Feynman Integrals and Hypergeometric Functions

Recent Results and the Mathematica Implementations

B. Ananthanarayan

Centre for High Energy Physics, Indian Institute of Science, Bangalore

भारतीय विज्ञान संस्थान

Overview

Introduction

Feynman integrals and hypergeometric functions

PART I : The FeynGKZ.wl package

PART II : The Olsson.wl package

PART III : The AppellF2.wl package

PART IV : Algebraic relations among Feynman integrals

Future directions & bibliography

Gauss hypergeometric function $_2F_1$

Pochhammer symbol

$$egin{aligned} &(x)_n=rac{\Gamma(x+n)}{\Gamma(x)},\ &=x(x+1)\dots(x+n-1),\ &x\in\mathbb{C}\setminus\mathbb{Z}_0^-,n\in\mathbb{Z}_0^+,\ &(1)_n=n! \end{aligned}$$

The Gauss $_2F_1(a, b; c; x)$:

$$_{2}F_{1}(a,b;c;x) = \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}} x^{n} , |x| < 1$$

= $1 + \frac{abx}{c} + \frac{a(a+1)b(b+1)x^{2}}{2c(c+1)} + O(x^{3})$

• The $w = {}_{2}F_{1}$ hypergeometric function satisfies the ordinary differential equation (ODE)

$$x(1-x)\frac{d^2w}{dx^2} + [c-(a+b+1)x]\frac{dw}{dx} - abw = 0$$

• 3 singular points : 0, 1 and ∞ .

Method to find analytic continuations The Gauss $_2F_1$

Integral representation

$$_{2}F_{1}(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_{0}^{1} t^{b-1} (1-t)^{c-b-1} (1-tx)^{-a} dt$$

- Analytic continuations of ₂F₁: finding relations between solutions of the ODE around each singular point.
- Connecting the solutions around x = 0 and x = 1.
- Use the following relation

$$_{2}F_{1}(a, b; c; x) = A_{2}F_{1}(a, b; a + b + 1 - c; 1 - x)$$

+ $B(1 - x)^{c-a-b}{}_{2}F_{1}(c - a, c - b; 1 + c - a - b; 1 - x).$

Find A and B by substituting x = 0 and x = 1

$${}_{2}F_{1}(a,b;c;x) = \frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} {}_{2}F_{1}(a,b;a+b+1-c;1-x) + (1-x)^{c-a-b}\frac{\Gamma(c)\Gamma(a+b-c)}{\Gamma(a)\Gamma(b)} {}_{2}F_{1}(c-a,c-b;1+c-a-b;1-x).$$

Linear transformations The Gauss $_2F_1$

Similarly, analytic continuation around $x = \infty$:

$${}_{2}F_{1}(a, b, c; x) = (-x)^{-a} \frac{\Gamma(c)\Gamma(b-a)}{\Gamma(b)\Gamma(c-a)} {}_{2}F_{1}\left(a, a-c+1, a-b+1; \frac{1}{x}\right) \\ + (-x)^{-b} \frac{\Gamma(c)\Gamma(a-b)}{\Gamma(a)\Gamma(c-b)} {}_{2}F_{1}\left(b, b-c+1, b-a+1; \frac{1}{x}\right)$$

Pfaff-Euler transformations :

$${}_{2}F_{1}(a, b; c; x) = (1 - x)^{-a}{}_{2}F_{1}\left(a, c - b; c; \frac{x}{x - 1}\right)$$
$${}_{2}F_{1}(a, b; c; x) = (1 - x)^{-b}{}_{2}F_{1}\left(b, c - a; c; \frac{x}{x - 1}\right)$$
$${}_{2}F_{1}(a, b; c; x) = (1 - x)^{c - a - b}{}_{2}F_{1}(c - a, c - b; c; x)$$

Definitions

► Appell F₂ and F₄

$$F_{2}(a, b_{1}, b_{2}; c_{1}, c_{2}; x, y) = \sum_{m,n=0}^{\infty} \frac{(a)_{m+n} (b_{1})_{m} (b_{2})_{n}}{(c_{1})_{m} (c_{2})_{n}} \frac{x^{m} y^{n}}{m! n!}$$

valid for |x| + |y| < 1

$$F_{4}(a, b; c_{1}, c_{2}; x, y) = \sum_{m,n=0}^{\infty} \frac{(a)_{m+n}(b)_{m+n}}{(c_{1})_{m}(c_{2})_{n}} \frac{x^{m}y^{n}}{m!n!}$$

valid for $\sqrt{|x|} + \sqrt{|y|} < 1$ Lauricella $F_C^{(3)}$

$$F_{C}^{(3)} = \sum_{n_{1}, n_{2}, n_{3}=0}^{\infty} \frac{(a_{1})_{n_{1}+n_{2}+n_{3}}(a_{2})_{n_{1}+n_{2}+n_{3}}}{(c_{1})_{n_{1}}(c_{2})_{n_{3}}(c_{3})_{n_{2}}} \frac{z_{1}^{n_{3}}z_{2}^{n_{2}}z_{3}^{n_{3}}}{n_{1}!n_{2}!n_{3}!}$$

with domain of convergence : $\sqrt{|z_1|} + \sqrt{|z_2|} + \sqrt{|z_3|} < 1$

The momentum representation

- Typically involve tensor and colour structures in numerator do tensor reduction, colour decomposition
- Calculate the scalar integrals
- Momentum representation:

$$H_{\Gamma}(\nu,D) = \int \prod_{r=1}^{l} \frac{d^{D}k_{r}}{i\pi^{rac{D}{2}}} rac{1}{\prod_{j=1}^{n}(-q_{j}^{2}+m_{j}^{2})^{
u_{j}}}$$

I: number of loops

D: the space-time dimension

 $\nu = (\nu_1, ..., \nu_n)$: propagator powers

 $k_r\text{-s}$ and $q_j\text{-s}$ are the loop-momenta and internal-momenta for the Feynman graph Γ

 q_j -s are combinations of external momentum and loop momentum.

Feynman graphs/diagrams

► Tadpole :

bubble :

▶ 1-loop triangle :

sunset :

detailed study of sunset integral can be found in BA S. Friot, S. Ghosh '19 [1]

Satisfies differential equations

- These Feynman integrals satisfy differential equation
- ► For example

$$\frac{d}{dk^{2}} - - + \frac{1}{2} \left[\frac{1}{k^{2}} - \frac{(D-3)}{k^{2} + 4m^{2}} \right] - + \frac{(D-2)}{4m^{2}} \left[\frac{1}{k^{2}} - \frac{1}{k^{2} + 4m^{2}} \right] \left[0 \right] = 0$$

• with proper boudary condition, the solution $(x = k^2/(4m^2))$

$$------= -\frac{(D-2)}{2m^2} \cdot O \cdot {}_2F_1\left(1,2-\frac{D}{2};\frac{3}{2};-x\right)$$

Tadpole can be expressed in terms of gamma functions

Relation to Feynman Integrals

• The dimension $d = 4 - 2\epsilon$

• One loop two-point function (B_0 function) : Anastasiou et. al. '00 [2]

 $F_4(1,\epsilon;2-\epsilon,\epsilon;x,y), \quad F_4(\epsilon,2\epsilon-1;\epsilon,\epsilon;x,y),\ldots$

with $x = m_1^2/p^2$, $y = m_2^2/p^2$

One loop three-point function :

$$F_2(\epsilon+1,1,1;\epsilon+1,2-\epsilon;x,y),$$

$$F_2(1,1-\epsilon,1;1-\epsilon,2-\epsilon;x,y),\ldots$$

with $x=m_1^2/m_2^2$ and $y=q_1^2/m_2^2$

The sunset integral with unequal masses : Berends et. al. '94 [3]

$$\begin{aligned} &F_C^{(3)}(1,2-\epsilon;2-\epsilon,2-\epsilon;z_1,z_2,z_3)\\ &F_C^{(3)}(1,\epsilon;2-\epsilon,\epsilon,2-\epsilon;z_1,z_2,z_3),\ldots \end{aligned}$$

with $z_1 = m_1^2/m_3^2$, $z_2 = m_2^2/m_3^2$ and $z_3 = p^2/m_3^2$

Domain of Convergences

Figure: The defining domain of convergence of Appell F_2 (in orange), and of a analytic continuation of the same function that contains the red point (in blue) are plotted in real x-y plane

$12 \, / \, 69$

Mathematica packages

GKZ approch :: Mellin-Barnes method :: Method of Olsson :: multivariate hypergeometric functions

- FeynGKZ.wl: To express Feynman integrals in terms of multivariate hypergeometric functions BA, S. Banik, S.Bera, S. Datta, '23 [4]
- MBConicHulls.wl : Study of N-fold Mellin-Barnes integrals BA, S. Banik, S. Friot, S. Ghosh, '21 [5]
- Olsson.wl : Automated package to find ACs of MHFs BA, S. Bera, S. Friot, T. Pathak, '21 [6]
- AppellF2.wl, AppellF1.wl, AppellF3.wl : Study of Appell F2 BA, S. Bera, S. Friot, O. Marichev, T. Pathak, '21 [7]
 S. Bera, T. Pathak, '24 [8]
- LauricellaFD.wl, LauricellaSaranFS.wl: Numerical evaluation of triple variable Lauricella Saran F_D⁽³⁾, F_S⁽³⁾ functions S. Bera, T. Pathak, '24 [8]
- MultiHypExp.wl : Series expansion of MHFs about their parameters S. Bera, '22, '23 [9, 10]

Mathematica packages

Algebraic relation among Feynman integrals :: Method of regions :: Chisholm approximation

- AlgRel.wl : To find algebraic relations among Feynman integrals BA, S. Bera, T. Pathak, '23 [11]
- ▶ ASPIRE : New approach to MoR BA, A. Pal, S. Ramanan, R. Sarkar, '18 [12] In the context of πK scattering at the threshold two loop fish diagram is considered

Chisholm D.wl : To find rational approximant for bi-variate series S. Bera, T. Pathak, '23 [13]

Part I

based on BA, S. Banik, S.Bera, S. Datta, '23 [4]

Work flow

- Feynman integral in Lee-Pomeransky (LP) representation can be thought of as solution of a set of partial differential equations
- These set of PDEs are know as Gel'fand-Kapranov-Zelevinsky (GKZ) systems
- Using the GKZ approach, hypergeometric series solution of these integrals can be obtained
- There are two different approaches
- Algebraic : GD method \approx 'generalized Frobenius method'
- Geometrically: the triangulation method : the triangulation of the polytope associated with the LP polynomial is considered.
- triangulation (in 2D) : breaking a polygon into triangles. Example: A rectangle could be broken in exactly two ways

The Lee-Pomeransky representation

We saw the momentum representation of Feynman integrals

An alternate form R. Lee, A. Pomeransky '13 [14] :

$$\begin{split} h_{\Gamma}(\nu,D) &= \frac{\Gamma(\frac{D}{2})}{\Gamma(\frac{D}{2}-\omega)} \Big(\prod_{i=1}^{n} \int_{\alpha_{i}=0}^{\infty} \frac{d\alpha_{i} \, \alpha_{i}^{\nu_{i}-1}}{\Gamma(\nu_{i})} \Big) G(\alpha)^{-\frac{D}{2}} \\ &= \frac{\Gamma(\frac{D}{2})}{\Gamma(\frac{D}{2}-\omega)\Gamma(\nu)} \int_{\mathbb{R}^{n}_{-}} d\alpha \, \alpha^{\nu-1} G(\alpha)^{-\frac{D}{2}} \end{split}$$

• Lee-Pomeransky polynomial: $G(\alpha) = U(\alpha) + F(\alpha)$.

The Lee-Pomeransky representation (contd.)

Generalized G-polynomial:

$$\mathcal{G}_{z}(lpha) = \sum_{a_{j} \in \mathcal{A}} z_{j} lpha^{a_{j}} = \sum_{j=1}^{N} z_{j} \prod_{i=1}^{n} lpha_{i}^{a_{ij}}$$

 $z_j \rightarrow \text{generic/indeterminate}$

Generalized Feynman integral:

$$I_{G_z}(\nu,\nu_0) = \Gamma(\nu_0) \int_{\mathbb{R}^n_+} d\alpha \, \alpha^{\nu-1} G_z(\alpha)^{-\nu_0}$$

where, $\nu_0 = \frac{D}{2}$

Solving the GKZ system (contd.)

- Triangulate Δ_{G_z} !
- Triangulation structure: $T = \{\sigma_1, ..., \sigma_r\}$.
- $\sigma_i \subset \{1, ..., N\}$ is some index set.
- Can always obtain a regular triangulation! I.M. Gelfand, M. M. Kapranov, and A. Zelevinsky [15]
- Can always obtain a unimodular regular triangulation (vol₀(σ_i) = 1)! W. Bruns and J. Gubeladze '09 [16] Finn F. Knudsen '73 [17]

The associated GKZ system (contd.)

Start with Feynman integral

 $I_{G_z}(\nu,\nu_0)$

Find its associated PDEs : $H_A(\nu, \nu_0)$

$$\Rightarrow H_{\mathcal{A}}(\nu,\nu_0)I_{G_z}(\nu,\nu_0)=0$$

- ► $I_{G_z}(\nu, \nu_0) \rightarrow GKZ$ hypergeometric function! L. de la Cruz '19 [18] Klausen '19 [19]
- ▶ Algebraically: the SST algorithm Saito, Sturmfels and Takayama [20] \rightarrow the Gröbner deformation (GD) method
- Geometrically: the triangulation method
- Both are equivalent! (Triangulations are in one-to-one correspondence with square free initial ideals which gives the series representations, i.e., the structure of each series is determined by square free initial ideals or the triangulations.)
- GD method \approx 'generalized Frobenius method'

$$\phi_{\mathbf{v}} := \sum_{u \in L} \frac{[v]_{u_{-}}}{[u + v]_{u_{+}}} z^{u + v}$$

Bubble diagram with two unequal masses

The corresponding integral in momentum-representation:

$$I_{\Gamma}(\nu_{1},\nu_{2},D;\rho_{1}^{2}) = \int \frac{d^{D}k_{1}}{i\pi^{\frac{D}{2}}} \frac{1}{(-k_{1}^{2}+m_{1}^{2})^{\nu_{1}}(-(\rho_{1}+k_{1})^{2}+m_{2}^{2})^{\nu_{2}}}$$

with two unequal masses m_1 and m_2 , and external momentum p_1 .

Bubble diagram with two unequal masses (contd.)

After successfully loading the package and installing its dependencies, specify the integral in its momentum representation as:

```
\label{eq:In[3]:=} \begin{split} \text{MomentumRep} &= \{\{k_1, m_1, a_1\}, \{p_1+k_1, m_2, a_2\}\};\\ \text{LoopMomenta} &= \{k_1\};\\ \text{InvariantList} &= \{p_1^2 \rightarrow -s\};\\ \text{Dim} &= 4-2\epsilon;\\ \text{Prefactor} &= 1; \end{split}
```

Bubble diagram with two unequal masses (contd.)

Now derive the $\mathcal A\text{-matrix:}$

In[4]:=	$\label{eq:FindAMatrixOut} \begin{split} \texttt{FindAMatrix}[\{\texttt{MomentumRep},\texttt{LoopMomenta}, \\ \texttt{InvariantList},\texttt{Dim},\texttt{Prefactor}\},\texttt{UseMB} \rightarrow \texttt{False}]; \end{split}$
$\mathrm{Prints} \Rightarrow$	The Symanzik polynomials $\rightarrow U = x_1 + x_2$, $F = m_1^2 x_1^2 + s x_1 x_2 + m_1^2 x_1 x_2 + m_2^2 x_1 x_2 + m_2^2 x_2^2$
	The Lee-Pomeransky polynomial $\rightarrow G = x_1 + m_1^2 x_1^2 + x_2 + sx_1 x_2 + m_1^2 x_1 x_2 + m_2^2 x_1 x_2 + m_2^2 x_2^2$ (1 1 1 1 1 1)
	The associated $\mathcal{A}-\text{matrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 0 \\ 0 & 1 & 0 & 2 \end{pmatrix}$, which has $\text{codim} = 2$.
	Normalized Volume of the associated Newton Polytope \rightarrow 3 Time Taken 1.50005 seconds

Bubble diagram with two unequal masses (contd.)

Compute the unimodular regular triangulations J. Rambau [21]

Figure: Visualization of 3 unimodular regular triangulations

Bubble diagram with two unequal masses (contd.) Calculate the Γ-series:

```
In[7]:=
                   SeriesSolution = SeriesRepresentation[Triangulations,2];
Prints \Rightarrow
                  Unimodular Triangulation \rightarrow 2
                   Number of summation variables \rightarrow 2
                   Non-generic limit \rightarrow \{z_1 \rightarrow m_1^2, z_2 \rightarrow s + m_1^2 + m_2^2, z_3 \rightarrow 1, z_4 \rightarrow m_2^2, z_5 \rightarrow 1\}
                   The series solution is the sum of following 3 terms.
                   Term 1 ::
                   \left(\left((-1)^{-n_1-n_2} \operatorname{Gamma}[-2+\epsilon+a_1-n_1-n_2] \operatorname{Gamma}[4-2\epsilon-a_1-a_2+n_2]\right)\right)
                        Gamma[a_2 + 2n_1 + n_2] (m_1^2)^{2-\epsilon-a_1} \left(\frac{m_1^2m_2^2}{(c + m^2 + m^2)^2}\right)^{n_1} \left(\frac{m_1^2}{c + m^2 + m^2}\right)^{n_2}
                       \left(\mathsf{s}+\mathtt{m}_1^2+\mathtt{m}_2^2\right)^{-\mathtt{a}_2}\right) \Big/ \big(\mathtt{Gamma}[\mathtt{a}_1] \; \mathtt{Gamma}[\mathtt{4}-2\varepsilon-\mathtt{a}_1-\mathtt{a}_2] \; \mathtt{Gamma}[\mathtt{a}_2]
                       Gamma[1 + n_1] Gamma[1 + n_2])
                   Term 2 ::
                   \left(\left((-1)^{-n_1-n_2} \operatorname{Gamma}[-2+\epsilon+a_2-n_1-n_2] \operatorname{Gamma}[4-2\epsilon-a_1-a_2+n_2]\right)\right)
                      Gamma[a_1 + 2n_1 + n_2] (m_2^2)^{2-\epsilon-a_2} \left( \frac{m_1^2 m_2^2}{(s_1 + m^2 + m^2)^2} \right)^{n_1} \left( \frac{m_2^2}{s_1 + m^2 + m^2} \right)^{n_2}
                       (s + m_1^2 + m_2^2)^{-a_1})/(Gamma[a_1] Gamma[4 - 2\epsilon - a_1 - a_2] Gamma[a_2]
                       Gamma[1 + n_1] Gamma[1 + n_2])
                   Term 3 ::
                   \left(\left((-1)^{-n_1-n_2} \text{Gamma}[2-\epsilon-a_2+n_1-n_2] \text{Gamma}[2-\epsilon-a_1-n_1+n_2]\right)\right)
                      Gamma[-2 + \epsilon + a_1 + a_2 + n_1 + n_2] \left(\frac{m_1^2}{s + m^2 + m^2}\right)^{n_1} \left(\frac{m_2^2}{s + m^2 + m^2}\right)^{n_2}
                       (s + m_1^2 + m_2^2)^{2-\epsilon-a_1-a_2} / (Gamma[a_1] Gamma[4 - 2\epsilon - a_1 - a_2]
                       Gamma[a_2] Gamma[1 + n_1] Gamma[1 + n_2])
                   Time Taken 0.066558 seconds
```

Bubble diagram with two unequal masses (contd.)

Check for an expression in terms of known hypergeometric functions using Olsson.wl :

```
GetClosedForm[SeriesSolution];
In[8]:=
Prints \Rightarrow
                      Closed form found with Olsson!
                       Term 1 ::
                       \frac{1}{\text{Gamma}[a_1]} Gamma[-2 + \epsilon + a_1]
                           H3 \left[a_{2}, 4 - 2\epsilon - a_{1} - a_{2}, 3 - \epsilon - a_{1}, \frac{m_{1}^{2}m_{2}^{2}}{(a + m^{2} + m^{2})^{2}}, \frac{m_{1}^{2}}{(a + m^{2} + m^{2})^{2}}\right]
                            m_1^4 (m_1^2)^{-\epsilon-a_1}(s+m_1^2+m_2^2)^{-a_2}
                       Term 2 ::
                       \frac{1}{\texttt{Gamma}[\texttt{a}_2]} \; \texttt{Gamma}[-2 + \epsilon + \texttt{a}_2]
                            H3\left[a_{1}, 4 - 2\epsilon - a_{1} - a_{2}, 3 - \epsilon - a_{2}, \frac{m_{1}^{2}m_{2}^{2}}{(s + m_{1}^{2} + m_{1}^{2})^{2}}, \frac{m_{2}^{2}}{(s + m_{1}^{2} + m_{1}^{2})^{2}}, \frac{m_{2}^{2}}{(s + m_{1}^{2} + m_{1}^{2})^{2}}\right]
                            m_{-}^{4}(m_{-}^{2})^{-\epsilon-a_{2}}(s+m_{-}^{2}+m_{-}^{2})^{-a_{1}}
                      Term 3 ::
                      \left( \left( G1 \left[ -2 + \epsilon + a_1 + a_2, 2 - \epsilon - a_1, 2 - \epsilon - a_2, -\frac{m_2^2}{s + m_1^2 + m_2^2} \right] \right) 
                           ,-\frac{m_1^2}{s+m_1^2+m_2^2} Gamma[2-\epsilon-a_1] Gamma[2-\epsilon-a_2]
                            Gamma[-2 + \epsilon + a_1 + a_2] (s + m_1^2 + m_2^2)^{2-\epsilon-a_1-a_2}) / (Gamma[a_1])
                           \operatorname{Gamma}[4 - 2\epsilon - a_1 - a_2] \operatorname{Gamma}[a_2])
                      Time Taken 0.05827 seconds
```

Bubble diagram with two unequal masses (contd.)

Evaluate the sum of the Γ -series terms numerically:

In[9]:=	$\begin{split} & \text{SumLim} = 30; \\ & \text{ParameterSub} = \{ \epsilon \rightarrow 0.001, \texttt{a}_1 \rightarrow 1, \texttt{a}_2 \rightarrow 1, \texttt{s} \rightarrow 10, \texttt{m}_1 \rightarrow 0.4, \texttt{m}_2 \rightarrow 0.3 \}; \\ & \text{NumericalSum}[\texttt{SeriesSolution}, \texttt{ParameterSub}, \texttt{SumLim}]; \end{split}$
$\text{Prints} \Rightarrow$	Numerical result = 997.382 Time Taken 0.222572 seconds

Summary

- Feynman integrals are solutions of GKZ hypergeometric system
- Feynman integrals can be expressed in terms of multivariate hypergeometric functions (MHFs)
- Two equivalent approaches : Gröbner deformation method and triangulation approach
- We have also studied their interconnection in [4]
- The power of propagators and the dimensional parameter appear as Pochhammer parameters
- The ratio of scales appear as variable of MHFs
- One then goes on to find ACs or series expansion of MHFs about the dimensional parameter

Part II

based on BA, S. Friot, S. Bera, T. Pathak, '21 [6]

The Olsson.wl package

Olsson - ROC2

(B. Ananthanarayan, S. Friot, S. Bera, T. Pathak) [6]

ROC2.wl : an independent package that finds the region of convergence (ROC) of a double hypergeometric series, is a part of Olsson.wl

The command Olsson takes the arguments as

In[1]:= Olsson[q,summation_index_List,expression,options]

summation_index_List is the list of summation indices and q is an integer that can take value from 1 to Length[summation_index_List]

The available options of Olsson.wl are

sum,one,inf,PET1,PET2,PET3,sim,roc

Commands and options of Olsson.wl

sum,one,inf,PET1,PET2,PET3,sim,roc

- The option sum takes the summation of the expression wrt q-th entry of the summation_index_List
- The option one performs the AC of $_2F_1(\ldots, z)$ around z = 1

$${}_{2}F_{1}(a, b, c; z) = rac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}{}_{2}F_{1}(a, b, a+b-c+1; 1-z) + rac{\Gamma(c)\Gamma(a+b-c)}{\Gamma(a)\Gamma(b)}(1-z)^{c-a-b}{}_{2}F_{1}(c-a, c-b, c-a-b+1; 1-z)$$

▶ The option inf performs the AC of $_2F_1(...,z)$ around $z = \infty$

$${}_{2}F_{1}(a, b, c; z) = \frac{\Gamma(c)\Gamma(b-a)}{\Gamma(b)\Gamma(c-a)}(-z)^{-a}{}_{2}F_{1}\left(a, a-c+1, a-b+1; \frac{1}{z}\right) \\ + \frac{\Gamma(c)\Gamma(a-b)}{\Gamma(a)\Gamma(c-b)}(-z)^{-b}{}_{2}F_{1}\left(b, b-c+1, b-a+1; \frac{1}{z}\right)$$

and similar AC from $_{p}F_{p-1}(\ldots,z)$

Commands and options of Olsson.wl

The options PET1, PET2, PET3 does the Pfaff-Euler transformations

$${}_{2}F_{1}(a, b; c; z) = (1 - z)^{-a}{}_{2}F_{1}\left(a, c - b; c; \frac{z}{z - 1}\right)$$
$${}_{2}F_{1}(a, b; c; z) = (1 - z)^{-b}{}_{2}F_{1}\left(b, c - a; c; \frac{z}{z - 1}\right)$$
$${}_{2}F_{1}(a, b; c; z) = (1 - z)^{c - a - b}{}_{2}F_{1}(c - a, c - b; c; z)$$

- \blacktriangleright sim option simplifies the gamma functions, Pochhammer symbols assuming that each of the summation index belongs to \mathbb{N}_0
- The roc option find the region of convergence (ROC) of the final expression, provided they are double hypergeometric functions
- This option calls the ROC2.wl package to find the ROC

Demonstration of Olsson.wl

```
► The option inf can be used as

In[4]:= Olsson[1,{m,n}, F2 ,inf→True]

Out[4]=

((-x)<sup>-b1</sup>y<sup>n</sup>Gamma[c1]Gamma[a-b1+n] HypergeometricPFQ[...,<sup>1</sup>/<sub>x</sub>] ...)/(n!

Gamma[-b1+c1]Gamma[a+n]Pochhammer[c2,n])

+((-x)<sup>-a-n</sup>y<sup>n</sup>Gamma[c1]Gamma[-a+b1-n] HypergeometricPFQ[...,<sup>1</sup>/<sub>x</sub>] ...)/(n!

Gamma[b1]Gamma[-a+c1-n]Pochhammer[c2,n])
```

Demonstration of Olsson.wl

m!n!Gamma[a]Gamma[-b1+c1]Pochhammer[1-a+b1,m-n]Pochhammer[c2,n]

• We have obtained the AC of F_2 around $(\infty, 0)$

The associated ROC can be found using roc option

$$\{\frac{1}{Abs[x]} < 1\&\&Abs[\frac{y}{x}] < 1\&\&Abs[\frac{y}{x}] < 1\&Abs[x]$$

$$\&\&\frac{1}{Abs[x]} < 1\&\&Abs[y] < 1\&\&Abs[y] < -1 + Abs[x], \dots \}$$

Demonstration of Olsson.wl ROC

- The other options one, PET1, PET2, PET3 work similarly.
- repetitive use of these options can be made to find new ACs.

the resulting series can be recognized using the serrecog or serrecog2var command

```
\begin{split} & \ln[7] := \ \text{Plus@@(serrecog2var[\{m,n\},\#]\&/@(List@@Last[\%6]))} \\ & \text{Out[7]} = \\ & \frac{(-x)^{-b1} \ \text{Gamma[a-b1]} \ \text{Gamma[c1]}}{\text{Gamma[a]Gamma[-b1+c1]}} \ \text{FTilde}[\{\ldots\},\{\frac{1}{x},-y\}] \\ & + \frac{(-x)^{-a} \ \text{Gamma[-a+b1]} \ \text{Gamma[c1]}}{\text{Gamma[-a+c1]}} \ \text{KdF}[\{\ldots\},\{\frac{1}{x},-\frac{y}{x}\}] \end{split}
```

- we recover the well-known analytic continuation of Appell F_2 .
- The serrecog2var command can recognize all 14 Appell-Horn series in two variables.
- The serrecog command can recognize bi-variate KdF, mirror-KdF (FTilde), Lauricella functions in any number of variables.

Physics Applications

Published for SISSA by O Springer

RECEIVED: June 16, 2009 REVISED: October 14, 2009 ACCEPTED: December 13, 2009 PUBLISHED: January 12, 2010

The one-loop pentagon to higher orders in ϵ

Vittorio Del Duca,^a Claude Duhr,^b E. W. Nigel Glover^c and Vladimir A. Smirnov^d

Physics Applications

Figure 1. The three regions contributing to the scalar massless pentagon in Euclidean kinematics.

Physics Applications

$$\begin{split} \mathcal{I}_{\text{ND}}^{(IIa)}(s,s_{1},s_{2},t_{1},t_{2}) \\ &= -\frac{1}{\epsilon^{3}} y_{2}^{-\epsilon} \Gamma(1-2\epsilon) \Gamma(1+\epsilon)^{2} F_{4} \Big(1-2\epsilon,1-\epsilon,1-\epsilon,1-\epsilon;-y_{1},y_{2} \Big) \\ &+ \frac{1}{\epsilon^{3}} \Gamma(1+\epsilon) \Gamma(1-\epsilon) F_{4} \Big(1,1-\epsilon,1-\epsilon,1+\epsilon;-y_{1},y_{2} \Big) \\ &- \frac{1}{\epsilon^{2}} y_{1}^{\epsilon} y_{2}^{-\epsilon} \left\{ \left[\ln y_{1} + \psi(1-\epsilon) - \psi(-\epsilon) \right] F_{4} \Big(1,1-\epsilon,1+\epsilon,1-\epsilon;-y_{1},y_{2} \Big) \right. \\ &+ \frac{\partial}{\partial \delta} F_{0,2}^{2,1} \left(\begin{array}{cc} 1+\delta 1+\delta-\epsilon \\ - & - \end{array} \Big| \frac{1}{1+\delta 1-\epsilon} \frac{1}{1+\epsilon} - \frac{-}{1-\epsilon} \Big| - y_{1},y_{2} \right) \\ &+ \frac{1}{\epsilon^{2}} y_{1}^{\epsilon} \left\{ \left[\ln y_{1} + \psi(1+\epsilon) - \psi(-\epsilon) \right] F_{4} \Big(1,1+\epsilon,1+\epsilon,1+\epsilon;-y_{1},y_{2} \Big) \right. \\ &+ \frac{\partial}{\partial \delta} F_{0,2}^{2,1} \left(\begin{array}{cc} 1+\delta 1+\delta+\epsilon \\ - & - \end{array} \Big| \frac{1}{1+\delta 1+\epsilon} \frac{1}{1+\epsilon} - \frac{-}{1-\epsilon} \Big| - y_{1},y_{2} \right) \\ &+ \frac{\partial}{\partial \delta} F_{0,2}^{2,1} \left(\begin{array}{cc} 1+\delta 1+\delta+\epsilon \\ - & - \end{array} \Big| \frac{1}{1+\delta 1+\epsilon} + \epsilon + \delta - \Big| - y_{1},y_{2} \right) \\ &+ \frac{\partial}{\partial \delta} F_{0,2}^{2,1} \left(\begin{array}{cc} 1+\delta 1+\delta+\epsilon \\ - & - \end{array} \Big| \frac{1}{1+\delta 1+\epsilon} + \epsilon + \delta - \Big| - y_{1},y_{2} \right) \\ &+ \frac{\partial}{\partial \delta} F_{0,2}^{2,1} \left(\begin{array}{cc} 1+\delta 1+\delta+\epsilon \\ - & - \end{array} \Big| \frac{1}{1+\delta 1+\epsilon} + \epsilon + \delta - \Big| - y_{1},y_{2} \right) \\ &+ \frac{\partial}{\partial \delta} F_{0,2}^{2,1} \left(\begin{array}{cc} 1+\delta 1+\delta+\epsilon \\ - & - \end{array} \Big| \frac{1}{1+\delta 1+\epsilon} + \epsilon + \delta - \Big| - y_{1},y_{2} \right) \\ &+ \frac{\partial}{\partial \delta} F_{0,2}^{2,1} \left(\begin{array}{cc} 1+\delta 1+\delta+\epsilon \\ - & - \end{array} \Big| \frac{1}{1+\delta 1+\epsilon} + \epsilon + \delta - \Big| - y_{1},y_{2} \right) \\ &+ \frac{\partial}{\partial \delta} F_{0,2}^{2,1} \left(\begin{array}{cc} 1+\delta 1+\delta+\epsilon \\ - & - \end{array} \Big| \frac{1}{1+\delta 1+\epsilon} + \epsilon + \delta - \Big| - y_{1},y_{2} \right) \\ &+ \frac{\partial}{\partial \delta} F_{0,2}^{2,1} \left(\begin{array}{cc} 1+\delta 1+\delta+\epsilon \\ - & - \end{array} \Big| \frac{1}{1+\delta 1+\epsilon} + \epsilon + \delta - \Big| \frac{1}{1+\delta 1+\epsilon} + \delta - e \Big| \frac{1}{1+\delta 1+\delta} + \delta - e \Big| \frac{1}{1+\delta 1+\epsilon} + \delta - e \Big| \frac{1}{1+\delta 1+\epsilon} +$$

Physical applications

- We find analytic continuations of Appell F₄ and Kampé de Fériet functions that covers the positive quadrant in (x, y) plane
- The analytic continuations suggest that, the region I should be devided in to two parts I(a) and I(b)
- The ACs of multivariate hypergeometric functions can be derived using Olsson.wl
- The ROC of double hypergeometric functions only can be found
- ▶ The expressions obtained in this way are error-free.
- The ACs are derived in no time

Part III

based on BA, S. Bera, S. Friot, O. Marichev and T. Pathak, '21 [7]

AppellF2

(B. Ananthanarayan, S. Bera, S. Friot, O. Marichev and T. Pathak [7])

- It can find the value of F₂ for generic complex values of Pochhammer parameters and arbitrary real values of x, y except the points on the singular lines
- ► Usage :

```
ln[8]:= AppellF2[a,b1,b2,c1,c2,x,y,precision,terms,F2show \rightarrow True]
```

- For example,
 - In[9]:= AppellF2[2.2345,3.363,0.242,8.3452,0.657,-2.311,5.322, 10,100,F2show→ True]

Out[9]=

0.09333639793-0.06847416686 I

Other commands

```
F2findall,F2expose,F2ROC,F2evaluate
```

Challenges in numerical evaluation

- We found a total of 44 ACs for Appell F_2
- All the ACs should obey the cut structures of F₂
- ▶ The cut of F_2 lies from 1 to ∞ along the real axis for each of the variables

Figure: The red wiggly line denotes the cut of Appell F_2 and the arrow indicates the path of approach when the function is evaluated on the cut

• The value of F_2 on the cut is evaluated with ' $-i\epsilon$ prescription'

For x-cut,
$$F_2[\ldots, x, y] = \lim_{\epsilon \to 0^+} F_2[\ldots, x - i\epsilon, y]$$

Part IV

based on BA, S. Bera, T. Pathak, '23 [11]

- Motivated by the works of O. Tarasov O. Tarasov '22 and references within [22]
- Integral with general propagators :

$$I_2((q_1-q_2)^2, m_1, m_2) = \int \frac{d^d k}{d_1 d_2}$$

where

$$d_i = (k+q_i)^2 - m_i^2$$

- ▶ k : loop-momentum, q_i : combination of external momentum, m_i : mass of the propagator
- ▶ When $q_1 = 0$ and $q_2 = -p \longrightarrow$ one-loop bubble integral

$$I_2(p^2, m_1, m_2) = \int \frac{d^d k}{(k^2 - m_1^2)((k - p)^2 - m_2^2)}$$

Partial fraction

$$\frac{1}{d_1d_2} = \frac{x_1}{D_1d_1} + \frac{x_2}{D_1d_2}$$
where $D_i = (k + P_i)^2 - M_i^2$
 $D_1 = x_1d_2 + x_2d_1$
Comparing the coefficients of k^2 , k and k^0
 $x_1 + x_2 = 1$

$$x_1\mathbf{q}_2 + x_2\mathbf{q}_1 = \mathbf{P}_1$$

- $M_1^2 + P_1^2 - (-m_2^2 + q_2^2)x_1 - (-m_1^2 + q_1^2)x_2 = 0$

Solve for the unknowns

$$x_1, x_2, P_1$$

• The parameter M_1 is free to choose. We choose $M_1 = 0$

for one-loop bubble integral

$$h_2(p^2, m_1, m_2) = x_1 h_2((P_1 + p)^2, 0, m_2) + x_2 h_2(P_1^2, m_1, 0)$$

diagrammatically

The general result for the massive bubble diagram can be written in terms of the Appell F₄ function I. Gonzalez and V. H. Moll [23]

$$\begin{split} I_2(p,m_1,m_2) &= \frac{(m_2^2)^{\frac{d}{2}-2} \Gamma(\frac{d}{2}-1) \Gamma(2-\frac{d}{2})}{\Gamma(\frac{d}{2})} F_4\left(2-\frac{d}{2},1;\frac{d}{2},2-\frac{d}{2};\frac{p^2}{m_2^2},\frac{m_1^2}{m_2^2}\right) \\ &+ \frac{(m_1^2)^{\frac{d}{2}-1} \Gamma(1-\frac{d}{2})}{m_2^2} F_4\left(\frac{d}{2},1;\frac{d}{2},\frac{d}{2};\frac{p^2}{m_2^2},\frac{m_1^2}{m_2^2}\right) \end{split}$$

► Appell F₄

$$F_4(a, b, c, d, x, y) = \sum_{m,n=0}^{\infty} \frac{(a)_{m+n}(b)_{m+n}}{(c)_m(d)_n} \frac{x^m y^n}{m! n!}$$

valid for $\sqrt{|x|} + \sqrt{|y|} < 1$

The analytic expression result for l₂(p, m, 0) is C.G. Bollini, J.J. Giambiagi. '72
 [24] E. E. Boos, A. I. Davydychev '91 [25]

$$I_{2}^{(d)}(p^{2};m^{2},0) = -\Gamma(1-\frac{d}{2})m_{2}^{d-4} {}_{2}F_{1}\left[\begin{array}{c}1,2-\frac{d}{2};\\\frac{d}{2};\\\frac{d}{2};\end{array}\right]$$

- We found a reduction formula $F_4 \rightarrow {}_2F_1$
- ▶ Problem of finding analytic continuations of F₄ → Problem of finding analytic continuations of ₂F₁
- Reduction in the ratios of the original Feynman integral
- Reduction of computational complexity as we have to evaluate integrals with less massive propagators

Reduction formula of hypergeometric functions

Reduction formulas for multi-variable hypergeometric function

$$\begin{split} F_4(1,1;1,1;x,y) &= \frac{1}{\sqrt{(x+y-1)^2 - 4xy}} \\ F_4\left(\frac{3}{2},1;\frac{1}{2},\frac{3}{2};x,y\right) &= \frac{x-y+1}{x^2 - 2x(y+1) + (y-1)^2} \\ F_4\left(\frac{5}{2},1;-\frac{1}{2},\frac{5}{2};x,y\right) &= \frac{(x-y+1)\left(x^2 - 2x(y+5) + (y-1)^2\right)}{(x^2 - 2x(y+1) + (y-1)^2)^2} \\ F_4\left(\frac{1}{2},1;\frac{3}{2},\frac{1}{2};x,y\right) &= \frac{\tanh^{-1}\left(\frac{-\sqrt{-2(x+1)y+(x-1)^2+y^2}+x-y+1}{2\sqrt{x}}\right)}{\sqrt{x}} \end{split}$$

Integrals with more propagators

• What about product such as $\frac{1}{d_1d_2d_3}$?

$$\begin{aligned} \frac{1}{d_1 d_2 d_3} &= \frac{x_1}{D_1 d_1 d_3} + \frac{x_2}{D_1 d_2 d_3} \\ &= \frac{x_1 x_3}{D_1 D_2 d_1} + \frac{x_1 x_4}{D_1 D_2 d_3} + \frac{x_2 x_5}{D_1 D_3 d_2} + \frac{x_2 x_6}{D_1 D_3 d_3} \end{aligned}$$

- In a similar manner we can use this recursively for product of Npropagators depending only on one loop momenta.
- The final result is a sum of 2^{N-1} terms where N is the total number of denominators we started with

```
</AlgRel.wl
```

```
AlgRel.wl v1.0
Authors : B. Ananthanarayan, Souvik Bera, Tanay Pathak
```

In[11]:=

AlgRel.wl

In[10]:=

```
AlgRel[{Propagator's number}, {k,q,m}, {P,M}, x, Substitutions]
```

Out[11]=

```
{{Algebraic relation},{Values}}
```

Consider the example of Bubble integral. To obtain the result for it we can use the following command

ln[12]:=

AlgRel[{1, 2},{k,q,m},{P, M}, x,{q[1]-> 0,q[2]->-p,M[1]->0}] Out[12]=

$$\{\frac{x[1]}{((k+P[1])^2)(-m[1]^2+(k)^2)} + \frac{x[2]}{((k+P[1])^2)(-m[2]^2+(k-p)^2)}\}, \\ \{x[1] - \frac{p^2 + m[1]^2 - m[2]^2 + \sqrt{(p^2 + m[1]^2 - m[2]^2)^2 - 4p^2(m[1]^2)}}{p^2}, \dots\}\}$$

Summary

- Reduction in complexity of the original integral by reducing it to a sum of simpler integrals
- We can always convert a general N-point, 1-loop massive integral, into a sum of integrals with just 1 massive propagator.
- We also developed a suitably modified recursive algorithm for implementation in MATHEMATICA : AlgRel.wl
- Obtaining non-trivial and elusive reduction formulas for the multi-variable hypergeometric functions.

Future directions

- Dispersion relation and Feynman integrals
- Hodge structure of Feynman integrals
- Relation with algebraic geometry, number theory, combinatorics
- Iterated Chen Integrals
- Theory of differential equations
- Theory of chords

References I

- B. Ananthanarayan, Samuel Friot, and Shayan Ghosh. Eur. Phys. J. C 80.7 (2020), p. 606. arXiv: 1911.10096 [hep-ph].
- C. Anastasiou, E. W. Nigel Glover, and C. Oleari. Nucl. Phys. B 572 (2000), pp. 307–360. arXiv: hep-ph/9907494.
- [3] Frits A. Berends et al. Z. Phys. C 63 (1994), pp. 227–234.
- B. Ananthanarayan et al. Comput. Phys. Commun. 287 (2023), p. 108699. arXiv: 2211.01285 [hep-th].
- B. Ananthanarayan et al. Phys. Rev. Lett. 127.15 (2021), p. 151601. arXiv: 2012.15108 [hep-th].
- [6] B. Ananthanarayan et al. accepted for publication in CPC (Dec. 2021). arXiv: 2201.01189 [cs.MS].
- B. Ananthanarayan et al. Comput. Phys. Commun. 284 (2023), p. 108589. arXiv: 2111.05798 [math.CA].
- [8] Souvik Bera and Tanay Pathak. (Mar. 2024). arXiv: 2403.02237 [hep-ph].
- [9] Souvik Bera. Nucl. Phys. B 989 (2023), p. 116145. arXiv: 2208.01000 [math-ph].

References II

- [10] Souvik Bera. Comput. Phys. Commun. 297 (2024), p. 109060. arXiv: 2306.11718 [hep-th].
- [11] B. Ananthanarayan, Souvik Bera, and Tanay Pathak. Nucl. Phys. B 995 (2023), p. 116345. arXiv: 2307.04852 [hep-ph].
- [12] B. Ananthanarayan et al. Eur. Phys. J. C 79.1 (2019), p. 57. arXiv: 1810.06270 [hep-ph].
- [13] Souvik Bera and Tanay Pathak. (Sept. 2023). arXiv: 2309.07687 [cs.MS].
- [14] Roman N. Lee and Andrei A. Pomeransky. JHEP 11 (2013), p. 165. arXiv: 1308.6676 [hep-ph].
- [15] Israel M. Gelfand, Mikhail M. Kapranov, and Andrei Zelevinsky."Hypergeometric functions, Toric varieties and Newton polyhehra". 1991.
- [16] W. Bruns and J. Gubeladze. Polytopes, Rings, and K-Theory. Springer Monographs in Mathematics. Springer New York, 2009. ISBN: 9780387763569. URL: https://books.google.co.in/books?id=pbgg1pFxW8YC.

References III

- [17] Finn F. Knudsen. "Construction of nice polyhedral subdivisions". *Toroidal Embeddings I.* Berlin, Heidelberg: Springer Berlin Heidelberg, 1973, pp. 109–164. ISBN: 978-3-540-37755-9. URL: https://doi.org/10.1007/BFb0070321.
- [18] Leonardo de la Cruz. JHEP 12 (2019), p. 123. arXiv: 1907.00507 [math-ph].
- [19] René Pascal Klausen. JHEP 04 (2020), p. 121. arXiv: 1910.08651 [hep-th].
- [20] Mutsumi Saito, Bernd Sturmfels, and Nobuki Takayama. Gröbner deformations of hypergeometric differential equations. Vol. 6. Springer Science & Business Media, 2013.

[21] Jörg Rambau. "TOPCOM: Triangulations of Point Configurations and Oriented Matroids". Proceedings of the International Congress of Mathematical Software. 2002. URL: http://www.zib.de/PaperWeb/abstracts/ZR-02-17.

[22] O. V. Tarasov. JHEP 06 (2022), p. 155. arXiv: 2203.00143 [hep-ph].

References IV

- [23] Ivan Gonzalez and Victor H. Moll. Advances in Applied Mathematics 45.1 (2010), pp. 50-73. ISSN: 0196-8858. URL: https://www. sciencedirect.com/science/article/pii/S0196885809001225.
- [24] CG Bollini and JJ Giambiagi. Physics Letters B 40.5 (1972), pp. 566–568.
- [25] E. E. Boos and Andrei I. Davydychev. Theor. Math. Phys. 89 (1991), pp. 1052–1063.

Back up slides

Solving the GKZ system (contd.)

Triangulation method

We saw:

$$\mathcal{A} = \begin{pmatrix} 1 \\ A \end{pmatrix} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ a_1 & a_2 & \cdots & a_N \end{pmatrix} \in \mathbb{Z}_{\geq 0}^{(n+1) \times N}$$

• A defines an assembly of N points (a point configuration) in \mathbb{Z}^n

$$\mathsf{Conv}(A) := \Big\{ \sum_{j=1}^N k_j a_j \Big| k \in \mathbb{R}^N_{\geq 0}, \sum_{j=1}^N k_j = 1 \Big\}$$

• Newton polytope of $G_z(\alpha)$:

$$\Delta_{G_z} := \operatorname{Conv}(A)$$

Solving the GKZ system (contd.)

- Regular triangulations can be used to construct a basis for the finite-dimensional solution space of H_A(<u>\nu</u>)
- Each element: Γ-series
- Whole solution: linear combination of the Γ-series elements
- **b** Unimodularity: one $\sigma_i \rightarrow$ one Γ-series
- Might as well use just the unimodular regular triangulations to construct a basis!

Feynman Integral

Momentum representation:

$$h(
u,D) = \int \prod_{r=1}^{l} rac{d^D k_r}{i \pi^{rac{D}{2}}} rac{1}{\prod_{j=1}^{n} (-q_j^2 + m_j^2)^{
u_j}}$$

I: number of loops; *D*: the space-time dimension; $\nu = (\nu_1, ..., \nu_n)$: propagator powers

 k_r -s and q_j -s are the loop-momenta and internal-momenta for the Feynman graph Γ .

Lee-Pomeransky representation:

$$I_{\Gamma}(\nu, D) = \frac{\Gamma(\frac{D}{2})}{\Gamma\left(\frac{(l+1)D}{2} - \sum_{i} \nu_{i}\right)} \Big(\prod_{i=1}^{n} \int_{\alpha_{i}=0}^{\infty} \frac{d\alpha_{i} \, \alpha_{i}^{\nu_{i}-1}}{\Gamma(\nu_{i})} \Big) G(\alpha)^{-\frac{D}{2}}$$

• Lee-Pomeransky polynomial: $G(\alpha) = U(\alpha) + F(\alpha)$.

The Lee-Pomeransky representation (contd.)

Generalized Feynman integral:

$$I_{G_z}(\nu,\nu_0) = \int_{\mathbb{R}^n_+} d\alpha \, \alpha^{\nu-1} G_z(\alpha)^{-\nu_0}$$

where, *v*₀ = ^{*D*}/₂
▶ Generalized *G*-polynomial:

$$G_z(\alpha) = \sum_{a_j \in A} z_j \alpha^{a_j}$$

 $z_j \rightarrow \text{generic/indeterminate}$

Construct

$$\mathcal{A} = \begin{pmatrix} 1 \\ A \end{pmatrix} = \begin{pmatrix} 1 & 1 & \dots & 1 \\ a_1 & a_2 & \dots & a_N \end{pmatrix}$$

The associated GKZ system (contd.)

We describe the Gel'fand-Kapranov-Zelevinsky (GKZ) system as follows:

$$H_{\mathcal{A}}(\underline{\nu}) = I_{\mathcal{A}} \cup \langle \mathcal{A} \cdot \theta + \underline{\nu} \rangle$$

where

$$\mathcal{A} = \{a_{ij}; i \in \{1, ..., n+1\}, j \in \{1, ..., N\}\} | a_{ij} = 1; i = 1\}$$

$$\underline{\nu} = (\nu_0, \nu_1, ..., \nu_n)^T$$

In layman's terms

Start with Feynman integral

 $I_{G_z}(\nu,\nu_0)$

Find its associated PDEs : $H_A(\nu, \nu_0)$

$$\Rightarrow H_{\mathcal{A}}(\nu,\nu_0)I_{G_z}(\nu,\nu_0) = 0$$

- *H*_A(ν, ν₀) is called Gel'fand-Kapranov-Zelevinsky (GKZ) system or *A*-hypergeometric system
- Solve the PDEs:
 - Algebraic way : Gröbner deformation method (GD) (Saito, Sturmfels and Takayama [20], de la Cruz [18])
 - Geometric way : Triangulation method (Klausen [19])
- Both are equivalent
- ► GD ≈ 'generalized Frobenius method'

$$\phi_{v} := \sum_{u \in L} \frac{[v]_{u_{-}}}{[u + v]_{u_{+}}} z^{u + v}$$

Bubble diagram with two unequal masses (contd.)

FeynGKZ

(B. Ananthanarayan, S. Banik, S. Bera, S. Datta [4])

Load the package and its dependencies

$$\begin{split} \text{In[3]:=} & \text{MomentumRep} = \{\{k_1, \texttt{m}_1, \texttt{a}_1\}, \{\texttt{p}_1 + \texttt{k}_1, \texttt{m}_2, \texttt{a}_2\}\}; \\ & \text{LoopMomenta} = \{\texttt{k}_1\}; \\ & \text{InvariantList} = \{\texttt{p}_1^2 \rightarrow -\texttt{s}\}; \\ & \text{Dim} = 4 - 2\epsilon; \\ & \text{Prefactor} = 1; \end{split}$$

Bubble diagram with two unequal masses (contd.)

Now derive the $\mathcal A\text{-matrix:}$

In[4]:=	$\label{eq:FindAMatrixOut} \begin{split} & \mbox{FindAMatrix}[\{\mbox{MomentumRep},\mbox{LoopMomenta}, \\ & \mbox{InvariantList},\mbox{Dim},\mbox{Prefactor}\},\mbox{UseMB} \rightarrow \mbox{False}]; \end{split}$
$\mathrm{Prints} \Rightarrow$	The Symanzik polynomials $\rightarrow U=x_1+x_2$, $F=m_1^2x_1^2+sx_1x_2+m_1^2x_1x_2+m_2^2x_1x_2+m_2^2x_2^2$
	The Lee-Pomeransky polynomial $\rightarrow G = x_1 + m_1^2 x_1^2 + x_2 + sx_1 x_2 + m_1^2 x_1 x_2 + m_2^2 x_1 x_2 + m_2^2 x_2^2$
	The associated $\mathcal{A}-\text{matrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 & 1 \end{pmatrix}$, which has codim = 2.
	Normalized Volume of the associated Newton Polytope $\rightarrow 3$ Time Taken 1.50005 seconds

Bubble diagram with two unequal masses (contd.)

Compute the unimodular regular triangulations J. Rambau [21]

Figure: Visualization of 3 unimodular regular triangulations

Bubble diagram with two unequal masses (contd.)

Evaluate the sum of the Γ -series terms numerically:

In[9]:=	$\begin{split} & \text{SumLim} = 30; \\ & \text{ParameterSub} = \{\epsilon \rightarrow 0.001, a_1 \rightarrow 1, a_2 \rightarrow 1, s \rightarrow 10, m_1 \rightarrow 0.4, m_2 \rightarrow 0.3\}; \\ & \text{NumericalSum}[\text{SeriesSolution}, \text{ParameterSub}, \text{SumLim}]; \end{split}$
$\mathrm{Prints} \Rightarrow$	Numerical result = 997.382 Time Taken 0.222572 seconds