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Plan of the Talk

® Main theme of the talk:

| Interplay between Integrability (Symmetries)
- and Geometry (Calabi-Yau and Picard varieties) |

square Calabi-Yau
fishnets varieties
[3]

hexagonal Picard
. |
fishnets ..
" varieties

@ In particular, we want to discuss Fishnet integrals in two dimensions and how we
can compute them using their symmetries and associated geometries.
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From SYM to the Fishnet Theory

@ Let us start with superconformal Yang-Mills theory with SU(N) gauge symmetry:

Lar—4 =tr {FF + D®D® + UDV — ¢°[®, §]* — gU[], U] — gU[], U]}
7 R N

field strength with six scalar four
gauge field A fields spinors

@ This theory has the following symmetries:

@® Conformal symmetry at the quantum level (beta-function vanishes)
® The Lie algebra symmetry psu(2, 2|4)

® In the planar limit (N — oo) we have conformal and dual conformal symmetry
[Dolan, Nappi, Witten;
e Yangian symmetry (Integrability) Drummond, Henn,
Plefka;...]



From SYM to the Fishnet Theory

@ Let us start with superconformal Yang-Mills theory with SU(N) gauge symmetry:

Lar—y =tr {FF 4+ D®DP + VDV — ¢°[®,D]* — gU[®, U] — gV[], U]}
7 R K

field strength with six scalar four
gauge field A fields spinors

@ This theory has the following symmetries:

@® Conformal symmetry at the quantum level (beta-function vanishes)
® The Lie algebra symmetry psu(2, 2|4)

® In the planar limit (N — oo) we have conformal and dual conformal symmetry
[Dolan, Nappi, Witten;
e Yangian symmetry (Integrability) Drummond, Henn,
Plefka;...]

® From a 7Y -deformation of SYM we can construct the biscalar fishnet theory as a specific limit:
= s [Kazakov, Gurdogan;
LN:4 > ’C”V > EﬁShnet Kazakov, Olivucci]

_ Y[ R, 7 iNL —w 2 > 5 for generic D and
Loshmes = Ntr { =X (=0,0")°X = 2(-9,0")# “Z +&xzXZ} 82D
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Fishnet Theory and Generalizations

® Properties of fishnet theory:

@® Yangian invariant (integrability)

@® Chiral structure of vertex allows only for a
small number of Feynman diagrams.

® Generalization to D spacetime dimensions with appropriately [Chicherin, Kazakov, Lobbert,
. Miuller, Zhang; Kazakov, Levkovich-
generalized propagator powers known, e.g. D = 2,w = 1/2. Maslyuk, Mishnyakov]
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Fishnet Theory and Generalizations

® Properties of fishnet theory:

@® Yangian invariant (integrability)

@® Chiral structure of vertex allows only for a
small number of Feynman diagrams.
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® Generalization to D spacetime dimensions with appropriately
generalized propagator powers known, e.g. D =2, w = 1/2.

Yangian annihilates fishnet integrals:

(-

[Chicherin, Kazakov, Lobbert,
Miuller, Zhang; Kazakov, Levkovich-
Maslyuk, Mishnyakov]

® So far, we only considered quartic interactions. Although conformal invariant

interactions are also possible for the following regular tilings of the plane

(assuming unit propagator powers):

V =2D/(D —2)
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Fishnet Theory and Generalizations

® Properties of fishnet theory:

1

@® Yangian invariant (integrability) Yangian annihilates fishnet integrals:
\ W
@ Chiral structure of vertex allows only for a ( .’3 " |l= O
small number of Feynman diagrams. J C
® Generalization to D spacetime dimensions with appropriately [Chicherin, Kazakov, Lobbert,
. Miuller, Zhang; Kazakov, Levkovich-
generalized propagator powers known, e.g. D =2, w = 1/2. Maslyuk, Mishnyakov]

® So far, we only considered quartic interactions. Although conformal invariant
interactions are also possible for the following regular tilings of the plane V =2D/(D - 2)
(assuming unit propagator powers):

NN\

/\

® For the hexagonal tiling there exists the honeycomb fishnet theory (generic D and propagator powers w;):

Lhoney = Ntr {=X(=0,0")' X = Y(=0,0")*Y — Z(-0,0")°Z + §XYZ + XY Z} (]

Olivucci]

: TUTI



Fishnet Integrals

® We can build fishnet integrals from the following Feynman rules:

@® Take a cut from a tiling:

o ofy - oC
( ;, ola 3

| T wg oy

® Vertices: &; 1

(considered in R”)
@® External points: o J

1 1
(& —&)21P7Y o (& — o))?2|PTY

@® Integrate over internal vertices.

—> 1= [ [ M =g [T g o

® Propagators:




Fishnet Integrals

® We can build fishnet integrals from the following Feynman rules:

@® Take a cut from a tiling:

oq
“tﬂ“' us
T —> “tt or —> ““W

® Vertices: &; 1

(considered in R”)
@® External points: o J

1 1
(& —&)21P7Y o (& — o))?2|PTY

@® Integrate over internal vertices.

— = [Hddfﬂg[@i—é)%mv] @[(@—J»ZJD/V]

® We are particularly interested in the following two families of fishnet graphs and integrals:

® Propagators:

¢-loop train track graphs G, ¢ ¢-loop triangle track graphs Z,
l ¢l N {
Hr - 3

- T T
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Star-Triangle Relation

® Conformal symmetry relates a triple vertex integration to three propagators (Star-Triangle Relation):

dP¢

(a1 = &2 (g — €)% (a3 — )P

gamma factors
Xapy

shifted exponents
o' =D/2—«
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® Conformal symmetry relates a triple vertex integration to three propagators (Star-Triangle Relation):

/ dP¢ B Xopy gamma factors
(a1 — &)?*(az — 5)26(043 — &) B (a1 — 042)27/ (g — 043)20‘/ (g — 041)25' Xagy
o shifted exponents
0] t o =D/2 -«
){ v /\
AR %

@ With this identity we can map the triangular tiling to the hexagonal one:

NN/ \/ i@@@f

@ But only some fishnet graphs cut are mapped to each other:
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Star-Triangle Relation

® Conformal symmetry relates a triple vertex integration to three propagators (Star-Triangle Relation):

/ dP¢ B Xopy gamma factors
(a1 — &)?*(az — 5)26(043 — &) B (a1 — 042)27/ (g — 043)20‘/ (g — 041)25' Xagy
o shifted exponents
0] t o =D/2 -«
){ v /\
AR %

@ With this identity we can map the triangular tiling to the hexagonal one:

NN/ \/ i@@@f

@ But only some fishnet graphs cut are mapped to each other:

K= XN




Yangian Symmetry of Fishnet Integrals

@® Construction of the Yangian algebra Y(g):

Level O:
Jo=>"J¢
jzl/?\

Lie algebragwith generators J¥

® For fishnets we consider the conformal
algebraso(1,D + 1):

Level 1: Commutation relations:
R 1 n [Ja Jb] _ fab JC
JO =S f%e > IS+ 808 e .
2 i<k = [Ja,Jb} _ fabCJc
P, =—id, L, =ix,0,—x,0,)

D= —i(z, 0" +A) K, =i(x°9, —21,2"9, — 2Ax,,)
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@® Construction of the Yangian algebra Y(g):
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n n a Tb ab Tc
Aa, 1 a C a J 7J — CJ
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71=1
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@® The Yangian gives us a set of differential operators annihilating the fishnet integrals:
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@® Construction of the Yangian algebra Y(g):

Level O: Level 1: Commutation relations:
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@® The Yangian gives us a set of differential operators annihilating the fishnet integrals:

2 2

. , Qs X

® In particular, frc?m conformal I((;D)(Q) _ ]__C(;D)(Q) ¢E;D)(X> cross ratio: Xkl = —2 —
symmetry we find: = ik Yl
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Yangian Symmetry of Fishnet Integrals

@® Construction of the Yangian algebra Y(g):

Level O: Level 1: Commutation relations:
n n a Tb ab Tc
Aa, 1 a C a J 7J — CJ
JGZZJ? J :if bCZJsz+ZSij [ Ab] fab Je
— j<k =1 J4J7 = fd
71=1
Lie algebragwith generators J¥
® For fishnets we consider the conformal P, = —id, L, =ix,0,—x,0,)
algebraso(l, D +1): D= —i(z, 0" +A) K, =i(x°9, —21,2"9, — 2Ax,,)

@® The Yangian gives us a set of differential operators annihilating the fishnet integrals:

2 2
. , Qs X
® In particular, frc?m conformal I((;D)(Q) _ ]__C(;D)(g) ¢E;D)(X> cross ratio: Xijhi = 29 —
symmetry we find: = ik Yl
@® Additionally, there are two-side ~. L .. e u u oA 1
’ o= = : 5.J% + 3 with J¢ —
level one operators: Tk 9 Froedjdg & 8505 + Skdy Tk x2gsz16k 0
J

8 TUTI



Permutation Symmetry

® Consider the group of permutations of the external points leaving the integral invariant:

Iém(a ca) = IC(;D)(Q) , for all 0 € Permg

@® Every automorphism of the graph acts as a permutation of the external points, i.e.

Aut(G) C Permg

@ But there are hidden relations due to the star-triangle relation:

(G -SRrulange 35 G such that Aut(G) C Aut(G)

relation




Permutation Symmetry

® Consider the group of permutations of the external points leaving the integral invariant:

Iém(a ca) = IC(;D)(Q) , for all 0 € Permg

@® Every automorphism of the graph acts as a permutation of the external points, i.e.

Aut(G) C Permg

@ But there are hidden relations due to the star-triangle relation:

(G -SRrulange 35 G such that Aut(G) C Aut(G)

relation

Example:

% Sy

Aut(G) = Z3 C Permg = S,
9 T



Yangian and Permutation Symmetry

® We can combine Yangian and permutation symmetry:

~ ~ different representations
J¢ = gJ% 1 and J¢ = gJoo ! P .
o o due to ordering

@® Obviously, on the level zero generators this has no effect but on the level one generators:

135187) =0 new differential equations

® In total, fishnet integrals have the symmetry group:

Permg X Ve

/ N\

permutations Yangian algrebra including
two-side generators

o TUTI
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Yangian and Permutation Symmetry

® We can combine Yangian and permutation symmetry:

~ ~ different representations
J¢ = gJ% 1 and J¢ = gJoo ! P .
o o due to ordering

@® Obviously, on the level zero generators this has no effect but on the level one generators:

135187) =0 new differential equations

® In total, fishnet integrals have the symmetry group:

Permg X Ve

/ N\

permutations Yangian algrebra including
two-side generators

@® Question: Does this large symmetry algebra fix the Fishnet integrals?

-3 |n D=2 we conjecture: YES IT DOES.

o TUTI



Specialities in D=2

® Most importantly, we can use complex variables in two dimensions: R2 ~ C

S B PSS
aj = a; + i and rj =& + 1§

such that the fishnet integral becomes:

14

toto) = | (H ) P W Potwo) = [[[en )] [T o)

j=1 i i
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Specialities in D=2

® Most importantly, we can use complex variables in two dimensions: R2 ~ C

1 2 el g2
aj = a; + i and rj =& + 1§

such that the fishnet integral becomes:

12 _
o[ (45 ) e 0 o= ([T -] [T

J=1 2] (2]

@® The conformal algebra splits into a holomorphic and anti-holomorphic part likewise the Yangian:

Y(s0(1,3)) =Y (sl(2,R)) ® Y (sl(2,R))

® Thus, the whole symmetry algebra of the fishnet integrals splits:

Permg X Vg = (Permg X Yg) @ (Permg X Y g)

L,_/

Yangian differential ideal set holomorphic differential operators
YDI(G) annihilating the Fishnet integral

11

- aj)}
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Specialities in D=2

® The whole integral can also be split into holomorphic and anti-holomorphic parts:

Io(a) = |Fola)| 6o(2) = (-1)“T" (=20 [Fe(@* [@A0

7N
holomorphic vector of holomorphic

rational function cross ratios

with the holomorphic and conformal (¢,0) -form:

1 dxy A...ANdxy

O —
Fg(a) Pglz,a)?V

: TUTI



Specialities in D=2

® The whole integral can also be split into holomorphic and anti-holomorphic parts:

£e—-1) N—F 2 —
Io(a) = |Fa(a)| dalz) = (-1) "= (=2i) " |Fala)]” [ QA0
7T
holomorphic vector of holomorphic
rational function cross ratios

with the holomorphic and conformal (¢,0) -form:

1 dxy A...ANdxy

O —
Fg(a) Pglz,a)?V

@ In the following, we will argue that this form gives rise to a monodromy invariant bilinear form:

dc(z) = (=) Le(2) Tl (2)

with the period vector:

_(A?Abeg)T

associated to a Calabi-Yau variety or Picard variety for square and hexagonal fishnets, respectively.

12



Calabi-Yau Manifolds

Definition:

A Calabi-Yau (CY) n-fold X is a complex n-dimensional Kahler manifold equipped
with a Kahler (1, 1)-form w. There are the (equivalent) additional properties:

e the first Chern class vanishes: c1(Tx) =0

e there exists a Ricci flat metric g: Riz(g) =0

e there exists a no-where vanishing holomorphic (n,0)-form 2

e the holonomy group of X is SU(NV)

e on X there exist two covariant constant spinors.

13



Calabi-Yau Manifolds

I Definition:

A Calabi-Yau (CY) n-fold X is a complex n-dimensional Kahler manifold equipped
with a Kahler (1, 1)-form w. There are the (equivalent) additional properties:

e the first Chern class vanishes: c1(Tx) =0

e there exists a Ricci flat metric g: Riz(g) =0

e there exists a no-where vanishing holomorphic (n,0)-form 2

e the holonomy group of X is SU(NV)

e on X there exist two covariant constant spinors.

® Forms 2 and w are both characteristicforaCY X —= (X,Q, w) cf. (€, da/y, dz A dy)

® The tangent space of the complex structure deformation space of a CY M. is given by H"~ 1! (X).

® It is natural to consider families of CYs: )< \

X
Koy

: TUTI



Constructions of CYs

How can we construct CYs?

® CYs can be defined via polynomial constraints:

@® Single polynomial constraint: Hypersurface CY
Cubic one-fold: {Y?Z —4X° + go2(1) X Z° 4 g3(1) Z° = 0} C P?
Quintic three-fold: (X5 + X7+ X5+ X5+ X; — v XoX1 X2 X3X, =0} CP*

’ TUTI



Constructions of CYs

How can we construct CYs?

® CYs can be defined via polynomial constraints:

}: ""Vanishing of the first Chern class ¢;(7Tx) n
between ambient space and degree of the constraints." |

@® Single polynomial constraint: Hypersurface CY
Cubic one-fold: {Y?Z —4X° + go2(1) X Z° 4 g3(1) Z° = 0} C P?
Quintic three-fold: (X5 + X7+ X5+ X5+ X; — v XoX1 X2 X3X, =0} CP*

@® For the fishnets we find:

Square tiling: {(W=y?-Pe([z:u];a) =0} C (P!
Hexagonal tiling: {W = y3 — Po(lz :u);a) = 0} C (]P)l)e
Triangular tiling: no direct CY construction possible only via

star-triangle relation

Pa(|z : ul;a) homogenized version of the fishnet graph polynomial
. TUTI



- Definition: :
" Periods define a pairing between the homology H,, (X ) and the cohomology Hjy (X) of the CY X: |
|

| IT: H,(X)x Hgg(X) —C
A J
- |

| On a CY there is a monodromy invariant intersection matrix X defining a bilinear pairing on the periods. |

’ TUTI




- Definition: :
" Periods define a pairing between the homology H,, (X ) and the cohomology Hjy (X) of the CY X: |
« v
| IT: H,(X)x Hzp(X |

) — C
(T, @) r—>/ch %,

| On a CY there is a monodromy invariant intersection matrix X defining a bilinear pairing on the periods. ,>

Example: CY one-fold (elliptic curve) Ps=Y?-X(X-1)(X -\
-
| fra Q fra B
v —3 T
v frb o frb B
dX XdX _
=5 g = v Elliptic integrals
K(X\), K(1—A)
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- Definition: :
" Periods define a pairing between the homology H,, (X ) and the cohomology Hjy (X) of the CY X: |
« v
| IT: H,(X)x Hzp(X |

) — C
(T, @) r—>/ch %

| On a CY there is a monodromy invariant intersection matrix X defining a bilinear pairing on the periods. ,>

S M — (frao‘ fra 5) . "Periods describe |

“° be o be B the shape of a CY."

dX XdX o e ———
Ty b= Y Elliptic integrals
KO\, K(1—))
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|
.“

Definition:

Periods define a pairing between the homology H,(X) and the cohomology H} (X)) of the CY X:
IT: H,(X)x Hzp(X

) — C
(T, @) »—>/Foz

Example: CY one-fold (elliptic curve) Ps=Y? - X(X-1)(X -\
-
| fra = fra B .
: S [ w
’ frb o frb & ]
dX XdX - =
=5 B = v Elliptic integrals
K(A), K(1=A)

® Particularly interesting are the periods over €2, which can be defined through the defining constraints:

0 dX AdY dX
S P > I'; S1 P3 Y

® For generic CYs it is not even simple to explicitly define all cycles I'; € H,,(X,Z). 'I'I.m
15




Computing Periods

How can we compute periods?
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How can we compute periods?

| "Use differential equations”

@® Periods are governed by linear differential equations known as Gauss-Manin System
or Picard-Fuchs equations.
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Computing Periods

How can we compute periods?

. "Use differential equations" |

@® Periods are governed by linear differential equations known as Gauss-Manin System
or Picard-Fuchs equations.

® There are different techniques to find these differential equations:
@ Integration by Parts identities
@ Griffiths reduction method or GKZ approach

@ Compute a single period and operators via ansatz, e.g. "torus period" 1lj = / Q)
T’n
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Computing Periods

How can we compute periods?

@® Periods are governed by linear differential equations known as Gauss-Manin System
or Picard-Fuchs equations.

® There are different techniques to find these differential equations:
@ Integration by Parts identities
@ Griffiths reduction method or GKZ approach

@ Compute a single period and operators via ansatz, e.g. "torus period" 1lj = / Q)
T’n

Example: Gl,l

1 d 1
d:c = v

VvVl —z)(z — 2) m T \/(1—1x)(1—2z/z)

4520 i =2 () ()
o TUTI




Computing Periods

How can we compute periods?

@® Periods are governed by linear differential equations known as Gauss-Manin System
or Picard-Fuchs equations.

® There are different techniques to find these differential equations:
@ Integration by Parts identities
@ Griffiths reduction method or GKZ approach

@ Compute a single period and operators via ansatz, e.g. "torus period" 1lj = / Q)
T’n

Example: Gl,l

1 dx 1

x\/xl—x)(az—z) m T \/(1—1x)(1—2z/z)

5200 -2 () G

In a similar way, we have computed the Picard-Fuchs differential ideal for our fishnet integrals. -I-u-"
16




Computing Periods

® A basis of the solution space {w; } to these differential equations can be obtained by
standard techniques, e.g. Frobenius Method.

@® This is particularly simple if a MUM point (= total degeneration of indicials) exists:

logarithmic structure reflects @o = POWET series in z
the cohomology of the CY w1 = wo log(z) + ¥

1
w2 = 5o log(2)? + X1 log(2) + X9

. m



Computing Periods

® A basis of the solution space {w; } to these differential equations can be obtained by
standard techniques, e.g. Frobenius Method.

@® This is particularly simple if a MUM point (= total degeneration of indicials) exists:

logarithmic structure reflects wo = power series in z wo = wo(p)lp=0 = Y _aln +p)="**| _,
the cohomology of the CY w1 = TO log(2) + %1 @1 = (9,@0(p))]
_ — 10 2 —|— E 10 Z + E ]-
w9 2@0 g(Z) 1 g( ) 2 Wy = (§a§WQ([)))’p=O
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Computing Periods

® A basis of the solution space {w; } to these differential equations can be obtained by
standard techniques, e.g. Frobenius Method.

@® This is particularly simple if a MUM point (= total degeneration of indicials) exists:

. . . - n+p
logarithmic structure reflects wo = power series in z wo = wo(p)lp=0 = Y _aln +p)="**| _,
n

the cohomology of the CY w1 = wolog(z) + X1 @1 = (9,@0(p))|,_,

1
Wy = — Wy log(z)2 + > log(z) + 29

5 wy = (%a,%WO(p))}p:O

@ Finally, a basis change from {w; } to {II; } (basis over Z or Z|a]) has to be
determined. This change of basis can be found from monodromy o))

considerations: &
® There exist special points in M swhere the CY gets singular.

@ Analytic continuation around these points
corresponds to a monodromy:  IT — M, 11

@ All monodromies have to respect the intersection pairing 22 between the periods.

-~y [N a good basis {11, } all monodromies M., have to be "integral", i.e. M., € O(X,Z
i Yi

@® The deformation method produces for hypergeometric CYs directly a rational monodromy basis. [Kerr]

® If all monodromies are known, one can also determine X by requiring: M*'YSM =X

) m



1-(_.
|
{
)

| i
' square and hexagonal Fishnet integrals is equal to |
the Yangian leferentlal Operator Ideal. |

Permg X y(;

- TUTI



Griffiths Transversality

@ |s there a better/faster way on a CY to determine X than computing all monodromies?

o TUTI



Griffiths Transversality

@ |s there a better/faster way on a CY to determine X than computing all monodromies?

@ On a CY there exists the phenomenon Qe H'(X)
of Griffiths transversality: 9,0 € H™O(X) @ H" L1(X)

0°Qec H"'(X)o H" V(X))o H"%%(X)

Ne H'(X)®...o H™(X)

@® Consideration of type forbids many integrals:

The rational function C,, is called the Yukawa Coupling.

® We can use these relations to easily determine X..

o TUTI



Monodromy Invariant Bilinear Form

@® On a CY there exists a natural real, positiv and monodromy invariant object namely the
exponential of the Kahler potential:

Monodromy invariance follows from:

TSI — (M., )T S M, 1T =T MT M, IT =TT
7

. t AT
|fM%‘ o M’Yz'

@ This is particularly satisfied for our basis of solutions determined by the deformation method. [Kerr]

® The Fishnet integral is now just given by this monodromy invariant bilinear form:

Ig(a) = (i) |Fe(a)|’He(2) Sellg(2)

. TUTI



Picard Varieties

® Another useful geometry for fishnet integrals are so-called Picard curves:

Tripple covering of P*: double covering of P
~ 2 A
y® = P(z,q) y* = P(z,b)
with deg(P(az,g)) > 3 for deg(P(m,Q)) = 3,4 we get an elliptic curve

—=y  Picard curves have genus g > 1 and thus are not elliptic curves (Calabi-Yau one-varieties).
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Picard Varieties

® Another useful geometry for fishnet integrals are so-called Picard curves:

Tripple covering of P*: double covering of P
~ 2 A
y® = P(z,q) y* = P(z,b)
with deg(f’(x,g)) > 3 for deg(ﬁ’(m,b)) = 3,4 we get an elliptic curve

—=y  Picard curves have genus g > 1 and thus are not elliptic curves (Calabi-Yau one-varieties).

@® For the hexagonal Fishnet integrals we find using the start-triangle relation:

L ¢
) star-triangle «
A relation > ‘
Y -~ ¢
y? =P =(z1 — a1)(z1 — ap) y’ =P = (z—a1)(@ - a2)(z — a3)*(z — as)”
(5131 — xz)(wz — as)(CUQ — a4)
singular K3 variety singular genus two Picard curve
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Picard Varieties

® Another useful geometry for fishnet integrals are so-called Picard curves:

Tripple covering of P*: double covering of P
~ 2 A
y® = P(z,q) y* = P(z,b)
with deg(f’(x,g)) > 3 for deg(ﬁ’(m,b)) = 3,4 we get an elliptic curve

—=y  Picard curves have genus g > 1 and thus are not elliptic curves (Calabi-Yau one-varieties).

@® For the hexagonal Fishnet integrals we find using the start-triangle relation:

L ¢
) star-triangle «
A relation > ‘
Y -~ ¢
y? =P =(z1 — a1)(z1 — ap) y’ =P = (z—a1)(@ - a2)(z — a3)*(z — as)”
(5131 — xz)(xz — as)(CUQ — a4)
singular K3 variety singular genus two Picard curve

® We can generalize Picard curves also to Picard varieties:
Tripple covering of (P)":
5 ~
y’> = P(z,a)

From the star-triangle relation we find in this way usually singular Picard varieties. 'I-uI"
21



Calabi-Yau Varieties vs. Picard Varieties

® Using the star-triangle relation we can produce different geometries associated to a given Fishnet integral:
L 3 2 3 2 3
4 &L 4 )<7kq
Ky
s
CY three-variety Picard two-variety Genus three Riemann curve

Due to the star-triangle relation we can not associate a unique geometry to a Fishnet
integral. Even the dimensions are different.

—>
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Calabi-Yau Varieties vs. Picard Varieties

® Using the star-triangle relation we can produce different geometries associated to a given Fishnet integral:

L 3 2 3 2 3
Y A 4
! A M‘(
S LY
s
CY three-variety Picard two-variety Genus three Riemann curve

S Due to the star-triangle relation we can not associate a unique geometry to a Fishnet
integral. Even the dimensions are different.

@ Similar observations have been also made in the following cases:

«. JF = (O hypersurface CY
. ”’w@ [Bonisch, Duhr,
@® Banana integrals: Fischbach, Klemm, CN]

P, = P, = (0 complete intersection CY

e oem > enus three
® Genus drop in Q - WN‘? © [Marzucca, McLeod,
. _ o Page, Pogel, Weinzierl]
Feynman integrals: I 3 genustwo
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Examples: Train Track Graphs

® Our first examples are the so-called train track graphs G ;:

] ¢ (

J_H: :

T |

® These graphs have no hidden symmetries such that we find for the permutation symmetry group:

S, =1

Permg, , = Aut(G1,) = { S2X T2 XLy, £>1

® The following cross ratios give rise to a MUM point:

1 1 1
qt Q: s 4

au ____—-.*-%:—.-1"—‘941

s
Cun G014 Qe&‘L

® For the prefactor we have chosen:

F(Q) (a) _ ’al - a£+2|£_1
CLe T apys — ayl|apes — a1] -+ |ageye — aillas — apyollas — apya] - a1 — apyol

. TUTI




Examples: Two-Loop Train Track
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Examples: Two-Loop Train Track

® Using the previous MUM point variables the Yangian Differential Ideal is generated by:

Da, 1 = 07 — 221 (01 — 02) (14201 + 2605) — 42120 (1 4 265 — 265)° 0; = 2;0;
— 32212923 (1 4+ 205 — 03) (1 + 203) ,

Dg, 52 = 0102 — 03 (02 — 03) + 223 (02 — 03) (1 + 203) — 42129 (1 + 201) (1 + 205 — 203)
—4z12923 (1 +2671) (4 + 8603)

DG, 5,3 = (01 — 02)03 4 423 (01 — 02) (02 — 03)
+ dzozs (4601 (1 +62) + (14 2602) % — 460205 + 463) + 322023 (02 — 03) (1 + 265)
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Examples: Two-Loop Train Track

® Using the previous MUM point variables the Yangian Differential Ideal is generated by:

Da, 1 = 07 — 221 (01 — 02) (14201 + 2605) — 42120 (1 4 265 — 265)° 0; = 2;0;
— 32212923 (1 4+ 205 — 03) (1 + 203) ,

Dg, 52 = 0102 — 03 (02 — 03) + 223 (02 — 03) (1 + 203) — 42129 (1 + 201) (1 + 205 — 203)
—4z12923 (1 +2671) (4 + 8603)

DG, 5,3 = (01 — 02)03 4 423 (01 — 02) (02 — 03)
+ dzozs (4601 (1 +62) + (14 2602) % — 460205 + 463) + 322023 (02 — 03) (1 + 265)

® We find 5=1+3+1 solutions as expected from a three-parameter K3 surface.

® These solutions can be constructed from the deformation method:

(I)G120(§) ZW(Z,O) w(g;g) = Zc(n+£)z—+p
(I)Gl 2,1 Z(g) — 8;0 w(za ,0)‘3—0 n=0
D, 52(2) = [07, +2(0,,0,, c(n) = (n1)(n3)(n2 —n1)(n2 — n3)(n1 — n2 + ng)

+8p1 a;03 + 8:02 803)] w(g; B) |£=0

. TUTI



Examples: Two-Loop Train Track

® We get a rational monodromy basis after normalizing the logarithms:

(1 0 0 0 0\
0 = 0 0 0
Og,,(2)=] 0 0 55 0 0 &g, (2
0 0 0 %= 0
1 1
\_Z 0 0 0 (27‘('7:)2)

® The two-loop train track integral is then given by

¢G1,2 (é) — _HGl,g (z)TZGl,ZHGLQ (E)

with intersection form:

o 0 0 0 1
(00—2—20\

Se,=]0 -2 -2 -2 0
0 -2 -2 0 0
\1 0 0 0 0f




Examples: Triangle Tracks

@® Let us particularly discuss the three-loop triangle track integral. Its 2 t 3
permutation symmetry is given by: 3
Permy, = .54 ] y
@® Convenient variables are given by the following two cross ratios: c

1
g1 = §X1,5,3,4, <2 = X1,3,2,4
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Examples: Triangle Tracks

@® Let us particularly discuss the three-loop triangle track integral. Its 2 t 3
permutation symmetry is given by: 3
Permy, = .54 ] y
@® Convenient variables are given by the following two cross ratios: c
21 = 313 X1,5,34, <2 = X1,3,2,4

@® The Yangian Differential Ideal is generated by

Dyg,1 = 0105 — 921 (1 4+ 301 — 3605) 0y — 32120 [2 4+ 965 (1 + 6)] ,

Dz, 2 =02 (—1+305) + 22 [—367 + 01 (1 + 302) — 02 (1 + 362)]
+ 272129 [66F + 01 (2 — 602) — 302 (1 + 02)] — 92122 [2721 (2 + 301) (1 + 361 — 365)
—29 (249605 (1 4 63))]

which is the set of differential equations of an Appell hypergeometric system:

Dz, 0(2) = F1(2/3,1/3,1/3,1;3%2129,3%2;)

=1+ 621 + (9022 + 6212) + (168025 + 452725) + O(2}) ,
2

Dz, 1(2) = Po(z) log(z1) + (1521 — %2) + (51§Z + 32129 — %) +0(23),

D25

1/3 Azo 15 4z
9023,0(2) — 22/ [1 + ? + 22 (971122 + a) + 23 (72122 + 8—12) + O(Zf‘):|
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Examples: Triangle Tracks

@ In this case, we have to compute the intersection form computing all monodromies and requiring that:

MYy, M=%,

From this we then find:
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Examples: Triangle Tracks

@ In this case, we have to compute the intersection form computing all monodromies and requiring that:

MYy, M=%,

From this we then find:

® With the intersection form we find similarly as before for the three-loop triangle track integral:

|a14‘2/3

_ T
IZ3 (Q) — 1 |a12’4/3‘a13’2/3‘a/45’4/3‘a34|2/3 HZg (g) EZSHZE; (é)
with
1 0 0
1
U, (2) = 8 ? 2& @, (2)

. TUTI



Examples: 4-pt Limit of Triangle Tracks

@® We can also consider the 4-pt limit of the triangle track integrals (similarly as the ladder graphs):

star-triangle >
relation '
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Examples: 4-pt Limit of Triangle Tracks

@® We can also consider the 4-pt limit of the triangle track integrals (similarly as the ladder graphs):
f=2m+1 0o

2 /’ — A star-triangle > .
“’ Xawm relation
o

2

® These integrals are related to interesting hypergeometric period integrals:

1
Z= TX1,4,2,3 L4 = gmHl _ (/3)ym (1 + 39)™ T

(3\/§)m+ (1)7(7)1(}(()1(2) — m+1Fm(1/37 ) 1/3; 17 T 1; (3\/§)m+1z)
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Examples: 4-pt Limit of Triangle Tracks

@® We can also consider the 4-pt limit of the triangle track integrals (similarly as the ladder graphs):
f=2m+1 0o

2 /’ — A star-triangle > .
“v Xawm relation
o

® These integrals are related to interesting hypergeometric period integrals:

1
Z= TX1,4,2,3 L4 = gmHl _ (/3)ym (1 + 39)™ T

(3\/§)m+ (1)7(7)1(}(()1(2) — m+1Fm(1/37 ) 1/3; 17 T 1; (3\/§)m+1z)

® These hypergeometric systems give rise to Z[a]-integral monodromies (o = ¢/3):

1 0 00 1 2—a —(14+a) 31—« —243a T7-1la -2(1-2a) -3«

1 1 00 |0 1-a —-14a —(1+a) B a —(4+ o) 2 -2+«
Mo=119 3 10| Mir=|g 1_4 0 1 —9a | M=z 20 —2(1+43a) 1420 —-1-a

01 1 1 0 0 0 1 0 2 —1 1

@® To construct the Z[«a]-integral monodromy basis we need interesting transcendental numbers:

7T7 \/37 C(n)

((n,1/3) Hurwitz ¢-function 'I'u'"
28



Conclusion

® We have analyzed Fishnet integrals in two spacetime dimensions with special emphasis
on the interplay between their symmetries and geometries.

@® We have seen that in two dimensions the Fishnet integrals are fully determined by their
symmetries, i.e. Yangian and permutation symmetry.

@® Due to the star-triangle relation we can not associate a unique geometry to a Fishnet
integral.
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® We have analyzed Fishnet integrals in two spacetime dimensions with special emphasis
on the interplay between their symmetries and geometries.

@® We have seen that in two dimensions the Fishnet integrals are fully determined by their
symmetries, i.e. Yangian and permutation symmetry.

@® Due to the star-triangle relation we can not associate a unique geometry to a Fishnet
integral.

@® For the future two natural generalization could be interesting:

® Considering Fishnet integrals with different propagator
powers (anisotropic fishnets)

® How constraining is the interplay between geometry,
Yangian and permutation symmetry in higher

dimensions?
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® We have analyzed Fishnet integrals in two spacetime dimensions with special emphasis
on the interplay between their symmetries and geometries.

@® We have seen that in two dimensions the Fishnet integrals are fully determined by their
symmetries, i.e. Yangian and permutation symmetry.

@® Due to the star-triangle relation we can not associate a unique geometry to a Fishnet
integral.

@® For the future two natural generalization could be interesting:

® Considering Fishnet integrals with different propagator
powers (anisotropic fishnets)

® How constraining is the interplay between geometry, —~> Sven'stalk

Yangian and permutation symmetry in higher

dimensions?
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