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Recent and Current Work on Integrable Fishnet QFTs:
Eclectic Spin Chains, Partition Functions, Supergraphs

• Earlier work with Asger Ipsen and Leo Zippelius on the one-loop
dilatation operator of dynamical fishnet models, arXiv:1812.08794.

• Work with Changrim Ahn and Luke Corcoran on “eclectic” spin chains,
arXiv:2010.14515, arXiv:2112.04506, arXiv:2207.02885.

• Work with Moritz Kade on brick wall, arXiv:2309.16640, and
super brick wall, arXiv:2408.05805, models (this talk).

• Ongoing work by Moritz on super fishnet ABJM models (this talk).

• Ongoing work w. Changrim Ahn and Moritz Kade on fishnet boundaries.
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Motivation

There has been some recent interest in strongly twisted planar N=4
Super Yang-Mills Theory. This is a non-unitary yet still conformal and
integrable quantum field theory. It was proposed that the model is simpler
than the undeformed or finitely twisted theory, and that its integrability
can be more easily understood: A kind of toy model for the N=4 toy
model. The crucial feature is a vastly reduced set of Feynman diagrams
of “fishnet type”. Many exact computations are possible. Conceptually,
it yields a rather clear picture of the previously rather mysterious “mirror
particles” in the TBA approach.

However, so far it has not yet much helped to better understand N=4
SYM integrability as such. Arguably this is due to the fact the Feynman
graph expansion is now too simple, and it is not clear how to move back
to the “real thing”. A first step would be to understand the “dynamical”
fishnet models, where the rigid lattice structures are starting to “melt”.
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Integrable Textbook Quantum Field Theories, I

φ4-theory → biscalar fishnet model: [ A. Zamolodchikov ‘80; O. Gürdoğan, V. Kazakov ‘15 ]

LFN = Ntr

⎡

⎣

1

2

2
∑

j=1

∂µφ†j∂µφj + ξ2φ†1φ
†
2φ1φ2

⎤

⎦ .

Yukawa theory → brick wall model: [ A. Pittelli, M. Preti ‘18; MS + MK ‘23 ]

LBW = Ntr

[

−1

2
∂µφ†∂µφ+ i

2
∑

k=1

ψ̄k/∂ψk + ρ
(

ψ1φψ2 + ψ̄1φ
†ψ̄2

)

]

.

Cooking recipe: Take a massless textbook QFT, turn fields into matrices,
take the planar limit, make a chiral projection →
Obtain a non-unitary, conformal, integrable QFT.
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Integrable Textbook Quantum Field Theories, II

Apply to the following text book model:

Wess-Zumino model → super brick wall model: [ MS + MK ‘23 ]

LSBW = Ntr

(

3
∑

i=1

Φ†
iΦi + iξ θ̄2Φ1Φ2Φ3 + iξ θ2Φ†

1Φ
†
2Φ

†
3

)

.

Here the N = 1 superspace action for the three superfields Φj is

SSBW =

∫

d4x d2θd2θ̄LSBW .

Should be non-unitary, conformal, and integrable according to the recipe.
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Relation to Strongly Twisted N=4 SYM, I

Start from planar, integrable, three-parameter γ-deformed N=4 SYM.

Perform double-scaling limit [ O. Gürdoğan, V. Kazakov ‘15; Sieg, Wilhelm ‘16; Kazakov et.al. ‘18 ].

g =

√
λ

4π
−→ 0 and qj = e−iγj/2 −→ ∞

Write qj := g−1 ξj and take g to zero. This yields:

Lint = Ntr
(

ξ23 φ
†
1φ

†
2φ1φ2 + ξ22 φ

†
3φ

†
1φ3φ1 + ξ21 φ

†
2φ

†
3φ2φ3

)

+Ntr
(

i
√

ξ2ξ3(ψ3φ1ψ2 + ψ̄3φ
†
1ψ̄2) + cyclic

)

Gauge fields “decouple”. Biscalar fishnet model: ξ1 = ξ2 = 0, ξ3 = ξ.
(The brick wall model cannot quite be obtained like that. One may derive
it from a double-scaling limit of N=2 SCFT.)
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Relation to Strongly Twisted N=4 SYM, II

The full three-parameter model is much richer than the fishnet model, it
has been dubbed ,,dynamical fishnet” model. [ V. Kazakov, E. Olivuccci, M. Preti ‘19 ]

While also integrable, its integrability is much harder to see and use. So
far no graph-building operator, no star-triangle relation, no Yang-Baxter
equation, no R-matrix, ...

However, there is a special point in parameter space, ξ1 = ξ2 = ξ3 := ξ:

Lint = Ntr ξ2
(

φ†1φ
†
2φ1φ2 + φ†3φ

†
1φ3φ1 + φ†2φ

†
3φ2φ3

)

+Ntr iξ
(

(ψ3φ1ψ2 + ψ̄3φ
†
1ψ̄2) + cyclic

)

Obtained from the double scaling limit of β-deformed N=4 SYM .
Crucially for us, it keeps its N=1 supersymmetry!
Idea: Use N=1 supergraphs.
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N = 1 supersymmetric β-deformation of N = 4 SYM

Written in N = 1 superspace, with q = eiβ, it reads [ Jin,Roiban ‘12]

S =

∫

d4x d2θd2θ̄
3

∑

i=1

tr
[

e−gVΦ†
ie

gVΦi

]

+
1

2g2

∫

d4x d2θ tr [WαWα]

+ ig

∫

d4x d2θ tr
[

q Φ1Φ2Φ3 − q−1Φ1Φ3Φ2

]

+ h.c. ,

where V = vector superfield (encoding the gauge field), Φi are three
chiral superfields, and Wα = iD̄2

(

e−gVDαegV
)

, D, D̄ super derivatives.
After double scaling, we find the announced super brick wall model action

SSBW = Ntr

∫

d4xd2θd2θ̄

[

3
∑

i=1

Φ†
iΦi + iξ θ̄2Φ1Φ2Φ3 + iξ θ2Φ†

1Φ
†
2Φ

†
3

]

.
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Super Fields and Super Feynman Rules

Chiral superfield at point z = (x, θ, θ̄) in superspace:

Φi(z) = eiθσ
µθ̄∂µ

[

φi(x) +
√
2 θψi(x) + θ2Fi(x)

]

Here φi= scalars, ψi= fermions, Fi= auxiliary fields.
Generalized Superfield propagator w. xµ

12̄
:= xµ

1−xµ
2+i

[

θ1σ
µθ̄1 + θ2σ

µθ̄2 − 2θ1σ
µθ̄2

]

〈

Φi(z1)Φ
†
j(z2)

〉

u
= ei[θ1σ

µθ̄1+θ2σ
µθ̄2−2θ1σ

µθ̄2]∂1,µ δij
[x2

12]
u =

δij
[

x2
12̄

]u

=

Super vertices (chiral and anti-chiral):

Super-Feynman rules

Chiral superfield at point z = (x , ✓, ✓̄) superspace

�i (z) = ei✓�
µ✓̄@µ

h
�i (x) +

p
2 ✓ i (x) + ✓2Fi (x)

i

Generalized Superfield propagator
(xµ

12̄
:= xµ

1
� xµ

2
+ i

⇥
✓1�

µ✓̄1 + ✓2�
µ✓̄2 � 2✓1�

µ✓̄2
⇤
)

D
�i (z1)�

†
j (z2)

E

u
= ei[✓1�

µ✓̄1+✓2�µ✓̄2�2✓1�µ✓̄2]@1,µ �ij⇥
x2
12

⇤u =
�ijh
x2
12̄

iu

= z2z1
u

Super-vertices (chiral and anti-chiral)

⇠ �⇠

Z
d4x d2✓ d2✓̄ �(2)(✓̄) , ⇠ �⇠

Z
d4x d2✓ d2✓̄ �(2)(✓) .
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A Superconformal Near-Star-Triangle Relation

The success with finding a “spin chain” encoding the Feynman graphs of
the biscalar fishnet model rests on the existence of a star-triangle relation,
which then implies an R-matrix satisfying a Yang-Baxter-equation.

We could not find it yet. (Maybe it does not exist?)

However, we found the following relation due to Osborn: [ Osborn ‘98; Dolan, Osborn ‘00 ]

i

∫

d4x0 d
2θ0 d

2θ̄0 δ
(2)(θ0)

1
[

x2
10̄

]u1

1
[

x2
20̄

]u2

1
[

x2
30̄

]u3

= −4 r(u1, u2, u3)
(θ12θ13)x2

23,+ + (θ23θ21)x2
31,+ + (θ31θ32)x2

12,+

[x2
12,+]

2−u3[x2
23,+]

2−u1[x2
31,+]

2−u2

with u1+u2+u3 = 3 and where xµ
ij,+ = xµ

i,+−xµ
j,+ and xµ

± = xµ±iθσµθ̄,

θij = θi− θj and r(u1, u2, u3) = π2a(u1)a(u2)a(u3) with a(u) = Γ(2−u)
Γ(u) .

Clearly the l.h.s. is a star, but r.h.s. does not quite factor into a triangle.
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Super Chain Relations
As in the fishnet case, we may derive the following chain relation

[

i

∫

d4x0 d
2θ̄0

1
[

x2
10̄

]u1

1
[

x2
20̄

]u2

]

θ0=0
θ̄1,2=0

= −4 r(3− u1 − u2, u1, u2)
θ212

[x2
12]

u1+u2−1 ,

= −4 r(3− u1 − u2, u1, u2)

as well as its chiral analogue. A crucial special case is

lim
ε→0

= −4π4 · a(u) a(3− u)

= −4π4 · a(u) a(3− u) δ(2) (θ12) δ
(4) (x12)

plus is chiral counterpart.

Useful superintegral relations

Osborn’s formula [Osborn:9808041][Dolan,Osborn:0006098]

i

Z
d4x0 d

2✓0 d
2✓̄0 �

(2)(✓0)
1⇥

x2
10̄

⇤u1
1⇥

x2
20̄

⇤u2
1⇥

x2
30̄

⇤u3

u1+u2+u3=3
= �4 r(u1, u2, u3)

(✓12✓13) x223,+ + (✓23✓21) x231,+ + (✓31✓32) x212,+
[x2

12,+]
2�u3 [x2

23,+]
2�u1 [x2

31,+]
2�u2

with xµij,+ := xµi,+ � xµj,+, x
µ
± = xµ ± i✓�µ✓̄

and r(u1, u2, u3) := ⇡2a(u1)a(u2)a(u3), a(u) :=
�(2�u)
�(u)

Chain relation:

z2
z0

z1
u1 u2 = �4 r(3� u1 � u2, u1, u2) z2z1

u1 + u2 � 1

In particular

lim
"!0

z2
z0

z1
u 3� u� " = �4⇡4 · a(u) a(3� u) z2z1
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Unfortunately, we have not yet been able to derive a suitable Yang-Baxter equation (YBE)

along with a manifestly commuting transfer matrix based on (3.7). We are however confident

that these exist, postponing their rigorous derivation to later work. In this context, we would

like to make the important remark that a proper STR is in general only a su�cient but not

necessary condition for an YBE. Remarkably, despite this shortcoming, in the below we will

provide exciting evidence for the model’s integrability by demonstrating that Zamolodchikov’s

method of inversions [4], see also [21], may nevertheless be successfully applied.

3.3 Super chain relations

Similar to the bosonic STR, we can derive superspace chain relations for the convolution of

two superspace propagators (3.5). To this end, we could take the bosonic coordinate of one

external point in (3.7) to infinity and compare the proportionality constants. Alternatively,

we can show by direct integration, see appendix B.1, the chain relation
"
i

Z
d4x0 d

2✓̄0
1⇥

x2
10̄

⇤u1

1⇥
x2
20̄

⇤u2

#

✓0=0
✓̄1,2=0

= �4 r(3� u1 � u2, u1, u2)
✓212⇥

x212
⇤u1+u2�1 , (3.9a)

z2
z0

z1
u1 u2

= �4 r(3� u1 � u2, u1, u2) z2z1
u1 + u2 � 1 , (3.9b)

and its chiral counterpart
"
i

Z
d4x0 d

2✓0
1⇥

x2
1̄0

⇤u1

1⇥
x2
2̄0

⇤u2

#

✓̄0=0
✓1,2=0

= �4 r(3� u1 � u2, u1, u2)
✓̄212⇥

x212
⇤u1+u2�1 , (3.10a)

z2
z0

z1
u1 u2

= �4 r(3� u1 � u2, u1, u2) z2z1
u1 + u2 � 1 . (3.10b)

In the last two equations, we introduced new graphical representations for the following formal

two-point functions in superspace

✓212⇥
x212

⇤u = z2z1
u ,

✓̄212⇥
x212

⇤u = z2z1
u , (3.11)

which act like chiral and anti-chiral delta functions on the fermionic subspace, respectively.

On the bosonic part of superspace, the functions (3.11) are bosonic generalized propagators.

This means that they are subject to the usual bosonic delta function prescription when their

spectral parameter approaches D/2 = 2 in conjunction with being multiplied by a("),

�(4) (x12) = lim
"!0

⇡�2a(") · 1
⇥
x212

⇤2�" . (3.12)

We are therefore able to express the unity kernel for chiral/anti-chiral superspace integrations

through the convolution of two generalized superspace propagators as

lim
"!0

z2
z0

z1
u 3� u� "

= �4⇡4 · a(u) a(3� u) z2z1 , (3.13a)

lim
"!0

z2
z0

z1
u 3� u� "

= �4⇡4 · a(u) a(3� u) z2z1 . (3.13b)
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Super X-Unity Relations

Intriguingly, for our super brick wall model an x-unity relation also exists.
It may be derived from the near-star-triange relation. We found

Useful superintegral relations

Auxiliary relation: Super x-unity [MK,Staudacher:2408.05805]

v

�v

u

3� u

= �4⇡4a(u) a(3� u)

u

3� u

v

�v

= �4⇡4a(u) a(3� u)
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as well as their two chiral analogues.



Free energy in the thermodynamic limit of water ice

O

H

H

OH

H

O HH

OH

H

OH

H

O H

H

O HH

OH

H

O

H

H

�!
b

c

a

Experimental residual
entropy: 1.540± 0.001

ZMN =
X

⌦2⇤MN

an1+n2bn3+n4cn5+n6

K (a, b, c) = lim
M,N!1

(ZMN)
1/MN

K (1, 1, 1) =

✓
4

3

◆3/2

⇡ 1.5396 [Lieb ’67]

Also obtained by method of inversion relations [Stroganov ’79]
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Method of inversion relations

Inverse of the
transfer matrix/
Graph builder

+

toroidal
partition function

[Stroganov’79]

[Zamolodchikov’80]

[Bazhanov,Kels,Sergeev:1602.07076]

[MK,Staudacher:2309.16640]

free energy in
thermodynamic limit

Applicable to integrable QFTs by interpreting them as integrable
lattice models with generalized propagators as weights, results in

exact value for critical coupling.
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Vacuum superdiagrams

Row-matrices are stacked up and periodically identified to form a
toroidal vacuum superdiagrams of double-scaled �-deformation
of N = 4 SYM:

Z3,4 ( 0 1
1 1 ) = Tr

h
T4 ( 0 1

1 1 )
3
i
=

with generalized row-matrix

TN
� u+ v+
u� v�

�
=

u+

u�

v+

v�

u+

u�

v+

v�

u+

u�

v+

v�

· · ·

u+

u�

v+

v�
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Generalized vacuum diagrams

The generalized free energy

Z
� u+ v+
u� v�

�
=

1X

M,N=1

ZMN
� u+ v+
u� v�

�
(�⇠)2M·N

possesses the critical coupling = (radius of convergence)�1

K
� u+ v+
u� v�

�
= lim

M,N!1

��ZMN
� u+ v+
u� v�

��� 1
MN

= lim
N!1

��⇤max,N
� u+ v+
u� v�

��� 1
N

Goal: Find the inverse of the row-matrix, which should be itself at
di↵erent spectral parameter point. Then let the product act on the
eigenvector corresponding to the maximal eigenvalue ⇤max,N to
obtain functional relations.
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Inversion relations

There are four representations of the inverse of TN
� u+ v+
u� v�

�
.

E.g.: TN
� u+ v+
u� v�

�
� TN

⇣
3�u� �v�
�u+ 3�v+

⌘
⇠

u+

u�

v+

v�

3�
u�

�
u
+

�v�

3� v+

u+

u�

v+

v�

3� u�

�u+

�v�

3� v+

u+

u�

v+

v�

3� u�

�u+

�v�

3� v+

· · ·

u+

u�

v+

v�

· · ·

3� u�

�u+

�
v�

3�
v+

Auxiliary relation:

u

3� u

v

�v

= �4⇡4a(u) a(3 � u)
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Inversion relations

There are four representations of the inverse of TN
� u+ v+
u� v�

�
.

E.g.:

TN

⇣ u+ v+
u� v�

⌘
� TN

✓
�u� 3�v�
3�u+ �v+

◆
=

h
16⇡8 a(u+) a(3 � u+) a(v�) a(3 � v�)

iN
· N

TN

⇣ u+ v+
u� v�

⌘
� TN

✓
�u� 3�v�
�u+ 3�v+

◆
=

h
16⇡8 a(v+) a(3 � v+) a(v�) a(3 � v�)

iN
· N

TN

⇣ u+ v+
u� v�

⌘
� TN

✓
3�u� �v�
3�u+ �v+

◆
=

h
16⇡8 a(u+) a(3 � u+) a(u�) a(3 � u�)

iN
· N

TN

⇣ u+ v+
u� v�

⌘
� TN

✓
3�u� �v�
�u+ 3�v+

◆
=

h
16⇡8 a(u�) a(3 � u�) a(v+) a(3 � v+)

iN
· N
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Inversion relations

There are four representations of the inverse of TN
� u+ v+
u� v�

�
.

E.g.:

K
� u+ v+
u� v�

�
� K

⇣
�u� 3�v�
3�u+ �v+

⌘
= 16⇡8 a(u+) a(3� u+) a(v�) a(3� v�)

K
� u+ v+
u� v�

�
� K

⇣
�u� 3�v�
�u+ 3�v+

⌘
= 16⇡8 a(v+) a(3� v+) a(v�) a(3� v�)

K
� u+ v+
u� v�

�
� K

⇣
3�u� �v�
3�u+ �v+

⌘
= 16⇡8 a(u+) a(3� u+) a(u�) a(3� u�)

K
� u+ v+
u� v�

�
� K

⇣
3�u� �v�
�u+ 3�v+

⌘
= 16⇡8 a(u�) a(3� u�) a(v+) a(3� v+)
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Result for the critical coupling

Solve functional relations with ansatz
K

� u+ v+
u� v�

�
= (u+)(u�)(v+)(v�) satisfying

(u)(�u) = 1 ,

(u)(3� u) = 4⇡4 a(u) a(3� u) = 4⇡4 �(2� u)�(u � 1)

�(u)�(3� u)
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(u)(3� u) = 4⇡4 a(u) a(3� u) = 4⇡4 �(2� u)�(u � 1)

�(u)�(3� u)

The solution with the right analytic properties is

[Bazhanov,Kels,Sergeev’16;Zamolodchikov’77;Shankar,Witten’78;Bombardelli:1606.02949]
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[Bazhanov,Kels,Sergeev’16;Zamolodchikov’77;Shankar,Witten’78;Bombardelli:1606.02949]

(u) = 12
u
3 ⇡

4u
3
�
�
u+1
3

�
�(2� u)

�
�
1
3

�
1Y

k=1

�(3k � u + 2)�(3k + u)�(3k � 2)

�(3k + u � 2)�(3k � u)�(3k + 2)
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The solution with the right analytic properties is
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(u) = 2
2u
3 3

4u
3 �2⇡

4u
3

�(2� u)�
�
u
3

�
�
�
u+1
3

�

�
�
1� u

3

�
�
�
4
3 � u

3

�
�(u)
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Result for the critical coupling

Solve functional relations with ansatz
K

� u+ v+
u� v�

�
= (u+)(u�)(v+)(v�) satisfying

(u)(�u) = 1 ,

(u)(3� u) = 4⇡4 a(u) a(3� u) = 4⇡4 �(2� u)�(u � 1)

�(u)�(3� u)

The solution with the right analytic properties is
[Bazhanov,Kels,Sergeev’16;Zamolodchikov’77;Shankar,Witten’78;Bombardelli:1606.02949]

(u) = 2
2u
3 3

4u
3 �2⇡

4u
3

�(2� u)�
�
u
3

�
�
�
u+1
3

�

�
�
1� u

3

�
�
�
4
3 � u

3

�
�(u)

The critical coupling of double-scaled �-deformed N = 4 is

[MK,Staudacher:2408.05805]

⇠cr = [ ( 0 1
1 1 )]

�1/2 =  (1)�3/2 =
3

2⇡2 �(13)
3/2

=
39/8e�i⇡/24

4⇡3 · ⌘(e2⇡i/3)
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Superfishnet theory

Double-scaled �-deformation of U(N)2 ABJM (3D N = 2)
[Caetano,Gürdogan,Kazakov:1612.05895] in N = 1 formalism [MK, to appear]

S = N

Z
d3x d2✓d2✓̄

(
�

4X

i=1

tr
h
�†

i �i

i

+i⇠ · ✓̄2 tr [�1�2�3�4] + i⇠ · ✓2 tr
h
�†

1�
†
2�

†
3�

†
4

io

Superpropagator
D
�i (z1)�

†
j (z2)

E
= ei[✓1�

µ✓̄1+✓2�
µ✓̄2�2✓1�

µ✓̄2]@1,µ
�ij

[x212]
1/2

= z2z1

Vertices

2

3

4

1

⇠ �⇠

Z
d3x d2✓ d2✓̄ �(2)(✓̄) ,

2

3

4

1

⇠ �⇠

Z
d3x d2✓ d2✓̄ �(2)(✓) .
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Vacuum diagrams and critical coupling

Z3,4

⇣
1/2 1/2
1/2 1/2

⌘
=

Functional relations:

(u)(�u) = 1 ,

(u)(2� u) = 4⇡3 a(u) a(2� u) = 4⇡3 �(3/2� u)�(u � 1/2)

�(u)�(2� u)

Critical coupling: ⇠cr =
q

2
⇡

1
�(1/4)2 = 1p

8⇡4
1

⌘(i)2
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All-loop anomalous dimension

Extract anomalous dimension of tr
h
�†
1�3

i
from 4pt.-function

1

3

+

1

3

4 2

3

1

+

1

3

4 2

3

1

2 4

1

3

+ · · · ⇠ 1

1� ⇠2
h i

Eigenvalue equation

u = E (u) u with E (u) =
2⇡2

u(1� 2u)

At the pole

1 = ⇠2E (��/2) ) � = �1

2
+

1

2

p
1� 16⇡2⇠2

[Caetano,Gürdogan,Kazakov:1612.05895] [Bak,Min,Rey:0911.0689]
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Outlook

• Uncovering the complete integrable structure of the discussed
super brick wall and super fishnet models would require the
construction of non-compact superconformal s`(4|1) and
osp(2|4) R-matrices, respectively. Are the near-star-triangle
relations su�cient for this purpose?

• How to uplift the many exact results for non-dynamical
fishnet models to super brick wall and super fishnet models?

• We showed that supergraphs can prevent the ‘dynamical
melting’ of fishnets. Could similar ideas possibly work for
general dynamical fishnets, or even for N = 4 SYM?
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Thanks for your attention!
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