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Motivation

Beautiful progress in obtaining exact results within AdS/CFT

I from integrability (assumed)
I from supersymmetric localization (BPS observable)

In the world-sheet string theory integrability only classically, localization not formulated.

Motivation:

Why CFT1s are interesting?

I A simpler but still constraining setup to test ideas about higher-d CFTs

I Non trivial CFT1s naturally live on defects , crucial for a deeper
understanding of QFT dynamics.

The set of correlators of operator insertions along the line
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1/2 BPS Wilson line in ABJM: a defect CFT1

Consider the N = 6 superconformal Chern-Simons-matter theory in d = 3 (ABJM).
Its original symmetry, OSp(6|4), is broken by the 1/2 BPS Wilson line to SU(1, 1|3),
the N = 6 superconformal group in d = 1.
Its bosonic subgroup is SO(2, 1)⇥ U(1)M ⇥ SU(3)R.
Operator insertions along the Wilson line are labelled by [�;m; j1, j2].
The set of correlators

hO(t1)O(t2) . . .O(tn)iW =
hTrO1(t1)WO2(t2) . . .On�1(tn�1)WOn(tn)i

hW i

where
hW i = P exp

�
� i

R
t2
t1

dtL(t)
�

can be interpreted as characterizing a defect CFT1.
It should be fully determined by its spectrum of dimensions and OPE coefficients.

Wilson loops as 1-dimensional defects

In a CFT, for instance N = 4 SYM in d = 4 or ABJM in d = 3, a Wilson line can be
viewed as a conformal defect.
A straight line breaks the original conformal symmetry to
a) rotations around the line
b) dilatations, translations and special conformal transformations
+ part of the R-symmetry
+ part of the supersymmetry
Thus the Wilson loop implicitly defines a defect CFT1.
Can we study this “simpler” CFT?

[Giombi Roiban Tseytlin 17] [Giombi Beccaria Tseytlin 18]  
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+ part of the R-symmetry + part of the supersymmetry  
   (depending on the specific form of the loop)
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Our study

superspace analysis
analytic bootstrap
direct (Witten) diagrammatics
at strong coupling via AdS/CFT
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superspace analysis
analytic bootstrap
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at strong coupling via AdS/CFT
Also: operator insertions are equivalent to deformations  of the Wilson line 

 
Complete knowledge of these correlators would, in principle, allow to compute the  
expectation value of general Wilson loops which are deformations of the line or circle.

[Drukker, Kawamoto 2006]
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a, Ōa a = 1, 2, 3

⇤
a, ⇤̄a a = 1, 2, 3

D, D̄

All operators in the supermultiplet can be related to broken symmetry generators.



The displacement supermultiplet

Among the possible operator insertions (defect operators), a special role is played by
a set of “elementary excitations” with protected scaling dimension.
They fall into a short representation of the SU(1, 1|3) subalgebra
It is a chiral multiplet, the displacement supermultiplet

All operators in the supermultiplet can be related to broken symmetry generators.

The displacement supermultiplet

Among the possible operator insertions (defect operators), a special role is played by
a set of “elementary excitations” with protected scaling dimension.
They fall into a short representation of the SU(1, 1|3) subalgebra
It is a chiral multiplet, the displacement supermultiplet

All operators in the supermultiplet can be related to broken symmetry generators.

The displacement supermultiplet

Among the possible operator insertions (defect operators), a special role is played by
a set of “elementary excitations” with protected scaling dimension.
They fall into a short representation of the SU(1, 1|3) subalgebra
It is a chiral multiplet, the displacement supermultiplet

F, F̄

O
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a, Ōa a = 1, 2, 3

⇤
a, ⇤̄a a = 1, 2, 3

D, D̄

All operators in the supermultiplet can be related to broken symmetry generators.

The displacement supermultiplet

Among the possible operator insertions (defect operators), a special role is played by
a set of “elementary excitations” with protected scaling dimension.
They fall into a short representation of the SU(1, 1|3) subalgebra
It is a chiral multiplet, the displacement supermultiplet

F, F̄

O
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Comments

Translational invariance is broken, the stress tensor is no longer conserved and the
usual conservation law needs to be modified by some additional terms localized
on the defect.

@µT
µm = �2(x?)D

m(t) (2)
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a, Ōa a = 1, 2, 3

⇤
a, ⇤̄a a = 1, 2, 3

D, D̄

All operators in the supermultiplet can be related to broken symmetry generators.

8F+8B
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string fluctuations
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same title as last slide

Their 2-point functions are particularly simple, e.g.

hD(t1)D̄(t2)i =
CD

t412

where the normalization constant CD = 12B1/2(�) has a physical meaning:
it coincides with the Bremsstrahlung function, one of the few unprotected observables
known to each order in AdS/CFT.

[Bianchi Preti Vescovi 18]
[Correa Henn Maldacena Sever 12]
[Bianchi Griguolo Preti Seminara17]

same title as last slide

Their 3-point functions vanish by symmetry.
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The displacement supermultiplet

Among the possible operator insertions (defect operators), a special role is played by
a set of “elementary excitations” with protected scaling dimension.
They fall into a short representation of the SU(1, 1|3) subalgebra
It is a chiral multiplet, the displacement supermultiplet

All operators in the supermultiplet can be related to broken symmetry generators.
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Chiral correlators in superspace

The supermultiplet accomodating the displacement operator is the chiral one.
We consider the chiral superfield (y = x� ✓a✓̄a)

�(y, ✓) = F(y) + ✓aO
a(y) + ✓a✓b ✏

abc
⇤c(y) + ✓a✓b✓c ✏

abc
D(y) ,

The two-point function reads

h�(y1, ✓1)�̄(y2, ✓̄2)i =
C�

h12̄i2�
,

in terms of the chiral distance hij̄i = yi � yj � 2✓a
i
✓̄aj .

Chiral correlators in superspace

The supermultiplet accomodating the displacement operator is the chiral one.
We consider the chiral superfield (y = x� ✓a✓̄a)

�(y, ✓) = F(y) + ✓aO
a(y) + ✓a✓b ✏

abc
⇤c(y) + ✓a✓b✓c ✏

abc
D(y) ,

The two-point function reads

h�(y1, ✓1)�̄(y2, ✓̄2)i =
C�

h12̄i2�
,

in terms of the chiral distance hij̄i = yi � yj � 2✓a
i
✓̄aj .



Chiral correlators in superspace

The supermultiplet accomodating the displacement operator is the chiral one.
We consider the chiral superfield (y = x� ✓a✓̄a)

�(y, ✓) = F(y) + ✓aO
a(y) + ✓a✓b ✏

abc
⇤c(y) + ✓a✓b✓c ✏

abc
D(y) ,

The two-point function reads

h�(y1, ✓1)�̄(y2, ✓̄2)i =
C�

h12̄i2�
,

in terms of the chiral distance hij̄i = yi � yj � 2✓a
i
✓̄aj .

Chiral correlators in superspace

The supermultiplet accomodating the displacement operator is the chiral one.
We consider the chiral superfield (y = x� ✓a✓̄a)

�(y, ✓) = F(y) + ✓aO
a(y) + ✓a✓b ✏

abc
⇤c(y) + ✓a✓b✓c ✏

abc
D(y) ,

The two-point function reads

h�(y1, ✓1)�̄(y2, ✓̄2)i =
C�

h12̄i2�
,

in terms of the chiral distance hij̄i = yi � yj � 2✓a
i
✓̄aj .

Four-point function

The most general form is

h�(y1, ✓1)�̄(y2, ✓̄2)�(y3, ✓3)�̄(y4, ✓̄4)i=
1

(h12̄i h34̄i)2�
f(X ) ,

since the only superconformal invariant (no nilpotent invariants) is

X =
h12̄i h34̄i

h14̄i h32̄i
.

The corresponding bosonic cross-ratio

z =
�

�� 1
, z =

x12x34

x14x32
< 0 , � =

x12x34

x13x24
, 0 < � < 1 .

Four-point function

The most general form for the 4-point function is

h�(y1, ✓1)�̄(y2, ✓̄2)�(y3, ✓3)�̄(y4, ✓̄4)i=
1

(h12̄i h34̄i)2�
f(X ) ,

since the only superconformal invariant (no nilpotent invariants) is

X =
h12̄i h34̄i

h14̄i h32̄i
.

The corresponding bosonic cross-ratio

z =
�

�� 1
, z =

x12x34

x14x32
< 0 , � =

x12x34

x13x24
, 0 < � < 1 .

Four-point function

The most general form is

h�(y1, ✓1)�̄(y2, ✓̄2)�(y3, ✓3)�̄(y4, ✓̄4)i=
1

(h12̄i h34̄i)2�
f(X ) ,

since the only superconformal invariant (no nilpotent invariants) is

X =
h12̄i h34̄i

h14̄i h32̄i
.

The corresponding bosonic cross-ratio

z =
�

�� 1
, z =

x12x34

x14x32
< 0 , � =

x12x34

x13x24
, 0 < � < 1 .



Four-point functions for the defect operators

Expanding both sides in Graßmann variables we get
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a3 (x3)Ōa4 (x4)i = �

16 �a3
a4

t412t
4
34

h
(t+1) t4f (4)(t) + (3t�1) t3f (3)(t)

+ 3t2 f 00(t)� 6tf 0(t) + 6f(t)
i

The correlation function f(z) of the superconformal primary completely determines
that of its superdescendants.
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a3(t3)Ōa4(t4)i =

4

t212t
2
34

h
�
a1
a2�

a3
a4

�
f(z) + zf

0(z) + z
2
f
00(z)

�

+ �
a1
a4�

a3
a2

�
z
2
f
0(z)� z

3
f
00(z)

� i

hD(t1)D̄(t2)D(t3)D̄(t4)i =
64

t412t
4
34

h
z
6(1� z)3f (6)(z)� 3 f (5)(z)z5(1� z)2(7z + 1)

+ 3 f (4)(z)z4(�46z3 + 63z2 � 18z + 1)

+ 6 f (3)(z)z3(55z3 � 39z2 + 3z + 1)

+ 18 f 00(z) (�14z5 + 3z4 + z
2)� 36 f 0(z) z(1� z

3) + 36 f(z)
i

(3.17)

hD(t1)D̄(t2)O
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a3(t3)Ōa4(t4)i = �

16 �a3a4
t412t

4
34

h
(1� z) z4f (4)(z) + (3z +1) z3f (3)(z)

+ 3z2 f 00(z) + 6zf 0(z) + 6f(z)
i

The correlation function of the superconformal primary, expressed in terms of a function

f(z), completely determines that of its superdescendants, in which indeed only f(z) and

its derivatives appear. As discussed above, this is a consequence of the fact that the only

superconformal invariant is the supersymmetrization of the conformal ratio, and no further

nilpotent invariants are present 7. In Section (??) we will confirm the superspace analysis

of this section by evaluating explicitly the correlators at strong coupling via AdS/CFT. We

will namely consider the correlation functions of the string excitations corresponding to the

7In presence of nilpotent invariants, the four-point function has a finite Taylor expansion in terms of them,

each term being a function of the superconformal cross ratio, see [?].
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All correlators in terms of a single function of one variable

We can evaluate f(z), and thus ALL the correlators, at strong coupling
using string worldsheet worldsheet perturbation theory: via Witten diagrams.
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a1 (x1)Ōa2 (x2)O
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4
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(1� z) z4f (4)(z) + (3z +1) z3f (3)(z)
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i

The correlation function of the superconformal primary, expressed in terms of a function

f(z), completely determines that of its superdescendants, in which indeed only f(z) and

its derivatives appear. As discussed above, this is a consequence of the fact that the only

superconformal invariant is the supersymmetrization of the conformal ratio, and no further

nilpotent invariants are present 7. In Section (??) we will confirm the superspace analysis

of this section by evaluating explicitly the correlators at strong coupling via AdS/CFT. We

will namely consider the correlation functions of the string excitations corresponding to the

7In presence of nilpotent invariants, the four-point function has a finite Taylor expansion in terms of them,

each term being a function of the superconformal cross ratio, see [?].
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non-trivial function of the coupling!

Four-point function

The most general form is

h�(y1, ✓1)�̄(y2, ✓̄2)�(y3, ✓3)�̄(y4, ✓̄4)i=
1

(h12̄i h34̄i)2�
f(X ) ,

since the only superconformal invariant (no nilpotent invariants) is

X =
h12̄i h34̄i

h14̄i h32̄i
.

The corresponding bosonic cross-ratio

z =
�

�� 1
, z =

x12x34

x14x32
< 0 , � =

x12x34

x13x24
, 0 < � < 1 .

Four-point functions for the defect operators

Expanding in Graßmann variables we get
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t212t
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�
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� i
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4
34

h
t6(t+ 1)3f (6)(t) + 3 f (5)(t)t5(t+ 1)2(7t+ 1)

+ 3 f (4)(t)t4(46t3 + 63t2 + 18t+ 1)

+ 6 f (3)(t)t3(55t3 + 39t2 + 3t� 1)

+ 18 f 00(t) (14t5 + 3t4 + t2) + 36 f 0(t) t(t3 � 1) + 36 f(t)
i

hD(x1)D̄(x2)O
a3 (x3)Ōa4 (x4)i = �

16 �a3
a4

t412t
4
34

h
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i

The correlation function f(z) of the superconformal primary completely determines
that of its superdescendants.

a set of correlators for the elementary fields



String dual - AdS2 minimal surface

In AdS/CFT dictionary, the Wilson loop operator is dual to a minimal string surface
ending on the contour defining the operator at the boundary.
For ABJM, the dual is a fundamental Type IIA string in a AdS4 ⇥ CP3 background.
The bosonic part of the Nambu-Goto string action reads

SB = T

Z
d2�

s

det
1

z2
(@µxr@⌫xr + @µz@⌫z) + 4

⇣ @µw̄a@⌫wa

1 + |w|2
�

@µw̄awaw̄b@⌫wb

(1 + |w|2)2

⌘

where T is the effective string tension in its original proposal

T =
R2

2⇡↵0
= 2

p

2� , � =
N

k
.

The minimal surface dual to the 1/2-BPS Wilson line is given by

z = s , x0 = t , xi = 0 , wa = 0

The induced metric is just that of AdS2

ds2 =
1

s2
(dt2 + ds2)
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This setup preserves same superconformal symmetry SU(1, 1|3) of our defect CFT1!
In particular, the isometry of AdS2 is the conformal group in d = 1,
and U(1)M ⇥ SU(3) correspond to rotations of the transverse coordinates
(xi , i = 1, 2 or) X, X̄ in AdS4, and wa , a = 1, 2, 3 in CP3.

Expanding the string sigma model around this minimal surface, we can study the
dynamics of small fluctuations of the worldsheet. In a static gauge,
we get a Lagrangian for the transverse fluctuations X(t, s) and wa(t, s)

which can be viewed as fields propagating in AdS2
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In AdS/CFT dictionary, the Wilson loop operator is dual to a minimal string surface
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The minimal surface dual to the 1/2-BPS Wilson line is given by

z = s , x0 = t , xi = 0 , wa = 0

The induced metric is just that of AdS2

ds2 =
1

s2
(dt2 + ds2)

Expanding the action above in powers of X and w
a one gets

SB ⌘T

ˆ
d
2
�
p
g LB , LB = L2 + L4X + L2X,2w + L4w + ... , (4.11)

L2 =g
µ⌫
@µX@⌫X̄ + 2|X|2 + g

µ⌫
@µw

a
@⌫w̄a , (4.12)

L4X = 2|X|4 + |X|2 (gµ⌫@µX@⌫X̄)� 1
2 (g

µ⌫
@µX@⌫X) (g⇢@⇢X̄@X̄) , (4.13)

L2X,2w = (gµ⌫@µX@⌫X̄) (g⇢@⇢wa
@w̄a)� 2(gµ⌫@µX@⌫w

a) (g⇢@⇢X̄@w̄a) , (4.14)

L4w = � 1
2(w

a
w̄a)(gµ⌫@µwb

@⌫w̄b)� 1
2(w

a
w̄b)(gµ⌫@µwb

@⌫w̄a) +
1
2 (g

µ⌫
@µw

a
@⌫w̄a)2 (4.15)

� 1
2(g

µ⌫
@µw

a
@⌫w̄b) (g⇢@⇢w̄a@w

b)� 1
2(g

µ⌫
@µw

a
@⌫w

b) (g⇢@⇢w̄a@w̄b) . (4.16)

There are therefore one massive (X with m
2 = 2) and three massless (wa

, a = 1, 2, 3)

complex scalar fields that propagate in AdS2, that correspond to the bosonic elementary

CFT1 insertions represented in the displacement supermultiplet - respectively, to the � = 2

displacement operator D and to the � = 1 operators O
a
, a = 1, 2, 3. In fact, as written

above in 2, to obtain the AdS/CFT dual of the full displacement supermultiplet one has

to consider also the fermionic fluctuations. At quadratic level, the fermionic spectrum has

been worked out in [11, 12], and consists of two massless and six massive fermions (of which

three with mass mF = 1 and three with mF = �1) which should correspond, respectively,

to the � = 1
2 fermionic superprimary F of the multiplet and its conjugate and to the � = 1

2

fermionic operator ⇤a and its conjugate. Expanding the full Type IIA Green-Schwarz action

in AdS4 ⇥ CP3 background [17, 18] around the solution (4.6) up to quartic order in fermions

would yield the interaction vertices from which to evaluate directly, via Witten diagrams, the

four-point functions of fermionic fluctuations. Below we will limit our analysis to the direct

calculation of bosonic four-point functions from the vertices in (4.11) above, and compare with

the superspace results of Section 3. We emphasize however that in so doing we will in fact

evaluate directly the function f which governs the four-point correlator (4.30) of the fermionic

superprimary F - and thus all four-point functions - as the unique solution of some of the

di↵erential equations in (4.30)-(??), arising from the Graßmann-expansion of the correlator

for the four chiral fields in superspace.

Below, we will use these vertices of the AdS2 bulk theory to compute the corresponding tree-

level Witten diagrams in AdS2, with bulk-to-boundary propagators ending at points tn on the

boundary. This way we will calculate the strong coupling expansion of correlators of the dual

operator insertions in the boundary CFT1. As in the parent AdS5 ⇥ S
5 case, no cubic terms

appear in the bosonic Lagrangian above, so that much at this level of perturbation theory the

correlation functions are only a sum of 4-point “contact” diagrams with four bulk-to-boundary

propagators.

4.1 Four-point function of massless fluctuations in CP3

Here we compute the tree-level 4-point Witten diagram of the CP3 fluctuations w, w̄ appearing

in the (AdS2) action in (4.11)-(4.16). As discussed above, these are dual to the scalar operator

insertions O
a
, a = 1, 2, 3 with protected dimension � = 1. In what follows we will adopt the

same notation used in [5].
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Worldsheet fluctuations as fields in AdS2

Fluctuation modes over the minimal surface are scalar fields over AdS2

and their dynamics is governed by the fluctuation Lagrangian
Since these fluctuations may be viewed as scalar fields in AdS2,
AdS2/CFT1 states that they dual to operators inserted at the d = 1 boundary, with
dimensions

�(�� 1) = m2 bosons � =
1

2
+ |m| spinors

Hence, we recover the eight bosonic operators in the super-displacement multiplet!
If we add the fermionic fluctuations (considering just the quadratic lagrangian)
we can recompose the full displacement multiplet!

Effective 2d field theory of 1+3 complex scalars in AdS2 geometry
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The displacement supermultiplet

Among the possible operator insertions (defect operators), a special role is played by
a set of “elementary excitations” with protected scaling dimension.
They fall into a short representation of the SU(1, 1|3) subalgebra
It is a chiral multiplet, the displacement supermultiplet

F, F̄

O
a, Ōa a = 1, 2, 3

⇤
a, ⇤̄a a = 1, 2, 3

D, D̄a

All operators in the supermultiplet can be related to broken symmetry generators.
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Comments

Translational invariance is broken, the stress tensor is no longer conserved and the
usual conservation law needs to be modified by some additional terms localized
on the defect.
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Witten diagrams in AdS2

The four-point functions of the dual operators at strong coupling can then be obtained
from familiar AdS/CFT techniques by computing Witten diagrams in AdS2.
(Familiar from SUGRA in AdS5 ⇥ S5, but different interpretation!)
First calculation of this kind in
For the 4-point function of fields e.g. in AdS

hX(t1) X̄(t2)X(t3) X̄(t4)i =
1

t212t
2
34

G(z) ,

hwa1 (t1) w̄a2 (t2)w
a3 (t3) w̄a4 (t4)i =

1

t212t
2
34

Ga1 a3
a2 a4

(z) ,

hO
a1 (t1)Ōa2 (t2)O

a3 (t3)Ō
a4 (t4)iW

Field normalizations are not fixed by AdS/CFT !
G(z) has a strong coupling expansion

G(z) = G(0)(z) +
1

T
G(1)(z) + . . . (1)

the leading term corresponds to the disconnected contribution to the 4-point function
(diagrams with two “boundary-to-boundary’ propagators)
the second term comes from tree-level connected Witten diagrams
(given by the 4-vertices with four bulk-to-boundary propagators attached)

Witten diagrams in AdS2

The four-point functions of the dual operators at strong coupling can then be obtained
from familiar AdS/CFT techniques by computing Witten diagrams in AdS2.
(Familiar from SUGRA in AdS5 ⇥ S5, but different interpretation!)
First calculation of this kind in
For the 4-point function of fields e.g. in AdS

hX(t1) X̄(t2)X(t3) X̄(t4)i =
1

t212t
2
34

G(z) ,

hwa1 (t1) w̄a2 (t2)w
a3 (t3) w̄a4 (t4)i =

1

t212t
2
34

Ga1 a3
a2 a4

(z) ,

hO
a1 (t1)Ōa2 (t2)O
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Summary of 4-point function results

The correlators of string worldsheet excitations read
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The superspace analysis of correlators for defect operators give
All these equalities hold up to a constant, consistently with the fact that
field normalizations are not fixed by AdS/CFT.
These differential equations are all solved by the simple function
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This is the strong coupling expansion of the function governing all correlation functions
of operators in the displacement supermultiplet.
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The bosonic cross-ratio z = x12x34
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< 0 corresponds to the bosonic part of X . In this paper

we will use alternatively z or � = x12x34
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In all what follows change t in �z!

Expanding both sides in Graßmann variables we get (see Appendix C for a complete list)
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The correlation function of the superconformal primary, expressed in terms of a function

f(z), completely determines that of its superdescendants, in which indeed only f(z) and

its derivatives appear. As discussed above, this is a consequence of the fact that the only

superconformal invariant is the supersymmetrization of the conformal ratio, and no further

nilpotent invariants are present 7. In Section (??) we will confirm the superspace analysis

of this section by evaluating explicitly the correlators at strong coupling via AdS/CFT. We

will namely consider the correlation functions of the string excitations corresponding to the

various defect operators and verify that they are given in terms of (derivatives) of a uniquely

determined function f(z), verifying explicitely the relations above.

3.3 Superblocks

Even though we consider half-BPS multiplets as external operators, more general multiplets

can be exchanged when an OPE is applied to the correlator. For the ��̄ channel that we

consider, only long supermultiplets will appear, and a straightforward selection rule based

on the quantum numbers of the external superconformal primaries imposes that they must

7In presence of nilpotent invariants, the four-point function has a finite Taylor expansion in terms of them,

each term being a function of the superconformal cross ratio, see [?].
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hOa1(t1)Ōa2(t2)O
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a3(t3)Ōa4(t4)i = �

16 �a3a4
t412t

4
34

h
(1� z) z4f (4)(z) + (3z +1) z3f (3)(z)

+ 3z2 f 00(z) + 6zf 0(z) + 6f(z)
i

The correlation function of the superconformal primary, expressed in terms of a function

f(z), completely determines that of its superdescendants, in which indeed only f(z) and

its derivatives appear. As discussed above, this is a consequence of the fact that the only

8



Summary of 4-point function results

The correlators of string worldsheet excitations read

hwa1 (t1)w̄a2 (t2)w
a3 (t3)w̄a4 (t4)i

= �a1
a2 �

a3
a4

�
1 + 1

2T
(z2 ln z �

�
z2 �

4
z
+ 3

�
ln(1� z)� z + 4)

�

+�a1
a4 �

a3
a2

�
z2 + 1

2T

�
(3� 4z)z2 ln z � (1 + 3z2 � 4z3) ln(1� z)� (1� 4z)z

��

= 1 + z4 �
1
T

⇣
8z4 � (8z � 3)z4 ln z + z3 + 7

6 z
2 + (8z5 � 3z4 + 8

z
� 3) log(1� z) + z + 8

�
+

The superspace analysis of correlators for defect operators give
All these equalities hold up to a constant, consistently with the fact that
field normalizations are not fixed by AdS/CFT.
These differential equations are all solved by the simple function

f(z) = 1� z +
1

T

⇣
1� z � (3� z)z ln z +

(1� z)3

z
ln(1� z)

⌘
+O

⇣ 1

T 2

⌘
,

This is the strong coupling expansion of the function governing all correlation functions
of operators in the displacement supermultiplet.

Summary of 4-point function results

The correlators of string worldsheet excitations read

hwa1 (t1)w̄a2 (t2)w
a3 (t3)w̄a4 (t4)i

= �a1
a2 �

a3
a4

�
1 + 1

2T
(z2 ln z �

�
z2 �

4
z
+ 3

�
ln(1� z)� z + 4)

�

+�a1
a4 �

a3
a2

�
z2 + 1

2T

�
(3� 4z)z2 ln z � (1 + 3z2 � 4z3) ln(1� z)� (1� 4z)z

��

= 1 + z4 �
1
T

⇣
8z4 � (8z � 3)z4 ln z + z3 + 7

6 z
2 + (8z5 � 3z4 + 8

z
� 3) log(1� z) + z + 8

�
+

The superspace analysis of correlators for defect operators give
All these equalities hold up to a constant, consistently with the fact that
field normalizations are not fixed by AdS/CFT.
These differential equations are all solved by the simple function

f(z) = 1� z +
1

T

⇣
1� z � (3� z)z ln z +

(1� z)3

z
ln(1� z)

⌘
+O

⇣ 1

T 2

⌘
,

This is the strong coupling expansion of the function governing all correlation functions
of operators in the displacement supermultiplet.

Summary of 4-point function results

The correlators of string worldsheet excitations read

hwa1 (t1)w̄a2 (t2)w
a3 (t3)w̄a4 (t4)i

= �a1
a2 �

a3
a4

�
1 + 1

2T
(z2 ln z �

�
z2 �

4
z
+ 3

�
ln(1� z)� z + 4)

�

+�a1
a4 �

a3
a2

�
z2 + 1

2T

�
(3� 4z)z2 ln z � (1 + 3z2 � 4z3) ln(1� z)� (1� 4z)z

��

= 1 + z4 �
1
T

⇣
8z4 � (8z � 3)z4 ln z + z3 + 7

6 z
2 + (8z5 � 3z4 + 8

z
� 3) log(1� z) + z + 8

�
+

The superspace analysis of correlators for defect operators gives
All these equalities hold up to a constant, consistently with the fact that
field normalizations are not fixed by AdS/CFT.
These differential equations are all solved by the simple function

f(z) = 1� z +
1

T

⇣
1� z � (3� z)z ln z +

(1� z)3

z
ln(1� z)

⌘
+O

⇣ 1

T 2

⌘
,

This is the strong coupling expansion of the function governing all correlation functions
of operators in the displacement supermultiplet.

The bosonic cross-ratio z = x12x34
x14x32

< 0 corresponds to the bosonic part of X . In this paper

we will use alternatively z or � = x12x34
x13x24

, 0 < � < 1, related as follows

z =
�

�� 1
, z =

x12x34

x14x32
< 0 , � =

x12x34

x13x24
, 0 < � < 1 . (3.16)

[. . . ]
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REDO new expressions in z this is done badly

hF(t1)F̄(t2)F(t3)F̄(t4)i =
f(z)

t12t34

hOa1(t1)Ōa2(t2)O
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The correlation function of the superconformal primary, expressed in terms of a function

f(z), completely determines that of its superdescendants, in which indeed only f(z) and

its derivatives appear. As discussed above, this is a consequence of the fact that the only

superconformal invariant is the supersymmetrization of the conformal ratio, and no further

nilpotent invariants are present 7. In Section (??) we will confirm the superspace analysis

of this section by evaluating explicitly the correlators at strong coupling via AdS/CFT. We

will namely consider the correlation functions of the string excitations corresponding to the

various defect operators and verify that they are given in terms of (derivatives) of a uniquely

determined function f(z), verifying explicitely the relations above.

3.3 Superblocks

Even though we consider half-BPS multiplets as external operators, more general multiplets

can be exchanged when an OPE is applied to the correlator. For the ��̄ channel that we

consider, only long supermultiplets will appear, and a straightforward selection rule based

on the quantum numbers of the external superconformal primaries imposes that they must

7In presence of nilpotent invariants, the four-point function has a finite Taylor expansion in terms of them,

each term being a function of the superconformal cross ratio, see [?].
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The superspace analysis of correlators for defect operators give
All these equalities hold up to a constant, consistently with the fact that
field normalizations are not fixed by AdS/CFT.
These differential equations are all solved by the simple function
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This is the strong coupling expansion of the function governing all correlation functions
of operators in the displacement supermultiplet.
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of operators in the displacement supermultiplet.
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The correlation function of the superconformal primary, expressed in terms of a function

f(z), completely determines that of its superdescendants, in which indeed only f(z) and

its derivatives appear. As discussed above, this is a consequence of the fact that the only

superconformal invariant is the supersymmetrization of the conformal ratio, and no further

nilpotent invariants are present 7. In Section (??) we will confirm the superspace analysis

of this section by evaluating explicitly the correlators at strong coupling via AdS/CFT. We

will namely consider the correlation functions of the string excitations corresponding to the
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7In presence of nilpotent invariants, the four-point function has a finite Taylor expansion in terms of them,

each term being a function of the superconformal cross ratio, see [?].
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Summary of 4-point function results

The correlators of string worldsheet excitations read
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The superspace analysis of correlators for defect operators give
All these equalities hold up to a constant, consistently with the fact that
field normalizations are not fixed by AdS/CFT.
These differential equations are all solved by the simple function
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This is the strong coupling expansion of the function governing all correlation functions
of operators in the displacement supermultiplet.
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The correlation function of the superconformal primary, expressed in terms of a function

f(z), completely determines that of its superdescendants, in which indeed only f(z) and

its derivatives appear. As discussed above, this is a consequence of the fact that the only

superconformal invariant is the supersymmetrization of the conformal ratio, and no further

nilpotent invariants are present 7. In Section (??) we will confirm the superspace analysis

of this section by evaluating explicitly the correlators at strong coupling via AdS/CFT. We

will namely consider the correlation functions of the string excitations corresponding to the

various defect operators and verify that they are given in terms of (derivatives) of a uniquely
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7In presence of nilpotent invariants, the four-point function has a finite Taylor expansion in terms of them,

each term being a function of the superconformal cross ratio, see [?].
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a3(t3)Ōa4(t4)i = �

16 �a3a4
t412t

4
34

h
(1� z) z4f (4)(z) + (3z +1) z3f (3)(z) + 3z2 f 00(z) + 6zf 0(z) + 6f(z)

i

hF(t1)F̄(t2)F(t3)F̄(t4)i =
f(z)

t12t34

hOa1(t1)Ōa2(t2)O
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CFT data at strong coupling: results

In our superspace analysis (which avoids mixing) we work with superblocks
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using an inversion formula based on the orthogonality relations of the hypergeometric
functions.
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The four-point function has an OPE expansion in superblocks

eigenfunctions of the super-Casimir

of N=6 algebra in d=1  
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This is the strong coupling expansion of the function governing all correlation functions
of operators in the displacement supermultiplet.
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The four-point function has an OPE expansion in superblocks
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The expansion

At the order we will consider, the only operators that may contribute are “two-particle”

operators, built out of products of two of the protected insertions. At strong coupling, they

can can be seen as worldsheet “bound states” made of two of the corresponding fluctuations.

and we can therefore proceed

The operators appearing in the exchanged multiplet are of two-particle type

These functions admit a decomposition in blocks, corresponding to the exchange of a given

superconformal multiplet.
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We assume that there is a single family of long multiplets labelled by n.

Armed with these selection rules

In particular, we start with the lowest-dimension unprotected operator ....

To exctract the anomalous dimension, it is su�cient to look at the block decomposition of

the four-point function of our superprimary (which, as emphasized at various points in this

paper, governs all the four point functions of the displacement multiplet). We will consider

then
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“inverting” for the coefficients in the sum, namely using orthogonality relations
for the hypergeometric functions.

The four-point function has an OPE expansion in superblocks

Motivation:

Why CFT1s are interesting?

I A simpler but still constraining setup to test ideas about higher-d CFTs

I Non trivial CFT1s naturally live on defects , crucial for a deeper
understanding of QFT dynamics.

The set of correlators of operator insertions along the line

c
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n = @n (c
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(1)
n )



Intermediate conclusions and questions

Concluding remarks and outlook

We have considered a class of four-point correlators in the CFT1 defined
on the 1/2-BPS Wilson line in the 3d superconformal ABJM theory.

Superconformal symmetry determines four-point correlators of the
displacement supermultiplet in terms of a single function of the one-dimensional
bosonic cross-ratio.
Via AdS/CFT we compute the strong coupling limit of the four-point functions through
tree-level AdS2 Witten diagrams, producing a result perfectly consistent with the
symmetry constraints and reproduced via the analytic boostrap.
We can extract CFT data.
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displacement supermultiplet in terms of a single function, that
we evaluate at strong coupling using holography and Witten diagrams
and the analytic boostrap. We can extract CFT data.

Further progress on the ABJM Wilson line: topological sector (kinematical defect)  
[Gorini, Griguolo,  Guerrini,  Penati, Seminara, Soresina 22], integrability for the cusp-deformed WL
[Correa, Giraldo-Rivera, Lagares 23]
 three-loop (in AdS) correlators via analytic bootstrap 



Intermediate conclusions and questions

What happens beyond tree-level? Witten diagrams with loops in AdS should be
well-defined, since the 2d theory is supposed to be UV finite.
However, issues of regularization appear.
Is this AdS2/CFT1 system integrable?
Is there an AdS2 analog of e.g. S-matrix factorization of integrable theories?

Conformal correlators and Mellin space

Is there a representation (“momentum space”) in which these computations simplify?
Yes. In Mellin space the scattering nature of the correlator becomes more transparent.
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Conformal correlators and Mellin space

Is there a formalism (e.g. “Feynman rules”) in which these computations simplify?
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M(�12, �14) has the properties of a scattering amplitude:

I Crossing symmetry

I Poles corresponding to operators exchanged in the OPE

I Asymptotic behavior compatible with the Regge limit

I Simple expression for Witten diagrams



Conformal correlators and Mellin space in d = 1

In d = 1, just one independent cross ratio and thus one independent Mellin variable
(correspondingly, scattering in d = 2 described by a single Mandelstam variable)

Reduce the higher-dimensional case: possible, technically involved
Define an inherently d = 1 Mellin amplitude inspired by same guiding principles
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a = �2�� + 1 leads to simple results in a perturbative expansion around GFF
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Reduce the higher-dimensional case is subtle.   
Then, inherently one-dimensional formulation inspired by same guiding principles.
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To obtain a definition on the whole s-complex plane an analytic continuation of the region 
of convergence (  ) is required. 


(  : dimension of the lightest operator exchanged)

2Δϕ − Δ0 < Re(s) < Δ0

Δ0

Subtraction 

 procedure


[Costa, Penedones, 
Zhiboedov 2021]
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How do we deal with ‘Light operators’: ?Δ0 < Δϕ

Improve the  behaviour of t → 0 f(t)

f0(t) = f(t) − ( t
1 + t )

−2Δ Δϕ

∑
Δ+k=Δ0

cΔCΔ,ktΔ+k

ψ0(t) = ∫
1

0
dtt−1−sf0(t) +

Δϕ

∑
Δ+k=Δ0

cΔCΔ,k
1

s − Δ − k

Convergence for  2Δϕ − Δ̃ < Re(s) < Δ̃

[Penedones, Silva, Zhiboedov, ’19]



Mellin amplitude in d = 1

Crossing f(z) = z2� f(1/z) translates to

M(s) = M(2�� s).

reminiscent of the crossing S(s) = S(4m2
� s) in two (flat) dimensions.

Substituting f(z) =
P

h
c2��h

Gh(z) , Gh(z) = zh 2F1(h, h, 2h,�z) leads to
two semi-infinite sequences of poles at physical exchanged operators

M(s) =
1

�(s)�(2�� s)

X
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and the contour C is chosen so to leave right poles on its right and left poles on its left.
The integral converges in the strip (h0: lightest exchanged operator)

2�� h0 < Re(s) < h0 , well-defined only forh0 > �.

left poles
right poles

Same process for t ! 1 behavior of f(t) to form  1(s)
The deformed contour does not cross
any singularity of the respective integrands
leaving all the poles of  0(s) on the right
and all the poles of  1(s) on the left.
Adding more and more poles we can further extend the area of analyticity
obtaining a representation valid in the whole complex plane
Using this properties, we can derive sum rules constraining the CFT data

X

h

ch F (h) = 0

In higher d, recent progress on this with different, equivalent, approaches.

Left poles

Right poles

Nonperturbative Mellin amplitude in d = 1

I M(s) is crossing-invariant
I M(s) is regular in 2�� h0 < Re(s) < h0

I M(s) has poles for physical exchanged operators
at s = h+ k k=0,1,2,..with residue
Res[M(s)]|s=h+k = (�1)k�(2h)�(h+k)

k!�(h)2�(2h+k)�(2��h�k)

I M(s) has zeros (generically) at s = 2�+ k , k = 0, 1, 2, ..

I Asymptotic behavior: M(s)  K�
s

(canceling unwanted OPE contributions)
at s = 2�+ k , k = 0, 1, 2, ..

Ex. of one light 
operator exchanged 



Nonperturbative Mellin amplitude in d = 1

I M(s) is crossing-invariant
I M(s) is regular in 2�� h0 < Re(s) < h0

I M(s) has poles for physical exchanged operators
at s = h+ k k=0,1,2,..with residue
Res[M(s)]|s=h+k = (�1)k�(2h)�(h+k)

k!�(h)2�(2h+k)�(2��h�k)

I M(s) has zeros (generically) at s = 2�+ k , k = 0, 1, 2, ..

I Asymptotic behavior: M(s)  K�
s

(canceling unwanted OPE contributions)

Nonperturbative Mellin amplitude in d = 1

I M(s) is crossing-invariant
I M(s) is regular in 2�� h0 < Re(s) < h0

I M(s) has poles for physical exchanged operators
at s = h+ k k=0,1,2,..with residue
Res[M(s)]|s=h+k = (�1)k�(2h)�(h+k)

k!�(h)2�(2h+k)�(2��h�k)

I M(s) has zeros (generically) at s = 2�+ k , k = 0, 1, 2, ..

I Asymptotic behavior: M(s)  K�
s

(canceling unwanted OPE contributions)

Nonperturbative Mellin amplitude in d = 1

I M(s) is crossing-invariant
I M(s) is regular in 2�� h0 < Re(s) < h0

I M(s) has poles for physical exchanged operators
at s = h+ k k=0,1,2,..with residue
Res[M(s)]|s=h+k = (�1)k�(2h)�(h+k)

k!�(h)2�(2h+k)�(2��h�k)

I M(s) has zeros (generically) at s = 2�+ k , k = 0, 1, 2, ..

I Asymptotic behavior: M(s)  K�
s

(canceling unwanted OPE contributions)
at s = 2�+ k , k = 0, 1, 2, ..

Nonperturbative Mellin amplitude in d = 1

I M(s) is crossing-invariant
I M(s) is regular in 2�� h0 < Re(s) < h0

I M(s) has poles for physical exchanged operators
at s = h+ k k=0,1,2,..with residue
Res[M(s)]|s=h+k = (�1)k�(2h)�(h+k)

k!�(h)2�(2h+k)�(2��h�k)

I M(s) has zeros (generically) at s = 2�+ k , k = 0, 1, 2, ..

I Asymptotic behavior: M(s)  K�
s

(canceling unwanted OPE contributions)
at s = 2�+ k , k = 0, 1, 2, ..

Nonperturbative Mellin amplitude in d = 1

I M(s) is crossing-invariant
I M(s) is regular in 2�� h0 < Re(s) < h0

I M(s) has poles for physical exchanged operators
at s = h+ k k=0,1,2,..with residue
Res[M(s)]|s=h+k = (�1)k�(2h)�(h+k)

k!�(h)2�(2h+k)�(2��h�k)

I M(s) has zeros (generically) at s = 2�+ k , k = 0, 1, 2, ..

I Asymptotic behavior: M(s)  K�
s

(canceling unwanted OPE contributions)
at s = 2�+ k , k = 0, 1, 2, ..

Nonperturbative Mellin amplitude in d = 1

I M(s) is crossing-invariant
I M(s) is regular in 2�� h0 < Re(s) < h0

I M(s) has poles for physical exchanged operators
at s = h+ k k=0,1,2,..with residue
Res[M(s)]|s=h+k = (�1)k�(2h)�(h+k)

k!�(h)2�(2h+k)�(2��h�k)

I M(s) has zeros (generically) at s = 2�+ k , k = 0, 1, 2, ..

I Asymptotic behavior: M(s) ⇠ 1
sa

, a > 1

(canceling unwanted OPE contributions)
at s = 2�+ k , k = 0, 1, 2, ..

(controlled by the Regge limit of the correlator 
 and ensured by the prefactor) 
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sum rules can be derived. However the most efficient use of this Mellin formalism  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Summing over k gives the Mellin counterpart of the conformal block expansion 



Perturbation theory: quantum field theory in AdS2 wit

S =

Z
dxdz

p
g
⇥
gµ⌫ @µ� @⌫�+m2

��
�2 + gL (@L�)4

⇤
, L = 0, 1, . . . (13)

where ds2 = 1
z2

(dx2 + dz2). Here (@L�)4 denotes a complete and independent
set of quartic vertices with four fields and up to 4L derivatives.
For L = 0, this is �4 theory: correlators are D̄-functions.
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Perturbation theory: quartic interactions with derivatives in AdS2

We consider deformations from generalized free-field theory produced by effective
interactions
in a bulk AdS2 field theory.

G. Bliard          Mellin amplitudes & 1d CFTs22

AdS2 computations
KΔ(y, x; xi)

< ϕΔ(x1)ϕΔ(x2)ϕΔ(x2)ϕΔ(x2) > = − λ∫ dydx
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−λ

Vertex, propagators, bulk integration:
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M1111(s) = 2�(s� 1)�(�s) (1)
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and closed expressions can be found
For quartic bulk interactions of the kind (@L�)4, we find closed expressions

M(@L�)4 =
LX

l=0

al

2lX

k=0

ck,lM�+l(s+ k) (3)

2ck,l =
�(l + 1)

�(k + 1)�(l � k + 1)
+ �k,0 + �k,2l (4)

(we will perform some of these computations explicitly in Section ??). Nevertheless, by the

argument above these results cannot be independent of those obtained using LL and therefore

the result must be expressible as a linear combination
P

`
a`f

(1)
`

(z). This requires a series of

non-trivial identities among D̄ functions, some of which we derive in Section ??.

Using (??) as a basis for 4L-derivative results, we can take its Mellin transform. The first

step is to compute the Mellin transform of the function D̄��������(t). In this section we

consider the reduced Mellin amplitude M̂(s) ⌘ M(s)�(s)�(2��� s) and we need to compute

M̂��(s) =

ˆ 1

0
dt D̄��������(t)

⇣ t

1 + t

⌘2��

t�1�s . (5.4)

A closed-form expression for the D̄ functions is not available and dealing with integral rep-

resentations is quite hard. Therefore, we considered the case of integer ��, where simple

explicit expressions for the D̄ functions are known (see (??)-(??)) and we inferred the general

form

M̂��(s) = ⇡ csc(⇡s)
⇣
⇡ cot(⇡s)P��(s)�

2���1X

k=1

P��(k)

s� k

⌘
, (5.5)

P��(s) = 2

���1X

n=0

(�1)n
�(2n+ 1)�4(��)�(�� + n)

�4(n+ 1)�(�� � n)�(2(�� + n))
(2�� � s)n(s)n , (5.6)

The functions P��(s) are e↵ectively just polynomials of order 2�� � 2. Defining

Q��(s(s� 2��)) ⌘ P��(s) , (5.7)

we have, for the first few cases

�� Q��(x)

1 2

2 1
15(5 + x)

3 1
315(84 + 17x+ x2)

4 1
30030(15444 + 2889x+ 206x2 + 5x3)

5 1
765765(1400256 + 239640x+ 17387x2 + 570x3 + 7x4)

(5.8)

The functions P��(s) can also be rewritten as

P��(s) = 2
�(��)4

�(2��)
4F3({

1
2 , s, 1���, 2�� � s}; {1, 1,�� + 1

2}; 1) , (5.9)

Notice the important fact that in cross-ratio space a closed-form expression for the D̄ functions

is not known, while in Mellin space it looks reasonably simple, at least for integer ��. This

is similar to what happens in the higher dimensional case, where this occurrence is even more

striking as the reduced Mellin transform of the D̄ functions is simply a product of Gamma

26

(we will perform some of these computations explicitly in Section ??). Nevertheless, by the

argument above these results cannot be independent of those obtained using LL and therefore

the result must be expressible as a linear combination
P

`
a`f

(1)
`

(z). This requires a series of

non-trivial identities among D̄ functions, some of which we derive in Section ??.

Using (??) as a basis for 4L-derivative results, we can take its Mellin transform. The first

step is to compute the Mellin transform of the function D̄��������(t). In this section we

consider the reduced Mellin amplitude M̂(s) ⌘ M(s)�(s)�(2��� s) and we need to compute

M̂��(s) =

ˆ 1

0
dt D̄��������(t)

⇣ t

1 + t

⌘2��

t�1�s . (5.4)

A closed-form expression for the D̄ functions is not available and dealing with integral rep-

resentations is quite hard. Therefore, we considered the case of integer ��, where simple

explicit expressions for the D̄ functions are known (see (??)-(??)) and we inferred the general

form

M̂��(s) = ⇡ csc(⇡s)
⇣
⇡ cot(⇡s)P��(s)�

2���1X

k=1

P��(k)

s� k

⌘
, (5.5)

P��(s) = 2

���1X

n=0

(�1)n
�(2n+ 1)�4(��)�(�� + n)

�4(n+ 1)�(�� � n)�(2(�� + n))
(2�� � s)n(s)n , (5.6)

The functions P��(s) are e↵ectively just polynomials of order 2�� � 2. Defining

Q��(s(s� 2��)) ⌘ P��(s) , (5.7)

we have, for the first few cases

�� Q��(x)

1 2

2 1
15(5 + x)

3 1
315(84 + 17x+ x2)

4 1
30030(15444 + 2889x+ 206x2 + 5x3)

5 1
765765(1400256 + 239640x+ 17387x2 + 570x3 + 7x4)

(5.8)

The functions P��(s) can also be rewritten as

P��(s) = 2
�(��)4

�(2��)
4F3({

1
2 , s, 1���, 2�� � s}; {1, 1,�� + 1

2}; 1) , (5.9)

Notice the important fact that in cross-ratio space a closed-form expression for the D̄ functions

is not known, while in Mellin space it looks reasonably simple, at least for integer ��. This

is similar to what happens in the higher dimensional case, where this occurrence is even more

striking as the reduced Mellin transform of the D̄ functions is simply a product of Gamma

26

Perturbation theory: quartic interactions with derivatives in AdS2

We consider deformations from generalized free-field theory produced by effective
interactions
in a bulk AdS2 field theory.

Perturbation theory: quantum field theory in AdS2 wit

S =

Z
dxdz

p
g
⇥
gµ⌫ @µ� @⌫�+m2

��
�2 + gL (@L�)4

⇤
, L = 0, 1, . . . (13)

where ds2 = 1
z2

(dx2 + dz2). Here (@L�)4 denotes a complete and independent
set of quartic vertices with four fields and up to 4L derivatives.
For L = 0, this is �4 theory: correlators are D̄-functions.
No closed from expression is known, in cross ratio space, for general �.

Perturbation theory: quantum field theory in AdS2 wit

S =

Z
dxdz

p
g
⇥
gµ⌫ @µ� @⌫�+m2

��
�2 + gL (@L�)4

⇤
, L = 0, 1, . . . (13)

where ds2 = 1
z2

(dx2 + dz2). Here (@L�)4 denotes a complete and independent
set of quartic vertices with four fields and up to 4L derivatives.
For L = 0, this is �4 theory: correlators are D̄-functions.

G. Bliard          Mellin amplitudes & 1d CFTs22

AdS2 computations
KΔ(y, x; xi)

< ϕΔ(x1)ϕΔ(x2)ϕΔ(x2)ϕΔ(x2) > = − λ∫ dydx
y2

4

∏
i=1 ( y

y2 + (x − xi)2 )
Δ

= CΔ
(x12x34)2Δ D̄Δ(z)

−λ

Vertex, propagators, bulk integration:

G. Bliard          Mellin amplitudes & 1d CFTs22

AdS2 computations
KΔ(y, x; xi)

< ϕΔ(x1)ϕΔ(x2)ϕΔ(x2)ϕΔ(x2) > = − λ∫ dydx
y2

4

∏
i=1 ( y

y2 + (x − xi)2 )
Δ

= CΔ
(x12x34)2Δ D̄Δ(z)

−λ

Vertex, propagators, bulk integration:

In Mellin space their explicit expressions are simpler

M1111(s) = 2�(s� 1)�(�s) (1)

M2222(s) = 2(2� s+ s2)�(s� 3)�(�2� s) (2)
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For L = 0, this is �4 theory: correlators are D̄-functions.
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Perturbation theory: quartic interactions with derivatives in AdS2

We consider deformations from generalized free-field theory produced by effective
interactions
in a bulk AdS2 field theory.

With such closed formulas we can successfully extract new CFT data in closed form. 

 Obtained comparing residues at poles of.                with those of Mellin block expansion
Verified in [Knop, Mazac 22]
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From OPE inversion formula to dispersion relation
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The OPE expresses a four-point correlator as a discrete sum of conformal blocks

Another expansion - the conformal partial wave decomposition - is in terms of  a complete 

basis of orthonormal functions (principal series,                   and discrete series). 
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Ĩ2m+2G2m+2(z) (2.9)

where in the second line (
CPW

2.6) was used. The s-channel OPE decomposition (
s-channel

2.4) is recovered

by closing the integration contour to the right, so that terms of the OPE come from poles of

the coe�cient, or partial wave amplitude,

c(�) =
I�
2K�

(2.10)

4

Another expansion - the conformal partial wave decomposition - is in terms of  a complete 

basis of orthonormal functions (principal series,                   and discrete series). 



and the terms of the discrete series. In particular the presence of an operator of dimension

� in the OPE translates to a simple pole at � in c(�) with residue a�. In general Ĩm is
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It provides an analytic continuation of the coefficients (in higher d, this means we 
can think of spin as a expansion parameter). 
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The double discontinuity can then be taken as the starting point to reconstruct the full correlator

The kernel of the integral can be evaluated explicitly at each given integer and half- 
integer dimension        of the external identical operators.

a function which is piecewise analytic in the three disconnected regions (�1, 0), (0, 1) and

(1,1) [12]. The exchange x1 $ x3 (or equivalently, x2 $ x4) is the only true symmetry of

the correlator, consistently mapping the interval (0, 1) to itself. It is expressed as the crossing

relation

G(z) = z2��

(1� z)2��
G(1� z) . (2.3) crossing

The four-point function (
G

2.1) can be considered in its s-channel conformal block expansion

G(z) =
X

�

a�G�(z) (2.4) s-channel

where the sum runs over sl(2, R) primaries, with dimension �, exchanged in the �⇥ � OPE,

a� are corresponding, squared, OPE coe�cients and G�(z) are the SL(2,R) conformal blocks

G�(z) = z�2F1(�,�, 2�, z) . (2.5)

Another useful decomposition is in terms of (Euclidean) conformal partial waves, which are

regular eigenfunctions of the Casimir operator of SL(2,R) and can be written as a linear

combination of conformal blocks and their shadow (�! 1��) blocks

 �(z) = 1��G�(z) + �G1��(z) , � =

p
⇡ �(�� 1

2)�(
1��
2 )2

�(1��)�(�2 )
2

. (2.6) CPW

The representation theory of SL(2,R) [?] shows that a complete and orthogonal set with

respect to the invariant inner product (f, g) =
´1
�1 dz z�2 f(z) g(z) is formed by partial

waves with integer spin and (unphysical) complex dimensions � = 1
2 + i↵ with ↵ 2 R+ –

referred to as the principal series representation – and partial waves with discrete dimensions

� = m 2 N. Explicitly, the orthogonality relations are

�
 1

2+i↵(z) ,  1
2+i�(z)

�
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=
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2m� 1
�mn , m, n 2 N

(2.7)

with ( 1/2+i↵(z) ,  m(z)) = 0 and n� = 2�1��. The four-point function can be then

decomposed as
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where in the second line (
CPW

2.6) was used. The s-channel OPE decomposition (
s-channel

2.4) is recovered

by closing the integration contour to the right, so that terms of the OPE come from poles of

the coe�cient, or partial wave amplitude,

c(�) =
I�
2K�

(2.10)
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with ( 1/2+i↵(z) ,  m(z)) = 0 and n� = 2�1��. The four-point function can be then

decomposed as

G(z) =

ˆ 1
2+i1

1
2

d�

2⇡i

I�
n�
 �(z) +

1X

m=0

4m� 1

4⇡2
Ĩ2m 2m(z) (2.8)

=

ˆ 1
2+i1

1
2�i1

d�

2⇡i

I�
2�

G�(z) +
1X

m=0

�2(2m+ 2)

2⇡2�(4m+ 3)
Ĩ2m+2G2m+2(z) (2.9)

where in the second line (
CPW

2.6) was used. The s-channel OPE decomposition (
s-channel

2.4) is recovered

by closing the integration contour to the right, so that terms of the OPE come from poles of

the coe�cient, or partial wave amplitude,

c(�) =
I�
2K�

(2.10)
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and the terms of the discrete series. In particular the presence of an operator of dimension

� in the OPE translates to a simple pole at � in c(�) with residue a�. In general Ĩm is

di↵erent from I�|�=m unless there is no physical operator at h = �. In this case they are

equal and the residue of the integral in (
G-CPW

2.9) coming from the zero of K� at � = m precisely

cancels the corresponding term of the sum over the discrete series. The coe�cients I� and

Ĩm may be obtained using orthogonality to invert equation (
gpartialwaves

2.8)

I� =

ˆ 1

�1
dw w�2G(w) �(w) , Ĩm =

ˆ 1

�1
dw w�2G(w) m(w) , (2.11) coeff-definition

where dww�2 is the sl(2;R) invariant measure. COMMENT needed: euclidean/lorentzian

(d=1?) INVERSION....

However, in the case of identical operators, a far more powerful inversion allows to reconstruct

Ĩm [13] and I� [12] from the double discontinuity of the four-point function, defined as

dDisct[G(z)] = G(z)� Gx(z) + Gy(z)

2
(2.12) ddisc

for z 2 (0, 1). Above, Gx(z) is the value of G(z) moving counterclockwise around the branch

cut at z = 1 and viceversa for Gy(z). For identical bosonic operators, Bose symmetry implies

Gx(z) = G+(z + i✏) , Gy(z) = G+(z � i✏) (2.13)

where

G+(z) = z2��G
�
1
z

�
(2.14) Gplus

The label t in dDisct(G(z)) indicates that this is the double discontinuity in the t-channel. One

can also define dDiscs(G(z)) by applying the same procedure to the branch cut at z = 0. In

what follows, the absence of a subscript will mean that the channel considered is the t-channel.

Evaluating the double discontinuity of the correlator commutes with its OPE expansion in

the t-channel [12], and for a bosonic correlator the contribution of a single conformal block

reads

dDisc
⇥

z2��

(1�z)2��
G�(1� z)

⇤
= 2 sin2 ⇡

2 (�� 2��)
z2��

(1�z)2��
G�(1� z) . (2.15) ddiscblockbos

One can see that the double discontinuity of conformal blocks, and their derivatives with with

respect to �, vanishes for the case � = 2�� + 2n of double trace operators 6. With the

definition (
ddisc

2.12), the one-dimensional Lorentzian inversion formulas [13, 12] read

I� = 2

ˆ 1

0
dww�2H�(w) dDisc[G(w)] (2.16)

Ĩm =
4�2(m)

�(2m)

ˆ 1

0
dww�2Gm(w) dDisc[G(w)] (2.17)

where HB/F
� (w) are inversion kernels, respectively for the bosonic and fermionic case, that can

be determined requiring consistency between the inversion (
LorInvDelta

2.16) and the definition (
coeff-definition

2.11), as

discussed thoroughly in [12]. In particular, together with being holomorphic in w /2 (1,1),

6We propagate the misnomen...
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On conformal blocks, dDisc acts as

If the correlator is evaluated  in a perturbative expansion about generalised free theory, 
this implies that each given order dDisc is given in terms of lower order data

E.g.

Dispersion relation in perturbation theory 

Hidden symmetries in AdS/CFT

dDisc[G(2)(z)] = ⇡2
X

n

1

2
a
(0)
n

�
�
(1)
n

�2 z2��

(1� z)2��
G2��+2n(1� z) (1)

G(z)(`) =
Z 1

0
dw w�2

dDisc[G(`)(w)]K��
(z, w) (2)

M(s) = 1
�(s)�(2���s)

P
�,k

a� C�,k
⇥ 1
s�k��+ 1

2���s�k��

⇤
=

P
�

G�(s)+G�(2���s)

�(s)�(2���s)

(3)

Crossing f(t) = t2��f(1/t) translates to M(s) = M(2�� s)

G�(s) =
3F2(�,�,�� s; 2�, 1 +�� s; 1)

�� s
(4)

t =
x12x34

=
z

1� z
(5)

dDisc[log(1� z)] = 0, dDisc[log2(1� z)] = ⇡2
(6)

Much simpler than correlator!



Direct connection of Ddisc with “unitarity” cut operators in AdS, which act on bulk 
amplitudes putting virtual lines on shell [Alday, Caron-Huot 17] [Meltzer Perlmutter Sivaramakrishan 19]

Double discontinuity in perturbation theory 



Direct connection of Ddisc with “unitarity” cut operators in AdS, which act on bulk 
amplitudes putting virtual lines on shell [Alday, Caron-Huot 17] [Meltzer Perlmutter Sivaramakrishan 19]

Double discontinuity in perturbation theory 

Split representation of bulk-to-bulk propagator in terms of two bulk-to-boundary propagators

A propagator goes on-shell when localised onto a pole of   

A “Cut operator” can be defined, effect same as Ddisc (vanishes on contact diagrams, etc)
Effective to 4 point, 1-loop (no general unitarity), to be developed. 



dCFT1 defined by 1/2 BPS Wilson line in N=4 sYM: state of the art is 4th order in strong 
coupling (=3 loops in AdS) obtained with perturbative Ansatz

Unknowns are some coefficients in an educated guess for the rational functions  
Ansatz constrained by:  
a) AdS unitarity (highest logarithmic singularities fixed in terms of lower order ones) 
b) Crossing symmetry, Braiding symmetry, Regge bound and supersymmetric localization  
    fix the remaining terms ~ 1, log(z), log(1-z).

ri(z)

Checked on the one-loop correlator of four the  theory in AdS2 
λϕ4

 Correlators from dispersion in perturbation theory 

where

rational functions [Ferrero, Meneghelli 21,23]

Hidden symmetries in AdS/CFT
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The dispersion relation bypasses the need of an Ansatz incorporating all constraints!

with a caveat: the regularization procedure necessary order by order in perturbation theory 
(where the Regge behaviour is worse than in the full nonperturbative correlator) implies
subtractions which depend on a few unknown OPE data (i.e. data at same pert. order). 

These can be fixed, in the N=4 SYM case, using inputs from supersymmetric localization or 
constraints from integrated correlators.

@ 1 loop:          

This kind of leftover ambiguity is not surprising in this context,  
e.g. in higher d there is a low spin ambiguity.  

@ 2 loops:        

@ 3 loops:

a(2)
0 , γ(2)

0

a(4)
0 , a(4)

1 γ(4)
0 γ(4)

1

a(3)
0 , a(3)

1 γ(3)
0 γ(3)

1

[Cavaglia’Gromov Julius Preti 22] [Drukker, Kong, Sakkas 22]

 Correlators from dispersion in perturbation theory 



CORRELATORS FROM DISPERSION IN PERTURBATION THEORY : STRATEGY

1) Compute Dise (g (21] from lower order
CATdata -

-

-

el(e)
& Glogk(z) logkz z to OPE limit

k= 0

= compute terms proportional to logkt
with >1 from lower order data

e
.g . doicc[g() = Ean(Unezn( - 2)

↓

MixING : because of degeneracy
between operatives in the free theory

=r
this is rother an average
Jan"(2) : = z (g) (2012

&
eigenstates of dit openator de coeft with external operative

However , at previous order , from one correlator
it is only possible to extract

Jan jns >:= (pegg
For a solution of the mixing problem

in has selup , ErrecoMeneghelli zost

 Correlators from dispersion in perturbation theory: STRATEGY 



 Correlators from dispersion in perturbation theory: STRATEGY 

Visuallysolved considering more
correlator 7

Leve No depend or external operators
,
the result of the average

de prod

on the four-point function one is considering
correlators

, enoug inequivalent averages
<an Jul to calculate the actual h?

LED enoug -

2) Regge bandedness of
correlator in Rege Limit /Exity-201 Glit) for to

is booken perturbatarety. Assume mild jn v nete o Gletitive
umM .

=> Reflected in the inversion formula How

=> In the dispension relation
Kimbounded (with extra poles

that mayepait convergence of
the integral defining the correlator)

=> Subtraction at level of correlator (2 (2) = G(1) - subtractions

=> drisc[gry] enters the dispension relation multiplying runbounded

and one then just dimands that the integral of the dispension
relation converges

⑤ the subtractorsMen depend on specific unknown at the given order

- to fix these unknown , use constraints from localization/integrated correlations

of Caroglia Gromor
Julius Met



Conclusions

I We defined a Mellin amplitude for CFT1 four-point functions; bounded,
meromorphic function of a single complex variable, whose analytical properties
are inferred from physical requirements on the correlator.

I Used it to derive an infinite set of nonperturbative sum rules for CFT data of
exchanged operators, tested on known examples.

I Closed-form expressions for Mellin transform of tree-level contact interactions
with an arbitrary number of derivatives in a bulk AdS2 field theory, and for
first correction to the scaling dimension of “two-particle” operators exchanged.
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exchanged operators, tested on known examples.

I Closed-form expressions for Mellin transform of tree-level contact interactions
with an arbitrary number of derivatives in a bulk AdS2 field theory, and for
first correction to the scaling dimension of “two-particle” operators exchanged.

 Conclusions   

Derived from the inversion formula a dispersion relation for CFT1 four-point functions, an 
integral over the double discontinuity of the correlator. 


Concluding remarks and outlook

We have considered a class of four-point correlators in the CFT1 defined
on the 1/2-BPS Wilson line in the 3d superconformal ABJM theory.

Superconformal symmetry determines four-point correlators of the
displacement supermultiplet in terms of a single function of the one-dimensional
bosonic cross-ratio.
Via AdS/CFT we compute the strong coupling limit of the four-point functions through
tree-level AdS2 Witten diagrams, producing a result perfectly consistent with the
symmetry constraints and reproduced via the analytic boostrap.
We can extract CFT data.
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on the 1/2-BPS Wilson line in the 3d superconformal ABJM theory.

Superconformal symmetry determines four-point correlators of the
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Recent observation of integrable structure underlying contact Witten diagrams                          
If generalizes to other classes of diagrams this would open a playground of  
applications of integrability in AdS spaces.

Outlook

    Higher-order analysis, multi-point correlators, non-identical  in the same setup

Organising principles/hidden symmetries?
[Rigatos, Zhou 22]

 
                             

perturbation theory in rigid de Sitter -> Witten diagrams in EAdS
[Di Pietro, Gorbenko, Komatsu 21][Sleight, Taronna 20,21]

Despite/with the help of these analytic bootstrap tools, a motivation to develop 
technology for Witten diagrams remains, thanks to the general observation that 

(for a class of boundary correlators related to inflationary correlators) 

It would be great to develop loop-technology for AdS2 models with derivative interactions 



Recent observation of integrable structure underlying contact Witten diagrams                          
If generalizes to other classes of diagrams this would open a playground of  
applications of integrability in AdS spaces.

 
                             

perturbation theory in rigid de Sitter -> Witten diagrams in EAdS
[Di Pietro, Gorbenko, Komatsu 21]

Outlook

    Higher-order analysis, multi-point correlators, non-identical  in the same setup

Organising principles/hidden symmetries?

[Sleight, Taronna 20,21]

Despite/with the help of these analytic bootstrap tools, a motivation to develop 
technology for Witten diagrams remains, thanks to the general observation that 

(for a class of boundary correlators related to inflationary correlators) 

It would be great to develop loop-technology for AdS2 models with derivative interactions 

[Rigatos, Zhou 22]

Thank you.


