjk = αA

jk



Yangian vs GKZ

• Is PDEik just a sum of Likjl?

• The expression

PDEik −

2

 ∑
l>j>i

−
∑
l<j<i

+
∑

l<k<i ,j

−
∑

l>k>i ,j

Liklj


is a first order operator.

• The difference is identically zero iff:

n∑
i=1

∆i = D

with si fixed. We recover the cross case [A.Pal,K.Ray]



• Introduce conjugated GKZ system operators

Lκiklj =

∏
ij

x
2κij

ij

−1

Liklj

∏
ij

x
2κij

ij


and its counterpart Lκ

iklj , where:

Lκ
iklj = θκikθ

κ
lj − χikljθ

κ
il θ

κ
kj , θκij = θij + κij

• Then ask to eliminate si and κ from:

PDEik −

2

 ∑
l>j>i

−
∑
l<j<i

+
∑

l<k<i ,j

−
∑

l>k>i ,j

Lκ
iklj

 = 0



• At 4 points we get the conditions:

(∆1 +∆2 −∆3 −∆4) (∆1 −∆2 −∆3 +∆4) (∆1 +∆2 +∆3 +∆4 − D) = 0

• At 5 points we get many conditions like:

2D = ∆1 +∆2 +∆3 +∆4 +∆5

D = ∆1 +∆2 +∆3 +∆4 +∆5

∆1 +∆4 +∆5 = ∆2 +∆3

D +∆3 = ∆1 +∆2 +∆4 +∆5

...



Conclusion & Speculations



Conclusion & Speculations

• Yangian symmetry proved for any Loom graphs. Explicit
prescription to evaluate the si parameters

• The desired graphs are more common among planar graphs.
However, often one needs unusual powers of propagators.



Conclusion & Speculations

• The general form of the cross ratios equations is given.

• Consistency of the equations produces all the possible cases,
when a graph can be Yangian invariant

• In all consistent cases the Yangian system is equivalent to a
GKZ systems with a very special type of toric matrices A



Further directions

• Further study of the infinite dimensional auxiliary space.

• GKZ systems are related to Calabi-Yau geometry. Is our
observation related to some D-dimensional deformation of
P.F. equation for fishnet CY periods?

• Yangian invariant integrals in D dimensions are generalized
hypergeometric functions. Relation to work of [C.Duhr,

F.Porkert] in two-dimensions?


