Staggered Fishnets Stauysig parabbets

Bethe Forum "Fishnets: CFTs and Feynman Graphs"

Enrico Olivucci - Perimeter Institute

September 5th 2024 - Bethe Centre, University of Bonn, Germany

- symmetry group SO(1,1+D) in the D-dimensional theory.

$$\operatorname{Tr}(n \cdot \Phi)^L$$
, $n \cdot n = 0$, $\Delta = L$ for $\mathcal{N} = 4$

Enrico Olivucci - Perimeter Institute

• One original purpose of Fishnet Theory: direct derivation (aka proof) of Integrability properties at all-loops, starting from textbook QFT methods (Feynman diagrams and Bethe-Salpeter equation).

• The 1/2-BPS state of N=4 SYM theory is not protected after breaking SUSY. The spectrum of their anomalous dimensions (and of states obtained by insertion of derivatives) is related to the spectrum of a transfer-matrix of a non-compact, periodic, Heisenberg magnet with

- symmetry group SO(1,1+D) in the D-dimensional theory.

$$\operatorname{Tr}(n \cdot \Phi)^L$$
, $n \cdot n = 0$, $\Delta = L$ for $\mathcal{N} = 4$

Enrico Olivucci - Perimeter Institute

• One original purpose of Fishnet Theory: direct derivation (aka proof) of Integrability properties at all-loops, starting from textbook QFT methods (Feynman diagrams and Bethe-Salpeter equation).

• The 1/2-BPS state of N=4 SYM theory is not protected after breaking SUSY. The spectrum of their anomalous dimensions (and of states obtained by insertion of derivatives) is related to the spectrum of a transfer-matrix of a non-compact, periodic, Heisenberg magnet with

- symmetry group SO(1,1+D) in the D-dimensional theory.

Enrico Olivucci - Perimeter Institute

• One original purpose of Fishnet Theory: direct derivation (aka proof) of Integrability properties at all-loops, starting from textbook QFT methods (Feynman diagrams and Bethe-Salpeter equation).

• The 1/2-BPS state of N=4 SYM theory is not protected after breaking SUSY. The spectrum of their anomalous dimensions (and of states obtained by insertion of derivatives) is related to the spectrum of a transfer-matrix of a non-compact, periodic, Heisenberg magnet with

- symmetry group SO(1,1+D) in the D-dimensional theory.

$$u + \frac{\Delta_2 - \Delta_1}{2}$$

$$R_{12}(u) = 2$$

$$-u + \frac{\Delta_1 + \Delta_2}{2}$$

Enrico Olivucci - Perimeter Institute

• One original purpose of Fishnet Theory: direct derivation (aka proof) of Integrability properties at all-loops, starting from textbook QFT methods (Feynman diagrams and Bethe-Salpeter equation).

• The 1/2-BPS state of N=4 SYM theory is not protected after breaking SUSY. The spectrum of their anomalous dimensions (and of states obtained by insertion of derivatives) is related to the spectrum of a transfer-matrix of a non-compact, periodic, Heisenberg magnet with

- symmetry group SO(1,1+D).

$$\hat{B}(x_j | x'_j) = \lim_{u \to -D/4} \operatorname{Tr}_0 \left[R_{10}(u) R_{20}(u) R_{30}(u) R_{40}(u) \right] , \ \Delta_1 = \Delta_2 = D/4 .$$

Enrico Olivucci - Perimeter Institute

• One original purpose of Fishnet Theory: direct derivation (aka proof) of Integrability properties at all-loops, starting from textbook QFT methods (Feynman diagrams and Bethe-Salpeter equation).

• The 1/2-BPS state of N=4 SYM theory is not protected after breaking SUSY. The spectrum of its anomalous dimensions (and that of states obtained by insertion of derivatives) is related to the spectrum of a transfer-matrix of a non-compact, periodic, Heisenberg magnet with

point-split four-point correlator.

$$R_{12}(u; \Delta_1, \Delta_2) = \mathbb{P}_{12} x_{12}^{2(u-\Delta_+)} p_1^{2(u+\Delta_-)} p_2^{2(u-\Delta_-)} x_{1'2'}^{2(u+\Delta_+)}, \ \Delta_+ = (\Delta_1 + \Delta_2)/2 - 2, \ \Delta_- = (\Delta_1 - \Delta_2)/2.$$

Yang-Baxter equation

 $R_{12}(u-v)R_{13}(u-w)R_{23}(w-v) = R_{23}(v-w)R_{13}(w-v)$

• Unitarity

$$R_{12}(u - v)R_{12}(v - u) = 1$$

Crossing-symmetry

 $R_{12}(u)^{t_1} = f_{12}(u) \left(\Sigma_1 \otimes 1\right) R_{12}(-u-1) \left(\overline{\Sigma}_1 \otimes 1\right) =$

Enrico Olivucci - Perimeter Institute

• The relation between spin-chain and spectrum of anomalous dimension follows from Bethe-Salpeter method and from the conformal Operator-Product-Expansion (OPE) of certain

$$(u-w)R_{12}(u-v)$$

$$R_{12}(u)^{t_2} = f_{12}(u) \left(1 \otimes \Sigma_2\right) R_{12}(-u-1) \left(1 \otimes \bar{\Sigma}_2\right)$$

Crossing-symmetr

$$\frac{1}{2} \text{ in inf-dimensions}$$

$$R_{12}^{t_{A}}(u) = \left(\sum_{A}^{-1} R_{A2}(-u-A)\sum_{A}\right) \times f(\Delta_{L},\Delta_{2},-u)$$

$$\frac{1}{2} \Delta_{k} = \frac{D}{2} + iv, \quad v \in \mathbb{R} \implies \sum_{A}^{-1} = \sum_{A}^{+1}$$

split correlator.

$$T_0(u) = R_{10}(u)R_{20}(u)\cdots R_{L0}(u); \quad R_{00'}(u-v)T_0(u)T_{0'}(v) = T_{0'}(v)T_0(u)R_{00'}(u-v), \quad [\text{tr}_0 T_0(u), \text{tr}_{0'} T_{0'}(v)] = R_{10}(u)R$$

$$\hat{B} \sim \operatorname{tr}_0 T_0(u = u_*)$$

$$\sum_{k=1}^{\infty} \xi^{2(k-1)L} \langle \Psi | (\hat{B})^k | \Psi' \rangle = \langle \Psi | \frac{1}{\xi^{2L} - \hat{B}^{-1}} | \Psi' \rangle \sim \sum_{\Delta, S, \{q_3, q_4, \dots\}} \langle \Psi | \Phi_{\Delta, S, \mathbf{q}} \rangle \frac{1}{\xi^{2L} - 1/b(\Phi_{\Delta, S, \mathbf{q}})} \langle \Phi_{\Delta, S, \mathbf{q}} | \Psi' \rangle$$

$$\sum_{k=1}^{\infty} \xi^{2(k-1)L} \langle x_1, x_2 | (\hat{B})^k | x_3, x_4 \rangle = \langle x_1, x_2 | \frac{1}{\xi^{2L} - \hat{B}^{-1}} | x_3, x_4 \rangle \sim \sum_{\Delta, S} \langle x_1, x_2 | \Phi_{\Delta, S} \rangle \frac{1}{\xi^{2L} - 1/b(\Phi_{\Delta, S})} \langle \Phi_{\Delta, S} | x_3, x_4 \rangle$$

$$\sum_{k=1}^{\infty} \xi^{2(k-1)L} \langle \Psi | (\hat{B})^k | \Psi' \rangle = \langle \Psi | \frac{1}{\xi^{2L} - \hat{B}^{-1}} | \Psi' \rangle \sim \sum_{\Delta, S, \{q_3, q_4, \dots\}} \langle \Psi | \Phi_{\Delta, S, \mathbf{q}} \rangle \frac{1}{\xi^{2L} - 1/b(\Phi_{\Delta, S, \mathbf{q}})} \langle \Phi_{\Delta, S, \mathbf{q}} | \Psi' \rangle$$

$$\sum_{k=1}^{\infty} \xi^{2(k-1)L} \langle x_1, x_2 | (\hat{B})^k | x_3, x_4 \rangle = \langle x_1, x_2 | \frac{1}{\xi^{2L} - \hat{B}^{-1}} | x_3, x_4 \rangle \sim \sum_{\Delta, S} \langle x_1, x_2 | \Phi_{\Delta, S} \rangle \frac{1}{\xi^{2L} - 1/b(\Phi_{\Delta, S})} \langle \Phi_{\Delta, S} | x_3, x_4 \rangle$$

• The relation between spin-chain and spectrum of anomalous dimension follows from Bethe-Salpeter method and from the conformal partial waves (CPW) expansion of certain point-

spin-chain sites and boundary operators [see Fishchain papers].

Enrico Olivucci - Perimeter Institute

• Analogue considerations hold for other single-trace operators in the bi-scalar Fishnet Theory. The general rule is to play with the physical space representations, inhomogeneities in the

- Same spin-chain (physical spaces), different auxiliary space representation.
- finite-size effects.

Enrico Olivucci - Perimeter Institute

• The picture holds for "generalized" Fishnets in the DS limit of N=4 SYM, by addition of fermionic loops.

• The spin-chain pictures in Fishnets, as opposed to N=4 SYM, constitutes an all-loop proof of integrability. The conformal Heisenberg magnet is a 1D model of QM but captures not only one-loop nearest-neighbour interactions, but all the perturbative expansion including

- integrability.
- Quantum Spectral Curve (integrability by Kolya Gromov et al. ; [1706.04167]).

$$\left(\frac{\Delta(\Delta-2)}{4u^2} - 2\right)q(u) + q(u+i) + q(u-i) = 0 \qquad L = 2 \qquad \Delta, S = 0$$
$$\left(\frac{(\Delta-1)(\Delta-3)}{4u^2} - \frac{m}{u^3} - 2\right)q(u) + q(u+i) + q(u-i) = 0 \qquad L = 3 \qquad \Delta, S = 0, m = q_3$$

$$\left(\frac{\Delta(\Delta-2)}{4u^2} - 2\right)q(u) + q(u+i) + q(u-i) = 0 \qquad L = 2 \qquad \Delta, S = 0$$
$$\left(\frac{(\Delta-1)(\Delta-3)}{4u^2} - \frac{m}{u^3} - 2\right)q(u) + q(u+i) + q(u-i) = 0 \qquad L = 3 \qquad \Delta, S = 0, m = q_3$$

Quantization conditions of charges from analyticity requirements.

Enrico Olivucci - Perimeter Institute

• The spin-chain pictures in Fishnets, as opposed to N=4 SYM, constitutes an all-loop proof of

Baxter equations which match with those obtained by explicit double-scaling deformation of the

- conditions (bootstrap program by Florian Loebbert et al.; [1708.00007])

$$R_{12}(u_{\pm}, v_{\pm}) L_{1}(u_{+}, u_{-}) L_{2}(v_{+}, v_{-})$$

$$= L_{2}(v_{+}, v_{-}) L_{1}(u_{+}, u_{-}) R_{12}(u_{\pm}, v_{-})$$

Enrico Olivucci - Perimeter Institute

• The spin-chain pictures in Fishnets, as opposed to N=4 SYM, constitutes an all-loop proof of integrability.

•Yangian symmetry equations for the general Fishnet Feynman graph with point-split boundary

- conditions (bootstrap program by Florian Loebbert et al.; [1708.00007])

Enrico Olivucci - Perimeter Institute

• The spin-chain pictures in Fishnets, as opposed to N=4 SYM, constitutes an all-loop proof of integrability. •Yangian symmetry equations for the general Fishnet Feynman graph with point-split boundary

$$L_2(u, \star)L_1(\bullet, u + \Delta)\frac{1}{x_{12}^{2\Delta}} = \frac{1}{x_{12}^{2\Delta}}L_2(u + \Delta, \bullet)L_1(\star, \bullet)L_1(\star, \bullet)L_1(\star, \bullet)L_2(u + \Delta, \bullet)L_2(\star, \bullet)L_2(\star,$$

 $L(u, u + d/2) \cdot 1 \propto 1$

Enrico Olivucci - Perimeter Institute

- triangle symmetry).
- What about going beyond 1/2-BPS and beyond bi-scalar theory at the same time?

Enrico Olivucci - Perimeter Institute

• So far we considered Feynman diagrams with a simple structure of the bulk, eg. for 1/2-BPS states:

• Apparent staggered structure, but "A" and "B" rows define commuting transfer matrices (due to star-

• What about going beyond 1/2-BPS and beyond bi-scalar theory at the same time?

A	A	А	A
A	A	A	A
A	Æ	A	A
A	A	А	Α

Tr XL

 $T_{r}(X\overline{\gamma})^{L}$

Enrico Olivucci - Perimeter Institute

А	B
A	B
A	В
А	В

A	В	А	B
С	۵	С	<mark>ک</mark>
A	В	A	В
С	4	С	6

Tr(X YZ)

Staggering

• What about going beyond 1/2-BPS and beyond bi-scalar theory at the same time?

Enrico Olivucci - Perimeter Institute

Staggering

• Appearance of lattice structure with two alternating cells:

Enrico Olivucci - Perimeter Institute

Staggering

• What about going beyond 1/2-BPS and beyond bi-scalar theory at the same time?

Enrico Olivucci - Perimeter Institute

Dynamical Fishnet: case study

- which show the emergence of a staggered square lattice, in opposition to the standard one.

Enrico Olivucci - Perimeter Institute

• One can claim, to a good level of generality, that the theory spectrum can be still computed by Bethe-Salpeter method + OPE, but the graph-building kernel is not the "usual" Heisenberg magnet transfer-matrix.

• The bulk lattice structure of the Dynamical Fishnet theory can be analyzed by a few case studies,

integrability in terms of Sklyanin **Reflection Equations**.

 $K_{2}(u)R_{12}(u-v)K_{1}(v)R_{12}(u+v) = R_{12}(u-v)K_{1}(v)R_{12}(u+v)K_{2}(u)$

• To this task, it is convenient to transform the Feynman Integrals by star-triangle identity and to focus on the "mirror-channel" expansion of the correlator.

Enrico Olivucci - Perimeter Institute

• The two-row (two-columns) alternate transposition of the lattice cells suggest to look for

integrability in terms of Sklyanin **Reflection Equations**.

 $K_{2}(u) R_{12}(u - v) K_{1}(v) R_{12}(u + v)$

 $T_1(-v)^{-1}T_2(-u)^{-1}K_2(u)R_{12}(u-v)K_1(v)R_{12}(u+v)T_2(u)T_1(v) =$

$$M_{i}^{-1}(u) = T_{i}^{-1}(-u) K_{i}(u)$$

$$M_2(u) R_{12}(u-v) M_1(v) R_{12}(u+v) = R_{12}(u-v) M_1(v) R_{12}(u+v) M_2(u)$$

Enrico Olivucci - Perimeter Institute

• The two-row (two-columns) alternate transposition of the lattice cells suggest to look for

$$-v) = R_{12}(u - v) K_1(v) R_{12}(u + v) K_2(u)$$

 $= T_1(-v)^{-1}T_2(-u)^{-1}R_{12}(u-v)K_1(v)R_{12}(u+v)K_2(u)T_2(u)T_1(v)$

integrability in terms of Sklyanin Reflection Equations.

 $M_{2}(u) R_{12}(u - v) M_{1}(v) R_{12}(u + v)$

Enrico Olivucci - Perimeter Institute

• The two-row (two-columns) alternate transposition of the lattice cells suggest to look for

$$v) = R_{12}(u - v) M_1(v) R_{12}(u + v) M_2(u)$$

 $M_{1}^{(-)}(v) R_{12}(u-v) M_{2}^{(-)}(u) R_{12}(u+v) = R_{12}(u-v) M_{2}^{(-)}(u) R_{12}(u+v) M_{1}^{(-)}(v)$

Enrico Olivucci - Perimeter Institute

 $M_{1}^{(+)}(v) R_{12}(u-v) M_{2}^{(+)}(u) R_{12}(u+v) = R_{12}(-u-v-2) M_{2}^{(+)}(u) R_{12}(-u-v-2) M_{1}^{(+)}(v)$

$$M^{(+)} = \left(\bar{\Sigma} \cdot M^{(-)}(-u-1) \cdot \Sigma \right)^t$$

Enrico Olivucci - Perimeter Institute

Integrable Two-Row transfer matrix

 $M_1^{(-)}(v) R_{12}(u-v) M_2^{(-)}(u) R_{12}(u+v) = R_{12}(u-v) M_2^{(-)}(u) R_{12}(u+v) M_1^{(-)}(v)$

$$M_1^{(+)}(v) R_{12}(u-v) M_2^{(+)}(u) R_{12}(u+v) = R_{12}(-u-v-2) M_2^{(+)}(u) R_{12}(-u-v-2) M_1^{(+)}(v)$$

$$M^{(+)} = \left(\bar{\Sigma} \cdot M^{(-)}(-u-1) \cdot \Sigma\right)^t \qquad R_{12}(u-v)R_{12}(v-u) = 1$$

$$R_{12}(u)^{t_1} = f_{12}(u) \left(\Sigma_1 \otimes 1\right) R_{12}(-u-1) \left(\bar{\Sigma}_1 \otimes 1\right) R_{12}(-u-1) \left(\bar$$

$$\hat{t}_0(u) = \text{Tr}_0 \left[M_0^{(+)}(u) M_0^{(-)}(u) \right]$$

Enrico Olivucci - Perimeter Institute

 $\otimes 1) = R_{12}(u)^{t_2} = f_{12}(u) (1 \otimes \Sigma_2) R_{12}(-u-1) (1 \otimes \overline{\Sigma}_2)$

$$\implies [\hat{t}_0(u)\,\hat{t}_{0'}(v)] = 0$$

Integrable Two-Row transfer matrix

- Fishnets, then generalized to 4D by including fermions.

Enrico Olivucci - Perimeter Institute

• The problem of finding a solution **K(u)** of the RE compatible with the solution of Yang-Baxter equation **R(u)** is complicated by the presence of Fermionic loops in the graph, ie. Pauli matrices in the numerators.

• To start with, we follow the strategy used for Basso-Dixon diagrams in the works [Derkachov, Kazakov, E.O.] and [Derkachov, E.O.], where we considered first the solution of the algebraic problem for 2D

• A recent paper by Sergey Derkachov et al. [2406.19864] provides us with a great starting point.

- First, they consider the finite-dimensional reflection algebra:

• Then, they lift the representation to (infinite-dimensional) principal series:

$$\mathcal{K}(s, x) = [z + \gamma]^{g-s} [z - \gamma]^{1-s-g} [\partial_z]^{x-s} [z + \gamma]^{x-g} [z - \gamma]^{x+g-1}$$

• Finally, they infer an equation of infinite-dimensional operators:

$$L(u) = \begin{pmatrix} u+S & S_{-} \\ S_{+} & u-S \end{pmatrix} = \begin{pmatrix} u_{1}+1+z\partial_{z} & -\partial_{z} \\ z^{2}\partial_{z}+(u_{1}-u_{2}+1)z & u_{2}-z\partial_{z} \end{pmatrix}$$

Enrico Olivucci - Perimeter Institute

• A recent paper by Sergey Derkachov et al. [2406.19864] provides us with a great starting point.

$$\mathcal{K}(s, x) L(u + x - 1, u - s) K(u) L(u + s - 1, u - x)$$
$$= L(u + s - 1, u - x) K(u) L(u + x - 1, u - s) \mathcal{K}(s)$$

• Finally, they consider both representations to be infinite-dimensional (principal series):

 $\mathcal{K}(s, x) = [z + \gamma]^{g-s} [z - \gamma]^{1-s-g} [\partial_z]^{x-s} [z + \gamma]^{x-g} [z - \gamma]^{x+g-1}$

$$\mathcal{K}_1(oldsymbol{x}) \ \widetilde{\mathbb{R}}_{12}(oldsymbol{x},oldsymbol{y}) \ \mathcal{K}_2(oldsymbol{y}) \ \mathbb{R}_{12}(oldsymbol{x},oldsymbol{y}) = \mathbb{R}_{12}(oldsymbol{x},oldsymbol{y}) \ \mathcal{K}_2(oldsymbol{y}) \ \widetilde{\mathbb{R}}_{12}(oldsymbol{x},oldsymbol{y}) \ \mathcal{K}_1(oldsymbol{x})$$

Enrico Olivucci - Perimeter Institute

- reduction of it with no spectral parameter...
- principal series of $SL(2, \mathbb{C})$.

Enrico Olivucci - Perimeter Institute

• In [2406.19864] they actually do not get the Reflection Equation in the picture, but some

• Starting from their equation, we can repeat its proof by star-triangle identity, and "inject" more parameters (here called θ, τ) thus "restoring" two spectral-parameter-dependent R-matrices in the

 $K_2(u) R_{12}(u-v) K_1(v) R_{12}(u+v) = R_{12}(u-v) K_1(v) R_{12}(u+v) K_2(u)$

Enrico Olivucci - Perimeter Institute

$$M_1^{(-)}(v) R_{12}(u-v) M_2^{(-)}(u) R_{12}(u+v) = R_{12}(u-v) M_2^{(-)}(u) R_{12}(u+v) M_1^{(-)}(v)$$

Enrico Olivucci - Perimeter Institute

Staggered transfer matrix in p.s.

matrices acting only on physical spaces for generic spectral parameters u,v.

$$\hat{t}(u) = \mathrm{Tr}_0$$

theory.

Enrico Olivucci - Perimeter Institute

• Gluing the RE of type (+) with the RE of type (-) it follows a genuine commutation of transfer

• Such objects define an Integrable lattice model with staggering, in the principal series representation of SL(2,C). It should serve as an archetype for studying similar setups in Fishnet

Reduction to square lattice

Convolution of two "two-rows":

Enrico Olivucci - Perimeter Institute

Open Question: generators of the Yangian?

- Yangian symmetry has been worked out starting with Volodya, Florian et al. papers, when a
- the Lax-operatorof the chain. There is an analogue K'LKL = LKLK' identity [2406.19864]:

 $\mathscr{K}(u)L_1(u)K(u)L_1(u) = L_1(u)K(u)L_1(u)\mathscr{K}(u)$

 $T(u) = L_N(u) \cdots L_1(u) K(u) L_1(u) \cdots L_n(u)$

• Could one infer twisted-Yangian symmetry, eg. by adapting "lasso techniques"? split-points on two sides and identified points on the other two.]

Fishnet diagram has disk topology and completely split boundary (ie. non-integrated) points.

• Yangian symmetry of such diagrams follows from RLL = LLR equation satisfied by inf-dim R with

[hint: The staggered models describe, as a particular case, a class of square-lattice Fishnets that have

Summary:

- eg. staggered magnets.
- and the corresponding integrability equations (YBE \rightarrow RE).
- Formulate spectral equations (boundary TQ equations).
- Formulate analogue of Yangian symmetry.

Enrico Olivucci - Perimeter Institute

• Fishnet Theory integrability is described by Integrable spin-magnets that differs from choice of boundary conditions (eg. direct vs mirror channels) but also with different bulks,

• We need to study staggered models (and generally lattice structures with higher periodicity)

Enrico Olivucci - Perimeter Institute