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Motivation

Why CFT;s are interesting?
» A simpler but still constraining setup to test ideas about higher-d CFTs

» Non trivial CFTys naturally live on line defects, crucial for a deeper
understanding of QFT dynamics.



Motivation: Wilson loops as 1-dimensional defects

Why CFT;s are interesting?

» A simpler but still constraining setup to test ideas about higher-d CFTs

» Non trivial CFTs naturally live on defects, crucial for a deeper
understanding of QFT dynamics.

In a CFT, for instance N’ =4 SYMind = 4 or ABUJM in d = 3, a Wilson line can be

viewed as a conformal defect. [Giombi Roiban Tseytlin 17] [Giombi Beccaria Tseytlin 18]

[Bianchi, Bliard, Forini, Griguolo, Seminara 20]

(W) = Pexp (—i [, dt L(t))

A straight line breaks the original conformal symmetry to

a) dilatations, translations and special conformal transformations along the line
b) rotations around the line

+ part of the R-symmetry + part of the supersymmetry
(depending on the specific form of the loop)



Motivation: Wilson loops as 1-dimensional defects

Why CFT;s are interesting?

» A simpler but still constraining setup to test ideas about higher-d CFTs

» Non trivial CFTs naturally live on defects, crucial for a deeper
understanding of QFT dynamics.

In a CFT, for instance N’ =4 SYMind = 4 or ABUJM in d = 3, a Wilson line can be

viewed as a conformal defect. [Giombi Roiban Tseytlin 17] [Giombi Beccaria Tseytlin 18]

[Bianchi, Bliard, Forini, Griguolo, Seminara 20]

(W) = Pexp (—i [, dt L(t))

A straight line breaks the original conformal symmetry to

a) dilatations, translations and special conformal transformations along the line
b) rotations around the line

Thus the Wilson loop implicitly defines a defect CFT;.
Can we study this “simpler” CFT?



A defect CFT;,

The set of correlators of operator insertions along the line

(Ot1)O(t2) ... O(tn))yy = (TrO1(t1)WO2(t2) . '<i/[(/9>n1<tn1)WOn(tn)>

where
(W) = Pexp(—zft2dt£ (¥))

can be interpreted as characterizing a defect CFT;.
It should be fully determined by its spectrum of dimensions and OPE coefficients.



A defect CFT;,

The set of correlators of operator insertions along the line

<TI‘(91 (tl)WOQ (tg) . On_l(tn_l)WOn (tn)>
(W)

<O(t1)0(t2) “ . O(tn)>W —
where
(W) = Pexp (—i [,;2 dt L(1))

can be interpreted as characterizing a defect CFT;.
It should be fully determined by its spectrum of dimensions and OPE coefficients.

Also: operator insertions are equivalent to deformations of the Wilson line
[Drukker, Kawamoto 2006]

Complete knowledge of these correlators would, in principle, allow to compute the
expectation value of general Wilson loops which are deformations of the line or circle.



A defect CFT;: the 1/2 BPS Wilson line in ABJM theory

The set of correlators of operator insertions along the line

(Ot1)O(t2) ... O(tn))yy = (TrO1(t1)WO2(t2) . A/{%ﬂl(tnl)wcn(tn»

where

(W) = Pexp(—zft2dt£ (¥))

can be interpreted as characterizing a defect CFT;.
It should be fully determined by its spectrum of dimensions and OPE coefficients.

Consider the N/ = 6 superconformal Chern-Simons-matter theory in d = 3 (ABJM).
Its original symmetry, OSp(6|4), is broken by the 1/2 BPS Wilson line to SU(1, 1|3),
the V' = 6 superconformal group in d = 1.

Its bosonic subgroup is SO(2,1) x U(1) s x SU(3)g.

Operator insertions along the Wilson line are labelled by [A;m; 51, j2].



The displacement supermultiplet

Among the possible operator insertions (defect operators), a special role is played by
a set of “elementary excitations” with protected scaling dimension.

They fall into a short representation of the SU (1, 1|3) subalgebra

It is a chiral multiplet, the displacement supermultiplet

1,3,0,0] F, F
N\
1,2,1,0] 0% 0, a=1,2,3
A\
[5,3,0,1] AN Ny a=1,2,3
N\



The displacement supermultiplet

Among the possible operator insertions (defect operators), a special role is played by
a set of “elementary excitations” with protected scaling dimension.

They fall into a short representation of the SU (1, 1|3) subalgebra

It is a chiral multiplet, the displacement supermultiplet

[3,5,0,0] F, F
N\
1,2,1,0] 0% 0, a=1,2,3
N\
[2,2,0,1] N Ny a=1,2,3
N\
2,3,0,0] D, D 0, TH™ = 6%(z) D™ (t)

Translational invariance is broken, the stress tensor is no longer conserved and the

usual conservation law needs to be modified by some additional terms localized
on the defect.



The displacement supermultiplet

Among the possible operator insertions (defect operators), a special role is played by
a set of “elementary excitations” with protected scaling dimension.

They fall into a short representation of the SU(1, 1|3) subalgebra

It is a chiral multiplet, the displacement supermultiplet

[%7 %7 O) 0] I:’ ﬁ
N\
[1’27170] Oa’ C_)a a=1,2,3
N SF+8B
[%,%,0, L AN No a= 1,2,3 like the DOF of
AN transverse
2,3,0,0] D. D string fluctuations
) ) ) ’

All operators in the supermultiplet can be related to broken symmetry generators.



The displacement supermultiplet

Their 2-point functions are particularly simple, e.g.

o . . [Bianchi L Meineri 18
where the normalization constant Cp = 12 B /5 () has a physical meaning: {B:Zzgh: ngg: 1991'”9” ]

it coincides with the Bremsstrahlung function, one of the few unprotected observables

known to each order in AdS/CFT. [Correa Henn Maldacena Sever 12]
[Bianchi Griguolo Preti Seminarai7] [Bianchi Preti Vescovi 18]

Their 3-point functions vanish by symmetry.
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it coincides with the Bremsstrahlung function, one of the few unprotected observables

known to each order in AdS/CFT. [Correa Henn Maldacena Sever 12]
[Bianchi Griguolo Preti Seminarai7] [Bianchi Preti Vescovi 18]

Their 3-point functions vanish by symmetry.

Their 4-point functions, on the other hand, have a less costrained form
1

(t12t34

(OA(t1)OA (£2)Oa(¢3)Oa(ts)) = 25 G(x) -

G has non-trivial dependence on the coupling and conformal cross ratio x = 2?)%

They encode Iin particular scaling dimensions and structure constants of
unprotected operators appearing in the OPE.



The displacement supermultiplet

Their 2-point functions are particularly simple, e.g.

o . . [Bianchi L Meineri 18
where the normalization constant Cp = 12 B /5 () has a physical meaning: {B:Zzgh: ngg: 1991'”9” ]

it coincides with the Bremsstrahlung function, one of the few unprotected observables

known to each order in AdS/CFT. [Correa Henn Maldacena Sever 12]
[Bianchi Griguolo Preti Seminarai7] [Bianchi Preti Vescovi 18]

Their 3-point functions vanish by symmetry.

Their 4-point functions, on the other hand, have a less costrained form

(OA(t1)OA(t2)OA(t3)OA(ts)) =

G has non-trivial dependence on t — %
13t24
superspace analysis analytic bootstrap direct (Witten) diagrammatics

at strong coupling via AdS/CFT




Chiral correlators in superspace

The supermultiplet accomodating the displacement operator is the chiral one.
We consider the chiral superfield (y = x — 6,69)

d(y,0) = F(y) + 0,0%(y) + 040, €2 Ae(y) + 04050, €2°¢ D(y) ,

The two-point function reads




Chiral correlators in superspace

The supermultiplet accomodating the displacement operator is the chiral one.
We consider the chiral superfield (y = x — 6,69)

d(y,0) = F(y) + 0,0%(y) + 040, €2 Ae(y) + 04050, €2°¢ D(y) ,

The most general form for the 4-point function is

(@(y1,01)P(y2,02)P(y3,03)P(ya,04)) = ==z [(X),

since the only superconformal invariant is

(12) (34)

- (14) (32)

L12X34

The corresponding bosonic cross-ratio x =
L13L24



Four-point functions for the defect operators

Expanding in GraBBmann variables we get a set of correlators for the elementary fields

f(z) X

t12t34 v — 1

(O (11)001,(2)0° (15)00, (1)) = g (323022 (1(2) + 2/ (2) 4 2F"(2)
12734

+ 62108 (2/(2) - 21'(2)) |
(D(t1)D(t2)D(t3)D(ts)) = 46;14
12734
)2t (—4623 + 6322 — 182 + 1)
)

+3 £
+6 f®)(2)22(552% — 3922 + 32 + 1)
(

_I_ 18 f//

(F(t1)F(t2)F(ts)F(ta)) =

81— 22 fO2) - 3 fO2)2(1 — 2)2(72 + 1)

2) (—142° + 32* + 2%) — 36 f'(2) 2(1 — 2°) + 36 f(z)}

(1 — 2) 2 fW(2) + (32 +1) 23 F3)(2)

The correlation function f(z) of the superconformal primary completely determines
that of its superdescendants.



Four-point functions for the defect operators

Expanding in GraBBmann variables we get a set of correlators for the elementary fields

f(2) X
z = —/——
t12t34 x — 1

(F(t1)F(t2)F(ts)F(ta)) =

(O (11)00, (12)0° 15)00, (1)) = gy (452032 () + 212) +221(2)
12734

+ 62108 (2/(2) - 21'(2)) |

D(E)D(E)D(E)D(1a)) = g | (0 = 227 Oe) = 3 FO=) (1 2)2(72 + 1)

The correlation function f(z) of the superconformal primary completely determines

that of its SUperdeSC@ndantS-\ non-trivial function of the coupling!

We can evaluate f(z), and thus ALL the correlators, at strong coupling
using string worldsheet worldsheet perturbation theory: via Witten diagrams.



String dual - AdS, minimal surface

In AdS/CFT dictionary, the Wilson loop operator is dual to a minimal string surface
ending on the contour defining the operator at the boundary.

For ABJM, the dual is a fundamental Type IIA string in a AdS4 x CP?3 background.
The bosonic part of the Nambu-Goto string action reads

8uwaaywa’ a’u'u_]a,wa'fu_)baywb)

1
— 2 - T T —
SB = T/d O'\/det Z2 (8/1,37 aym + QUJZ({?,/Z) + 4( 1+ |w|2 (1 + |w|2)2

where T' is the effective string tension

R2
T = — 2v/2), A= —.

2ma

The minimal surface dual to the 1/2-BPS Wilson line is given by

z =38, x- =1, x' =0, w® =0
The induced metric is just that of AdS>
(dt? + ds?)

1
2 __
d8—8—2



String dual - AdS, minimal surface

This setup preserves same superconformal symmetry SU (1, 1|3) of our defect CFT;
In particular, the isometry of AdS; is the conformal group in d = 1,

Fluctuation modes over the minimal surface are scalar fields over AdSs
and their dynamics is governed by the fluctuation Lagrangian

SB ET/d2U\/§ Lp, Lp= Lo+ Lyx + Loxow + Law + ...,
Lo =g"'9,X0,X + 2| X|? + g" 0, w1, ,
Lyx = 2|X‘4 T |X‘2 (g“’/@“X@,,X) - % (g“”@MX&,X) (ngaanﬁ:X) ;
Lox oy = (g‘“’(‘?MX(?,,X) (9P 0pw*Oxwy) — 2(g"* 0, X 0, w?) (gp’*(?p)_((?,{wa) :
Lyyw = — %(wawa)(g””(?uwb@ywb) — %(w“wb)(g“’/ﬁuwbaywa) -+ % (g“”@uw“&/wa)z

— 5(g" 8, w0y ) (97" 0yWaOsw®) — 5 (g Dyw B w") (gP" 8y D) -

Effective 2d field theory of 1+3 complex scalars in AdS2 geometry



String dual - AdS, minimal surface

This setup preserves same superconformal symmetry SU(1, 1|3) of our defect CFT;!
In particular, the isometry of AdS; is the conformal group in d = 1,

Fluctuation modes over the minimal surface are scalar fields over AdS-

Then AdS,/CFT; states that they should be dual to operators
inserted at the d = 1 boundary with dimensions

1
A(A—1)=m? bosons A= >+ im|  spinors

Hence, we recover the eight bosonic operators in the super-displacement multiplet

A=1 FF = Do m2=0
A=1 0% 0, a=1,2,3 = w® w, m* =0
A=2 A A, a=1,23 (& b b,  mp =%l
A =2 D, D = X, X m?2 = 2



Witten diagrams in AdS,

The four-point functions of the dual operators at strong coupling can then be obtained
from familiar AdAS/CFT techniques by computing Witten diagrams in AdSs.

For the 4-point function of fields e.g. in AdS

(X(02) X(t2) X (t3) X (1)) = 57 G(2)
12%3

where G(z) has the strong coupling expansion

G(z) = GO (2) + % GO )+ ...

disconnected contribution tree-level contact diagrams
(diagrams with 2 ""boundary-to- (4-vertices with 4 bulk-to-
boundary” propagators) boundary propagators attached)

- —
- S

______



Summary of 4-point function results

The correlators of string worldsheet excitations read

(X (t1) X (t2) X (t3) X (t4)) = 414 [1—|—z4—}—%[—82’4—(3—82)z4(1nz—1n(1—z))
12'34

—z3—zz2—z—(8—32)W—8H

6

(W (t1) Way (t2) W3 (E3) Way (t4)) = ﬁ [53; S [1+ 5= (22 Inz — (22 — % +3)In(l — 2) — z + 4)]

12734 A4

+53i 533 [22 + ﬁ ((3 —42)z%Inz + (423 — 32?2 — 1) In(1 — 2) + (42 — 1)z)}]

(X(0) R (12) w2 (1) 0y (1)) = 02 [+ 4 (20 —2) 22 )]
2



Summary of 4-point function results

The correlators of string worldsheet excitations read
The superspace analysis of correlators for defect operators gives

(X (t1) X (t2) X (t3) X (t4)) = ﬁ [1 + 24 + £ [ — 82 — (3—82)2*(Inz — In(1 — 2))

1234
I — 12 s (53500 g

<D(t1)D(t2)D(t3)D(t4)> = til2t4 [z6(1 — 2)3]0(6)(2) = 3f(5)(z)z5(1 — z)2(72 + 1)

+6 fO)2)23(552% — 3922 + 32+ 1)

+ 18 f"(2) (—142° + 32* + 2%) — 36 f'(2) 2(1 — 23) + 36 f(z)}

(W (t1) Way (f2) w3 (¢3) Way (t4)) = ﬁ [53; b [1+ 1 (z2lnz — (2% — % +3)In(l — 2) — z + 4)]

2T
A\ 12734
l|/ +8q10a5 |22 + ﬁ ((3—42)z2Inz + (42° — 32?2 — 1) In(1 — 2) + (42 — 1)z)}]
(0% (£1)00s (1200 (13004 (12)) = 5= |33353 (f(2) + 2£'(2) + 2" (2))
12%34

+ 61103 (21'(2) - 2 1"(2)) |

(X(12) X (t2) w7 (t3) @a (t4)) = ——033 [1 + & (2(2 = 2)2E=2 — )]
/“\ 12734

(D(t1)D(t2)0% (t3)04, (t4)) = i1 [(1 — 2) z4f(4)(z) + (3z +1) z3f(3)(z) + 322 F7(2) + 62f'(2) + 6f(z)]



Summary of 4-point function results

The correlators of string worldsheet excitations read
The superspace analysis of correlators for defect operators gives

(X (t1) X (t2) X (t3) X (t4)) = ﬁ [1 + 24 + £ [ — 82 — (3—82)2*(Inz — In(1 — 2))
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/||\ 12734
(D(t1)D(5)07% (£5)O4, (£4)) = — ?jé (1 2) 2 Be) + (32 +1) 2 Oe) + 322 f(2) + 62f(2) + 6£()|

Is there a single f(z) solving simultaneously these non-trivial ODEs?



Summary of 4-point function results

The correlators of string worldsheet excitations read
The superspace analysis of correlators for defect operators gives

(X (t1) X (t2) X (t3) X (ta)) =

1
e [1 + 2%+ %[— 824 — (3 — 82)2%(lnz — In(1 — 2))
12'34

— 23 — %ZQ —z—(8—32) 7111(1;2) — 8”

(D()D(E)D(t8)B(t0)) = e [ 251 = 23 9(2) =3 FO=)2P(1 = 2272+ 1)

ti,ta
12734
+ 3 f(2)2*(—462% + 632% — 182 + 1)
+ 6 fO)2)23(552% — 3922 + 32+ 1)
18 f"(2) (—142° + 32% + 22) — 36 f'(2) 2(1 — 2%) + 36 f(z)]

(w (1) Zf)ag (t2) w3 (t3) Way (t4)) = ﬁ [53; S [1+ LT (22Inz — (22 — % +3)In(1 —2) —z+4)]

(0% (£1)0as (£2)0 (t3)004 (t4)) = 75~ | 942653 (1 (2)

2
+8asdas [22 + ﬁ ((3—42)z°Inz+ (423 — 322 — 1) In(1 — 2) + (42 — l)z)]}
+

2f'(2) + 22 "(2))

2 12
t12t34

+ 60108 (2f'(2) - 2 £(2)) |

(X(0) R (12) w2 85) By (1)) = 5062 [1+ 4 (2~ 202 — )]

(D(t1)D(t2)0% (t3)0q, (ta)) =

12734

— Zlf (; [(1 — 2) 2 fW(2) + (32 +1) 22 f¥2) + 822 f"(2) + 62f(2) + 6 f(z)}
12734

These differential equations are all solved by the simple function

flz) =1—z+

(1—2)3

<

1
—(1—2—-(3—2)zlnz+
( z—(3—2)zlnz

In(1 — z)) + (’)(

1
T2

)|

This is the strong coupling expansion of the function governing all correlation fung

of operators in the displacement supermultiplet.

tions

. . . v
Also derived using analytic bootstrap



CFT data at strong coupling

The four-point function has an OPE expansion in superblocks

1 1
f(z) = cn(—2)" 2F) (h,h,2h + 3, 2) .
t12t34 (2) t12t34 zh: (=2) ( )

(F(t1)F(t2)F(t3)F(ta)) =

eigenfunctions of the super-Casimir
of N=6 algebra in d=1
[Dolan, Osborn 2011]
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CFT data at strong coupling

The four-point function has an OPE expansion in superblocks

1 1
f(z) = cn(—2)" 2F) (h, h,2h + 3, 2) .
t12t34 (2) t12t34 zh: (=2) ( )

(F(t1)F(t2)F(t3)F(ta)) =

eigenfunctions of the super-Casimir
of N=6 algebra in d=1

At this order, operators exchanged in the OPE are just the identity and the
tower of operators O™ O, built out of the elementary excitations. Therefore,

1 1
=ttt 2l o= d® s LD




CFT data at strong coupling

The four-point function has an OPE expansion in superblocks

1 1
f(z) = cn(—2)" 2F) (h,h,2h + 3, 2) .
t12t34 (2) t12t34 zh: (=2) ( )

(F(t1)F(t2)F(t3)F(ta)) =

At this order, operators exchanged in the OPE are just the identity and the
tower of operators ©9™ O, built out of the elementary excitations. Therefore,

1

h=1+n+ =7 cnchff’)+%c%”

0 1
D = 8, ()

%(11)23+4n+n2 /

Cn = /27" (n 4+ 3) Lin+1) [(n +2) + 1 [4n® — 2 (n® + 6n° + 11n +6) In2 + 15n

' ['(n+3) T

+n+ 1D +2)(n+3)pVn+1) - n+1)n+2)(n+3)p @ (n+3) + 13]]

“Inverting” for the coefficients in the sum, namely using orthogonality relations
for the hypergeometric functions.



Intermediate conclusions

» We have considered a class of four-point correlators in the CFT; defined
on the 1/2-BPS Wilson line in the 3d superconformal ABJM theory.

» Superconformal symmetry determines four-point correlators of the
displacement supermultiplet in terms of a single function, that
we evaluate at strong coupling using holography and Witten diagrams
and the analytic boostrap. We can extract CFT data.

» Further progress on the ABJM Wilson line: topological sector (kinematical defect)
[Gorini, Griguolo, Guerrini, Penati, Seminara, Soresina 22], integrability for the cusp-deformed WL

[Correa, Giraldo-Rivera, Lagares 23] three-loop (in AdS) correlators via analytic bootstrap



Intermediate conclusions and questions

» We have considered a class of four-point correlators in the CFT; defined
on the 1/2-BPS Wilson line in the 3d superconformal ABJM theory.

» Superconformal symmetry determines four-point correlators of the
displacement supermultiplet in terms of a single function, that
we evaluate at strong coupling using holography and Witten diagrams
and the analytic boostrap. We can extract CFT data.

» Further progress on the ABJM Wilson line: topological sector (kinematical defect)
[Gorini, Griguolo, Guerrini, Penati, Seminara, Soresina 22], integrability for the cusp-deformed WL
[Correa, Giraldo-Rivera, Lagares 23] three-loop (in AdS) correlators via analytic bootstrap

» What happens beyond tree-level? Witten diagrams with loops in AdS should be
well-defined, since the 2d theory is supposed to be UV finite.
However, issues of regularization appear.

Is there a representation (“momentum space”) in which these computations simplify’
and the scattering nature of the correlator becomes transparent?



Conformal correlators and Mellin space

Higher dimensions [Mack 2009] [Penedones 2010]
1 21523, r14T53

<¢($1)Q§(CB2)¢(JZ3)¢(CIZ4)> — 220 2A F(uav)a U = 22 72 U= 2. 12
13 L24 13%24 13%24

F(u,v) = / dy12dy1a M (7v12,714) T2 (712) T2 (714) T2 (A — Y12 — Y14) 0™ V1207 714
C

- -~

M (12, v14) has the properties of a scattering amplitude:

» Crossing symmetry
» Poles corresponding to operators exchanged in the OPE
» Asymptotic behavior compatible with the Regge limit

» Simple expression for Witten diagrams




Conformal correlators and Mellin space ind =1

In d = 1, just one independent cross ratio and thus one independent Mellin variable
Reduce the higher-dimensional case is subtle.

Then, inherently one-dimensional formulation inspired by same guiding principles.

12 T34

Notice that, in fact, a family of Mellin amplitudes can be defined t = >0

L1423

Ma(s)zfooodtf(t)(L)at—l—s M;lwa(s)]:/ %f(t)ts () Mas)

1+t C 1+t
: 1
a=20 — Mellin transform of f(t) in (¢(z1)P(z2)P(z3)P(x4)) = (213 20 P20 f(t)
1
a = —2A 4 — Mellin transform of the crossing-symmetric g(¢) = (1+rt)2A‘f5 f(t)

a = —2A4 + 1 leads to simple results in a perturbative expansion around GFF




Definition and properties

1 ©,©)
M((s) = d —1—s _ 12 34
(5) r<s>r<2A—s>/o ) (e
with inverse
d
£(t) = /C = P(s) (28 — 8) M(s) t

where (¢(z1)p(22)$(23)¢(24)) = a7 2a; f(1).

L19 L3y

Crossing f(t) = t22¢ f(1/t) translates to M (s) = M (2A — s)
reminiscent of the crossing S(s) = S(4m? — s) in two (flat) dimensions.

> 0



Definition and properties

_ 1 > 1 _ T12 T34
M) = rrma g f O p= T2
with inverse
d
£(t) = /C = P(s) (28 — 8) M(s) t

where (¢(z1)p(22)$(23)¢(24)) = a7 2a; f(1).

T12  *34
To obtain a definition on the whole s-complex plane an analytic continuation of the region
of convergence (2A , — Ay < Re(s) < Ag) is required.

(A, : dimension of the lightest operator exchanged)

/ —2A Ay
Jo) = f(1) = <1—) Z caCaut™™

Subtraction + 17 Ak A
procedure ’
[Costa, Penedones, 1 Ay |
Zhiboedov 2021] ¢0(5) _ [ dtt_l_sfo(t) 4 2 CACA,k —
S — —

'

_ Yo(8) + Yoo(s)
M(s) = r(os)r(qu5 —8)

0 A+k=A,




Nonperturbative Mellin amplitude in d = 1

Adding more and more poles we can further extend the area of analyticity
obtaining a representation valid in the whole complex plane

M(S) _ ¢0(3) + QPOO(S)
I'(s)['(2A4 — s)
_ Z i (=1)*HT(A + k)2T'(24) 1 Right poles
B ZOCA ET(AT(2A+k) s—A—k’ sR=A+k,
_ Z i l)kF(A + k)ZF(ZA) 1 Left poles
T4 kZOCA KID(A)PT(2A + k) s—2A,+A+k s.=284—-A—k, k=012, .

k=0,1,2,...

and the contour C is chosen so to leave right poles on its right and /eft poles on its left.

N

Ao /\Ao
L

N

& L < L < L L 4
2A¢—A() A() QA(_,",—A() U
2A4—Ao

Ex. of one light
operator exchanged



Nonperturbative Mellin amplitude in d = 1

Adding more and more poles we can further extend the area of analyticity
obtaining a representation valid in the whole complex plane

_ 1 1 1
M(s) = T'(s) L(2A4—s) Azk an Cak [s—k—A+2A¢—s—k—A]

Summing over k gives the Mellin counterpart of the conformal block expansion

o GA(s)+GA(2A4—5) 3 (AVAA - 52A 1+ A —551)
M(S) _ Z I'(s) T(2A4—5) Gals) = A—s
> M(s) is crossing-invariant > M(s) has poles for physical exchanged operators
» Asymptotic behavior: M (s) ~ S% ya > 1 > M (s) has zeros (generically)

(controlled by the Regge limit of the correlator ats =2A,+k,k=0,1,2,..
and ensured by the prefactor) (canceling unwanted OPE contributions)

From this bounded, meromorphic function and its properties some nonperturbative
sum rules can be derived. However the most efficient use of this Mellin formalism
happens at perturbative level.



Perturbation theory: quartic interactions with derivatives in AdS-

S:/dazdz\/ﬁ[g“’/(?u@@y@—l—mi(b@Q+gL (8L<I>)4}, L=0,1,...

where ds? = = (dz? + dz?). Here (9% ®)* denotes a complete and independent
set of quartic vertices with four fields and up to 4L derivatives.

For L = 0, this is ¢* theory: correlators are D-functions.

Zy
KA(yxx)
<¢(>¢<>¢(>¢<>>——zjdydx1'[ //\
AXPPA ) PAL)PAN,) > = > 2+(x )2 '
() D@ - 3

No closed from expression is known, in cross ratio space, for general A.



Perturbation theory: quartic interactions with derivatives in AdS-

S:/dazdz\/ﬁ[g“’/(?u@@y@—l—mi(b@Q+gL (8L<I>)4}, L=0,1,...

where ds? = = (dz? + dz?). Here (9% ®)* denotes a complete and independent
set of quartic vertices with four fields and up to 4L derivatives.

For L = 0, this is ¢* theory: correlators are D-functions.

Zy
KA\(y,x;x;)
dydx //‘\\
< > = — ﬂ ,
PaXDPA ) PA(X2) P () [ > H( 2+ (x — x)2>
Ca
= v 4
(X12X34)%2 D) T 3
No closed from expression is known, in cross ratio space, for general A.
In Mellin space their explicit expressions are simpler
Di111 = _2log(>1<—x) — 21()%(;() —» Mii11(s) =2T(s — 1)['(—s)
Daons = 20— x+1) N (2x* —5x +5)log(x)  (2x* +x +2) log(1 — x) > Massa(s) = 2(2 — 5+ ) (s — 3)T(—2 — s)

15(1 — x)*x? 15(x —1)3 15x3



Perturbation theory: quartic interactions with derivatives in AdS-

S:/da:dz\/ﬁ[g“’/ﬁu@&/@—l—mi(b@Q+gL (8L<I>)4}, L=0,1,...

where ds? = = (dz? + dz?). Here (9% ®)* denotes a complete and independent
set of quartic vertices with four fields and up to 4L derivatives.

For L = 0, this is ¢* theory: correlators are D-functions.

Zy
KA(y X; X;)
( ) ( ( )>__l'|'dydx1—[ //‘\\
< PaADPAR)PA () PA (X)) > = 2 y2 + (x xX;)? |
Gy Z
ERMOSCL - 3

No closed from expression is known, in cross ratio space, for general A.
In Mellin space their explicit expressions are simpler and closed expressions can be found

: 220 pa (K
Mp,(s) = mcsc(ms) (7‘(‘ cot(ms)Pa,(s) — Z sAi(k))
Pa,(s) = QF(A¢)44F3({1 s, 1 — Ay, 2A kjls}{l 1,A4 + 2};1)
¢ T(2A4) 272 ¢ 429 L5 20T 9




Perturbation theory: quartic interactions with derivatives in AdS-

S:/d:cdz\/ﬁ[g“’/ﬁu@&/@—l—mi(bqﬂ+gL (8L<I>)4}, L=0,1,...

where ds? = = (dz? + dz?). Here (9% ®)* denotes a complete and independent
set of quartic vertices with four fields and up to 4L derivatives.

For quartic bulk interactions of the kind (8L ¢)*

L 21

L(l+1)
M — a cr. 1M s+ k 2 — ) )
(OL $)4 ; [ kzzo k,l A—l—l( ) Ck,1 F(k T 1)F(l kT 1) + 0k,0 T Ok, 21

With such closed formulas we can successfully extract new CFT data in closed form.

4D (Ag) = Grn(Dg)Prn(Ag)

Gr (Ay) = \/774—2A—L+1I‘(2A)2I‘(L+%)I‘(L+A)4I‘(L+2A—%)F(n+A+%)F(L—n+A)
M= T(L+1)T(L+A+1)2T(L+2A)T(n+A)3T(2n+2A - DD (L+n+A+1])

ﬁL,n(A¢) is a polynomial in n and in Ay of degree 6L.

Verified in [Knop, Mazac 22]
Obtained comparing residues at poles of. M 5z 4y4 with those of Mellin block expansion



From OPE inversion formula to dispersion relation

® The OPE expresses a four-point correlator as a discrete sum of conformal blocks

G(z) =Y anGa(?) = 12734
A

13 24

® Another expansion - the conformal partial wave decomposition - is in terms of a complete
basis of orthonormal functions (principal series, A € 5+ ;R and discrete series).

2Hioo gA T > A, —
2 A dm — 1 ~
\IJA(Z) + E A2 ]2m\112m(z)

m=0

G(z) =

l\DIl—‘\

271 A

\IJA(Z) — /il_AGA(Z) —+ RAGl_A(Z) ; KA =

/1_7;00 ) QKA‘ A(Z) ™ Z 27T2F(4m + 3) 2m—+2Y2 —|—2(Z)

2 m=0

!

From the poles of the coefficients one recovers the OPE expansion

N

an = —Res { ]
2/€A/ A=A



From OPE inversion formula to dispersion relation

® The OPE expresses a four-point correlator as a discrete sum of conformal blocks

G(z) =Y anGa(?) = 12734
A

13 24

® Another expansion - the conformal partial wave decomposition - is in terms of a complete
basis of orthonormal functions (principal series, A € 5+ ;R and discrete series).

2Hioo gA T > A, —
2 A dm — 1 ~
\IJA(Z) + E A2 ]2m\112m(z)

m=0

G(z) =

l\DIl—‘\

271 A

\IJA(Z) — /il_AGA(Z) —+ RAGl_A(Z) ; KA =

/1_7;00 271 2/<3A A(Z) T Z 27T2F(4m + 3) 2m—+2Y2 —|—2(Z)

2 m=0

® Because of the orthonormality one can perform a (trivial) inversion

o0 oo

1 -
Ia :/dzz_2 Ua(z)G(z) for A € 5 T iR, Ia :/dzz_2 Ua(2)G(z) for A € 2N

—00 — 00



From OPE inversion formula to dispersion relation

A more powerful inversion can be derived from a contour-deformation argument
based on the analytic structure of the correlator and its (Regge) behavior at infinity

[Caron-Huot 17] [Simmons-Duffin, Stanford, Witten 2017] [Mazac 2018]

R . _4T2(m) [ )
In =2 | dww ?Ha(w)dDisc[g(w)] i = / dw w2 G (1) dDisclG(w)]
0 l F(Qm) 0 l
known explicitly for all integer (bos) and half-integers (ferm) sl(2,R) conformal block
dimensions Ad) of the external operators.
makes use of the double discontinuity of the correlator
dDisc[G(2)] = G(z) — I?) ; 57G) for 2 e (0,1)

G"(z): value of G(z) moving counterclockwise around the branch cut at z=1, vv for G*(2).



From OPE inversion formula to dispersion relation

A more powerful inversion can be derived from a contour-deformation argument
based on the analytic structure of the correlator and its (Regge) behavior at infinity

[Caron-Huot 17] [Simmons-Duffin, Stanford, Witten 2017] [Mazac 2018]

In = 2/0 dw wQIfA(w) dDisc|G (w)] I, = 45(2(773) /1 dw w™*Gp(w) dDisc[G(w)]
m) Jo
|

known explicitly for all integer (bos) and half-integers (ferm) sl(2,R) conformal block
dimensions Ad) of the external operators.

makes use of the double discontinuity of the correlator

G~ (2) + 6% (2)
2

G"(z): value of G(z) moving counterclockwise around the branch cut at z=1, vv for G*(2).

dDisc[G(2)] = G(z) — for z € (0,1)

It provides an analytic continuation of the coefficients (in higher d, this means we
can think of spin as a expansion parameter).

The dDisc of a correlator is much simpler than the correlator itself, in perturbation
theory. Crucially can be computed at any order from lower order data!



Dispersion relation for CFT1 correlators

The double discontinuity can then be taken as the starting point to reconstruct the full correlator

2110 gA Ta <. I2@2m+2) -
9(2) /ém 27 2K A A(ZH; 22T (dm + 3) 2T +2(2)
1 1 ioo dA HB/F
:/ dw w~2dDisc[G (w)] : par () Ga(z)
0 %—ioo 271 KA
1 00
_ 2T’ (2m + 2)*
dw w2dD Gomto(w)Gomi
+ /O isclG (w)] Z zp(4m_|_ DT i 1 3) Com+2(0)Gams2(2)
1
— /0 dw w2dDisclG(w)]|Ka, (z,w),
w 2% (w — 2) log(1 — w zw?(z —2)log(l — 2
K (o) = W0 = 2lonl1 —w) 2wl =) log(1 )
m(w—z)(w+ 2z —wz) w(w-—2)(w+2z—wz)
22 —oww2 %8¢ og(1—z) 224 o w222
= ﬁ {log(l_w) ((30—21)”312*2%—2—1 + : g(i ) wz—1¢ + log(z) ((’ij—zl)t)uzQ—l—z—l + (w%m)]

Ay,—4
W 3 o) (552 + 2101 - 7))
n=0 l

sl(2, R) Casimir

The kernel of the integral can be evaluated explicitly at each given integer and half-
integer dimension A4 of the external identical operators.



Dispersion relation for CFT1 correlators

The double discontinuity can then be taken as the starting point to reconstruct the full correlator

20 gA T, < T22m+2) -
G(2) /l_m 273 2kA A(Z>+Z()27r2r(4m+3) 2m+2G2m+2(2)

2 m—=

1 1 tico dA HB/F
=/ dw w2dDisc[G (w)] : A (w) Ga(2)
0 1 —ico 271 KA
1 o )
—24D; 2I'(2m + 2)
dw w™2dD G s ()G
+/; ISC[g(w)] TnZ:()WQF(4m+4)F(4m—|—3) 2 +2(’IU) 2 +2(z)
1
E/ dw w~*dDisc[G (w w)|Ka,(z,w),
0
Ka, (o) = L@ =Dlogll—w) _ 0’z ~2)log(1 - )
m(w —z)(w+ 2z —-wz) w(w—2z)(w+z—-wz)
ZQ —2w w2_2A¢ og(1—2z w2—2A 9 w2_2A¢
= 72 {log(l—w) ((30—21)121z2+z—1 +- g(i ) wz—1¢ + log(z) ((zlu—zl)gjz2+z—1 + (w%m)]

p2—20 Qizi::l an? (w) C" [732 (Zzlligﬁz) + zlog(1 — Z))}

The kernel, crossing symmetric (in z), Regge bounded, and definite positive,
explicitly depends on the dimension A¢ of the external operators (# from higher d).



Dispersion relation in perturbation theory

The double discontinuity can then be taken as the starting point to reconstruct the full correlator,

1
G(z) = /O dw wdDisc[G(w)]| Ka, (2, w), dDisc:[G(2)] = G(z) — 67() “g 67(2)

® Much simpler than correlator! dDiSC[log(l _ z)] =0,
dDisc[log®(1 — 2)] = 4n*

@ On conformal blocks, dDisc acts as

dDisc[(ljjf% Ga(l = 2)] = 2sin? T(A — 2A,)—22 Ga(l — 2)

If the correlator is evaluated in a perturbative expansion about generalised free theory,
this implies that each given order dDisc is given in terms of lower order data

274
23, Gaa,+2n(l — 2)

1
g, dDisclg V()] =37 Zai” (07’5 —



Double discontinuity in perturbation theory

Direct connection of Ddisc with “unitarity” cut operators in AdS, which act on bulk
amplitudes putting virtual lines on shell [Alday, Caron-Huot 17] [Meltzer Perimutter Sivaramakrishan 19]




Double discontinuity in perturbation theory

Direct connection of Ddisc with “unitarity” cut operators in AdS, which act on bulk
amplitudes putting virtual lines on shell [Alday, Caron-Huot 17] [Meltzer Perimutter Sivaramakrishan 19]

A
A = ‘@'@’ _ / dvs 6 / dias 6 P(vs, As) P(v6, A)
<

Split representation of bulk-to-bulk propagator in terms of two bulk-to-boundary propagators

Q/(). Calinpe) = [ v Pw,8) [ ek, e,y fav0)
—00 O0AdS

A propagator goes on-shell when localised onto a pole of P(v, A)
A “Cut operator” can be defined, effect same as Ddisc (vanishes on contact diagrams, etc)

Effective to 4 point, 1-loop (no general unitarity), to be developed.



Correlators from dispersion in perturbation theory

@ Checked on the one-loop correlator of four the /1¢4 theory in AdS2 @

® dCFT1 defined by 1/2 BPS Wilson line in N=4 sYM: state of the art is 4th order in strong
coupling (=3 loops in AdS) obtained with perturbative Ansatz

rational functions [Ferrero, Meneghelli 21,23]
0o N f

G(z) = Z G(e)(z) where G (z) = Z ri(z2) Ti(2)
=0 = / tnax (£)

Ti(z) € {HPLs of transcendentality t < ty.x(¢)] N(¢) = Z 9t — 9l+taa(d) _ 1
£=0
tnax(£)= 4

Unknowns are some coefficients in an educated guess for the rational functions r;(z)

Ansatz constrained by:

a) AdS unitarity (highest logarithmic singularities fixed in terms of lower order ones)

b) Crossing symmetry, Braiding symmetry, Regge bound and supersymmetric localization
fix the remaining terms ~ 1, log(z), log(1-2).



Correlators from dispersion in perturbation theory

The dispersion relation bypasses the need of an Ansatz incorporating all constraints!

G(z) = /0 dw w_deisc[g(w)]KA¢(z,w)

with a caveat: the regularization procedure necessary order by order in perturbation theory
(where the Regge behaviour is worse than in the full nonperturbative correlator) implies
subtractions which depend on a few unknown OPE data (i.e. data at same pert. order).

: @ Q2
@ 1 loop: as”,
@ 2 loops: aé3), a1(3) }’53) 7,1(3)
: @ &4 @ @)
@ 3 loops: N A

These can be fixed, in the N=4 SYM case, using inputs from supersymmetric localization or
constraints from integrated correlators.  [Cavaglia’Gromov Julius Preti 22] [Drukker, Kong, Sakkas 22]

This kind of leftover ambiguity is not surprising in this context,
e.g. in higher d there is a low spin ambiguity.



Correlators from dispersion in perturbation theory: STRATEGY
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Correlators from dispersion in perturbation theory: STRATEGY
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Conclusions

» We have considered a class of four-point correlators in the CFT; defined
on the 1/2-BPS Wilson line in the 3d superconformal ABJM theory.

» Superconformal symmetry determines four-point correlators of the
displacement supermultiplet in terms of a single function, that
we evaluate at strong coupling using holography and Witten diagrams
and the analytic boostrap. We can extract CFT data.

» We defined a Mellin amplitude for CFT; four-point functions; bounded,
meromorphic function of a single complex variable, whose analytical properties
are inferred from physical requirements on the correlator.

Closed-form expressions for Mellin transform of tree-level contact interactions
with an arbitrary number of derivatives in a bulk AdS2 field theory, and for
first correction to the scaling dimension of “two-particle” operators exchanged.

» Derived from the inversion formula a dispersion relation for CFT1 four-point functions, an
integral over the double discontinuity of the correlator.



Outlook

® Higher-order analysis, multi-point correlators, non-identical in the same setup

® Organising principles/hidden symmetries?

Recent observation of integrable structure underlying contact Witten diagrams [Rigatos, Zhou 22]
If generalizes to other classes of diagrams this would open a playground of
applications of integrability in AdS spaces.

® Despite/with the help of these analytic bootstrap tools, a motivation to develop
technology for Witten diagrams remains, thanks to the general observation that
(for a class of boundary correlators related to inflationary correlators)

perturbation theory in rigid de Sitter -> Witten diagrams in EAdS
[Sleight, Taronna 20,21] [Di Pietro, Gorbenko, Komatsu 21]

It would be great to develop loop-technology for AdS2: models with derivative interactions
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Recent observation of integrable structure underlying contact Witten diagrams [Rigatos, Zhou 22]
If generalizes to other classes of diagrams this would open a playground of
applications of integrability in AdS spaces.

® Despite/with the help of these analytic bootstrap tools, a motivation to develop
technology for Witten diagrams remains, thanks to the general observation that
(for a class of boundary correlators related to inflationary correlators)

perturbation theory in rigid de Sitter -> Witten diagrams in EAdS
[Sleight, Taronna 20,21] [Di Pietro, Gorbenko, Komatsu 21]

It would be great to develop loop-technology for AdS2: models with derivative interactions

Thank you.



