

Fishnet Integrals in Two Dimensions

Christoph Nega

Joint work with:

Claude Duhr, Albrecht Klemm, Florian Löbbert and Franziska Porkert

Bethe Fishnet Workshop 2024

Bonn

September 3, 2024

[&]quot;Geometry from integrability: multi-leg fishnet integrals in two dimensions" [1]

[&]quot;The Basso-Dixon formula and Calabi-Yau geometry" [2],

[&]quot;Yangian-Invariant Fishnet Integrals in Two Dimensions as Volumes of Calabi-Yau Varieties" [3]

Plan of the Talk

• Main theme of the talk:

Interplay between Integrability (Symmetries) and Geometry (Calabi-Yau and Picard varieties)

 In particular, we want to discuss Fishnet integrals in two dimensions and how we can compute them using their symmetries and associated geometries.

Table of Content

1) Fishnet Integrals

2) Calabi-Yau and Picard Varieties

3) Examples

From SYM to the Fishnet Theory

Let us start with superconformal Yang-Mills theory with SU(N) gauge symmetry:

$$\mathcal{L}_{\mathcal{N}=4} = \operatorname{tr} \left\{ FF + D\Phi D\Phi + \bar{\Psi}D\Psi - g^2[\Phi,\Phi]^2 - g\Psi[\Phi,\Psi] - g\bar{\Psi}[\Phi,\bar{\Psi}] \right\}$$
 field strength with six scalar four gauge field A fields spinors

- This theory has the following symmetries:
 - Conformal symmetry at the quantum level (beta-function vanishes)
 - The Lie algebra symmetry $\mathfrak{psu}(2,2|4)$
 - In the planar limit ($N \to \infty$) we have conformal and dual conformal symmetry

Yangian symmetry (Integrability)

[Dolan, Nappi, Witten; Drummond, Henn, Plefka;...]

From SYM to the Fishnet Theory

Let us start with superconformal Yang-Mills theory with SU(N) gauge symmetry:

$$\mathcal{L}_{\mathcal{N}=4} = \operatorname{tr} \left\{ FF + D\Phi D\Phi + \bar{\Psi}D\Psi - g^2[\Phi,\Phi]^2 - g\Psi[\Phi,\Psi] - g\bar{\Psi}[\Phi,\bar{\Psi}] \right\}$$
 field strength with six scalar four gauge field A fields spinors

- This theory has the following symmetries:
 - Conformal symmetry at the quantum level (beta-function vanishes)
 - The Lie algebra symmetry $\mathfrak{psu}(2,2|4)$
 - In the planar limit $(N \to \infty)$ we have conformal and dual conformal symmetry

Yangian symmetry (Integrability)

[Dolan, Nappi, Witten; Drummond, Henn, Plefka;...]

ullet From a γ -deformation of SYM we can construct the biscalar **fishnet theory** as a specific limit:

$$\mathcal{L}_{\mathcal{N}=4}$$
 \mathcal{L}_{γ} $\mathcal{L}_{\text{fishnet}}$
$$\mathcal{L}_{\text{fishnet}} = N \operatorname{tr} \left\{ -X (-\partial_{\mu} \partial^{\mu})^{\omega} \bar{X} - Z (-\partial_{\mu} \partial^{\mu})^{\frac{D}{2} - \omega} \bar{Z} + \xi^2 X Z \bar{X} \bar{Z} \right\}$$

[Kazakov, Gürdogan; Kazakov, Olivucci]

for generic ${\cal D}$ and propagator powers ω

• Properties of fishnet theory:

- Yangian invariant (integrability)
- Chiral structure of vertex allows only for a small number of Feynman diagrams.
- Generalization to D spacetime dimensions with appropriately generalized propagator powers known, e.g. $D=2, \omega=1/2$.

[Chicherin, Kazakov, Löbbert, Müller, Zhang; Kazakov, Levkovich-Maslyuk, Mishnyakov]

- Properties of fishnet theory:
 - Yangian invariant (integrability)
 - Chiral structure of vertex allows only for a small number of Feynman diagrams.
 - Generalization to D spacetime dimensions with appropriately generalized propagator powers known, e.g. $D=2, \omega=1/2$.

Yangian annihilates fishnet integrals:

[Chicherin, Kazakov, Löbbert, Müller, Zhang; Kazakov, Levkovich-Maslyuk, Mishnyakov]

- Properties of fishnet theory:
 - Yangian invariant (integrability)
 - Chiral structure of vertex allows only for a small number of Feynman diagrams.
 - Generalization to D spacetime dimensions with appropriately generalized propagator powers known, e.g. $D=2, \omega=1/2$.

Yangian annihilates fishnet integrals:

[Chicherin, Kazakov, Löbbert, Müller, Zhang; Kazakov, Levkovich-Maslyuk, Mishnyakov]

 So far, we only considered quartic interactions. Although conformal invariant interactions are also possible for the following regular tilings of the plane (assuming unit propagator powers):

$$V = 2D/(D-2)$$

$$D=6$$

$$V = 3$$

$$D=4$$

$$V = 4$$

$$D = 3$$

$$V = 6$$

- Properties of fishnet theory:
 - Yangian invariant (integrability)
 - Chiral structure of vertex allows only for a small number of Feynman diagrams.
 - Generalization to D spacetime dimensions with appropriately generalized propagator powers known, e.g. $D=2, \omega=1/2$.

Yangian annihilates fishnet integrals:

[Chicherin, Kazakov, Löbbert, Müller, Zhang; Kazakov, Levkovich-Maslyuk, Mishnyakov]

 So far, we only considered quartic interactions. Although conformal invariant interactions are also possible for the following regular tilings of the plane (assuming unit propagator powers):

$$V = 2D/(D-2)$$

$$D=6$$

$$V = 3$$

$$D=4$$

$$V = 4$$

$$D = 3$$

$$V = 6$$

• For the hexagonal tiling there exists the **honeycomb fishnet theory** (generic D and propagator powers ω_i):

$$\mathcal{L}_{\text{honey}} = N \operatorname{tr} \left\{ -X(-\partial_{\mu}\partial^{\mu})^{\omega_{1}} \bar{X} - Y(-\partial_{\mu}\partial^{\mu})^{\omega_{2}} \bar{Y} - Z(-\partial_{\mu}\partial^{\mu})^{\omega_{3}} \bar{Z} + \xi_{1}^{2} \bar{X} Y Z + \xi_{2}^{2} X \bar{Y} \bar{Z} \right\}$$

Fishnet Integrals

- We can build fishnet integrals from the following Feynman rules:
 - Take a cut from a tiling:

- Vertices: ξ_i
- ullet External points: $lpha_i$
- Propagators:

$$\frac{1}{[(\xi_i - \xi_i)^2]^{D/V}}$$

(considered in \mathbb{R}^D)

$$rac{1}{[(\xi_i-\xi_j)^2]^{D/V}}$$
 or $rac{1}{[(\xi_i-lpha_j)^2]^{D/V}}$

• Integrate over internal vertices.

$$I_G^{(D)}(\underline{\alpha}) = \int \left[\prod_i d^d \xi_i \right] \left[\prod_{i,j} \frac{1}{[(\xi_i - \xi_j)^2]^{D/V}} \right] \left[\prod_{i,j} \frac{1}{[(\xi_i - \alpha_j)^2]^{D/V}} \right]$$

Fishnet Integrals

- We can build fishnet integrals from the following Feynman rules:
 - Take a cut from a tiling:

or

- Vertices: ξ_i
- ullet External points: $lpha_i$
- Propagators:

$$\frac{1}{[(\xi_i - \xi_i)^2]D/V}$$

(considered in \mathbb{R}^D)

$$\frac{1}{[(\xi_i - \xi_j)^2]^{D/V}} \qquad \text{or} \qquad \frac{1}{[(\xi_i - \alpha_j)^2]^{D/V}}$$

Integrate over internal vertices.

$$I_G^{(D)}(\underline{\alpha}) = \int \left[\prod_i d^d \xi_i \right] \left[\prod_{i,j} \frac{1}{[(\xi_i - \xi_j)^2]^{D/V}} \right] \left[\prod_{i,j} \frac{1}{[(\xi_i - \alpha_j)^2]^{D/V}} \right]$$

• We are particularly interested in the following two families of fishnet graphs and integrals:

 ℓ -loop train track graphs $G_{1,\ell}$

 ℓ -loop triangle track graphs Z_{ℓ}

• Conformal symmetry relates a triple vertex integration to three propagators (Star-Triangle Relation):

$$\int \frac{\mathrm{d}^D \xi}{(\alpha_1 - \xi)^{2\alpha} (\alpha_2 - \xi)^{2\beta} (\alpha_3 - \xi)^{2\gamma}} = \frac{X_{\alpha\beta\gamma}}{(\alpha_1 - \alpha_2)^{2\gamma'} (\alpha_2 - \alpha_3)^{2\alpha'} (\alpha_3 - \alpha_1)^{2\beta'}}$$

gamma factors $X_{\alpha\beta\gamma}$

shifted exponents $\alpha' = D/2 - \alpha$

• Conformal symmetry relates a triple vertex integration to three propagators (Star-Triangle Relation):

gamma factors $X_{\alpha\beta\gamma}$ shifted exponents $\alpha'=D/2-\alpha$

• With this identity we can map the **triangular tiling** to the **hexagonal one**:

• Conformal symmetry relates a triple vertex integration to three propagators (Star-Triangle Relation):

gamma factors

 $X_{\alpha\beta}$

shifted exponents

$$\alpha' = D/2 - \alpha$$

• With this identity we can map the **triangular tiling** to the **hexagonal one**:

• Conformal symmetry relates a triple vertex integration to three propagators (Star-Triangle Relation):

gamma factors $X_{\alpha\beta\gamma}$ shifted exponents $\alpha'=D/2-\alpha$

• With this identity we can map the **triangular tiling** to the **hexagonal one**:

• Conformal symmetry relates a triple vertex integration to three propagators (Star-Triangle Relation):

gamma factors

 $X_{\alpha\beta}$

shifted exponents

$$\alpha' = D/2 - \alpha$$

• With this identity we can map the **triangular tiling** to the **hexagonal one**:

• Construction of the **Yangian** algebra $Y(\mathfrak{g})$:

Level 0:

$$\mathbf{J}^a = \sum_{j=1}^n \mathbf{J}_j^a$$

Lie algebra $\mathfrak g$ with generators J_j^a

• For fishnets we consider the **conformal** algebra $\mathfrak{so}(1, D+1)$:

Level 1:

$$\widehat{\mathbf{J}}^{a} = \frac{1}{2} f^{a}{}_{bc} \sum_{j < k} \mathbf{J}_{j}^{c} \mathbf{J}_{k}^{b} + \sum_{j=1}^{n} s_{j} \mathbf{J}_{j}^{a}$$

Commutation relations:

$$[\mathbf{J}^a, \mathbf{J}^b] = f^{ab}{}_c \mathbf{J}^c$$
$$[\mathbf{J}^a, \widehat{\mathbf{J}}^b] = f^{ab}{}_c \widehat{\mathbf{J}}^c$$

$$P_{\mu} = -i\partial_{\mu} \qquad L_{\mu\nu} = i(x_{\mu}\partial_{\nu} - x_{\nu}\partial_{\mu})$$

$$D = -i(x_{\mu}\partial^{\mu} + \Delta) \qquad K_{\mu} = i(x^{2}\partial_{\mu} - 2x_{\mu}x^{\nu}\partial_{\nu} - 2\Delta x_{\mu})$$

• Construction of the **Yangian** algebra $Y(\mathfrak{g})$:

Level 0:

$$\mathbf{J}^a = \sum_{j=1}^n \mathbf{J}_j^a$$

Lie algebra $\mathfrak g$ with generators J_i^a

Level 1:

$$\widehat{\mathbf{J}}^{a} = \frac{1}{2} f^{a}{}_{bc} \sum_{j < k} \mathbf{J}_{j}^{c} \mathbf{J}_{k}^{b} + \sum_{j=1}^{n} s_{j} \mathbf{J}_{j}^{a} \qquad [\mathbf{J}^{a}, \mathbf{J}^{b}] = f^{ab}{}_{c} \widehat{\mathbf{J}}^{c}$$

$$[\mathbf{J}^{a}, \widehat{\mathbf{J}}^{b}] = f^{ab}{}_{c} \widehat{\mathbf{J}}^{c}$$

Commutation relations:

$$[\mathbf{J}^a, \mathbf{J}^b] = f^{ab}{}_c \mathbf{J}^c$$
$$[\mathbf{J}^a, \widehat{\mathbf{J}}^b] = f^{ab}{}_c \widehat{\mathbf{J}}^c$$

For fishnets we consider the conformal algebra $\mathfrak{so}(1, D+1)$:

$$P_{\mu} = -i\partial_{\mu} \qquad L_{\mu\nu} = i(x_{\mu}\partial_{\nu} - x_{\nu}\partial_{\mu})$$

$$D = -i(x_{\mu}\partial^{\mu} + \Delta) \qquad K_{\mu} = i(x^{2}\partial_{\mu} - 2x_{\mu}x^{\nu}\partial_{\nu} - 2\Delta x_{\mu})$$

The Yangian gives us a set of differential operators annihilating the fishnet integrals:

$$\mathbf{J}^a I_G^{(D)} = \widehat{\mathbf{J}}^a I_G^{(D)} = 0$$

• Construction of the **Yangian** algebra $Y(\mathfrak{g})$:

Level 0:

$$\mathbf{J}^a = \sum_{j=1}^n \mathbf{J}_j^a$$

Level 1:

$$\widehat{\mathbf{J}}^{a} = \frac{1}{2} f^{a}_{bc} \sum_{j < k} \mathbf{J}_{j}^{c} \mathbf{J}_{k}^{b} + \sum_{j=1}^{n} s_{j} \mathbf{J}_{j}^{a}$$

Commutation relations:

$$[\mathbf{J}^a, \mathbf{J}^b] = f^{ab}{}_c \mathbf{J}^c$$
$$[\mathbf{J}^a, \widehat{\mathbf{J}}^b] = f^{ab}{}_c \widehat{\mathbf{J}}^c$$

Lie algebra $\mathfrak g$ with generators J_j^a

• For fishnets we consider the **conformal** algebra $\mathfrak{so}(1, D+1)$:

$$P_{\mu} = -i\partial_{\mu} \qquad L_{\mu\nu} = i(x_{\mu}\partial_{\nu} - x_{\nu}\partial_{\mu})$$

$$D = -i(x_{\mu}\partial^{\mu} + \Delta) \qquad K_{\mu} = i(x^{2}\partial_{\mu} - 2x_{\mu}x^{\nu}\partial_{\nu} - 2\Delta x_{\mu})$$

• The Yangian gives us a set of differential operators annihilating the fishnet integrals:

$$\mathbf{J}^a I_G^{(D)} = \widehat{\mathbf{J}}^a I_G^{(D)} = 0$$

In particular, from conformal symmetry we find:

$$I_G^{(D)}(\underline{\alpha}) = \mathcal{F}_G^{(D)}(\underline{\alpha}) \, \phi_G^{(D)}(\underline{\chi})$$

cross ratio:
$$\chi_{ijkl} = \frac{\alpha_{ij}^2 \alpha_{kl}^2}{\alpha_{ik}^2 \alpha_{jl}^2}$$

• Construction of the **Yangian** algebra $Y(\mathfrak{g})$:

Level 0:

$$\mathbf{J}^a = \sum_{j=1}^n \mathbf{J}_j^a$$

Lie algebra $\mathfrak g$ with generators J_i^a

Level 1:

$$\widehat{\mathbf{J}}^{a} = \frac{1}{2} f^{a}_{bc} \sum_{j < k} \mathbf{J}_{j}^{c} \mathbf{J}_{k}^{b} + \sum_{j=1}^{n} s_{j} \mathbf{J}_{j}^{a}$$

Commutation relations:

$$[\mathbf{J}^a, \mathbf{J}^b] = f^{ab}{}_c \mathbf{J}^c$$
$$[\mathbf{J}^a, \widehat{\mathbf{J}}^b] = f^{ab}{}_c \widehat{\mathbf{J}}^c$$

For fishnets we consider the conformal algebra $\mathfrak{so}(1, D+1)$:

$$P_{\mu} = -i\partial_{\mu} \qquad L_{\mu\nu} = i(x_{\mu}\partial_{\nu} - x_{\nu}\partial_{\mu})$$

$$D = -i(x_{\mu}\partial^{\mu} + \Delta) \qquad K_{\mu} = i(x^{2}\partial_{\mu} - 2x_{\mu}x^{\nu}\partial_{\nu} - 2\Delta x_{\mu})$$

The Yangian gives us a set of differential operators annihilating the fishnet integrals:

$$\mathbf{J}^a I_G^{(D)} = \widehat{\mathbf{J}}^a I_G^{(D)} = 0$$

In particular, from conformal symmetry we find:

 $I_C^{(D)}(\underline{\alpha}) = \mathcal{F}_C^{(D)}(\underline{\alpha}) \, \phi_C^{(D)}(\chi)$

cross ratio: $\chi_{ijkl} = \frac{\alpha_{ij}^2 \alpha_{kl}^2}{\alpha_{ik}^2 \alpha_{il}^2}$

Additionally, there are two-side level one operators:

$$\widehat{\mathbf{J}}_{jk}^{a} = \frac{1}{2} f^{a}{}_{bc} \mathbf{J}_{j}^{c} \mathbf{J}_{k}^{b} + \widetilde{s}_{j} \mathbf{J}_{j}^{a} + \widetilde{s}_{k} \mathbf{J}_{k}^{a} \qquad \text{with } \widehat{\mathbf{J}}_{jk}^{a} \frac{1}{x_{i0}^{2\nu_{j}} x_{k0}^{2\nu_{k}}} = 0$$

with
$$\widehat{\mathbf{J}}_{jk}^a \frac{1}{x_{j0}^{2\nu_j} x_{k0}^{2\nu_k}} = 0$$

Permutation Symmetry

• Consider the group of permutations of the external points leaving the integral invariant:

$$I_G^{(D)}(\sigma \cdot \underline{\alpha}) = I_G^{(D)}(\underline{\alpha}), \text{ for all } \sigma \in \text{Perm}_G$$

• Every automorphism of the graph acts as a permutation of the external points, i.e.

$$\operatorname{Aut}(G) \subset \operatorname{Perm}_G$$

• But there are hidden relations due to the star-triangle relation:

$$G$$
 star-triangle such that $\operatorname{Aut}(G) \subset \operatorname{Aut}(G')$

Permutation Symmetry

• Consider the group of permutations of the external points leaving the integral invariant:

$$I_G^{(D)}(\sigma \cdot \underline{\alpha}) = I_G^{(D)}(\underline{\alpha}), \text{ for all } \sigma \in \text{Perm}_G$$

• Every automorphism of the graph acts as a permutation of the external points, i.e.

$$\operatorname{Aut}(G) \subset \operatorname{Perm}_G$$

• But there are hidden relations due to the star-triangle relation:

$$G$$
 star-triangle such that $\operatorname{Aut}(G) \subset \operatorname{Aut}(G')$

Example:

$$\operatorname{Aut}(G) = \mathbb{Z}_2^3 \subset \operatorname{Perm}_G = S_4$$

Yangian and Permutation Symmetry

• We can combine Yangian and permutation symmetry:

$$J^a_\sigma := \sigma J^a \sigma^{-1}$$
 and $\widehat{J}^a_\sigma := \sigma \widehat{J}^a \sigma^{-1}$

$$\widehat{\mathbf{J}}_{\sigma}^{a} \coloneqq \sigma \widehat{\mathbf{J}}^{a} \sigma^{-1}$$

different representations due to ordering

Obviously, on the level zero generators this has no effect but on the level one generators:

$$\widehat{P}^{\mu}_{\sigma}I^{(D)}_{G} = 0$$

new differential equations

• In total, fishnet integrals have the symmetry group:

$$\operatorname{Perm}_G\ltimes\mathcal{Y}_G$$
 permutations Yangian algrebra including two-side generators

Yangian and Permutation Symmetry

• We can combine Yangian and permutation symmetry:

$$J^a_\sigma := \sigma J^a \sigma^{-1}$$
 and $\widehat{J}^a_\sigma := \sigma \widehat{J}^a \sigma^{-1}$

$$\widehat{\mathbf{J}}_{\sigma}^{a} \coloneqq \sigma \widehat{\mathbf{J}}^{a} \sigma^{-1}$$

different representations due to ordering

Obviously, on the level zero generators this has no effect but on the level one generators:

$$\widehat{P}^{\mu}_{\sigma}I_G^{(D)} = 0$$

new differential equations

• In total, fishnet integrals have the symmetry group:

$$\operatorname{Perm}_G\ltimes\mathcal{Y}_G$$
 permutations Yangian algrebra including two-side generators

Question: Does this large symmetry algebra fix the Fishnet integrals?

Yangian and Permutation Symmetry

• We can combine Yangian and permutation symmetry:

$$J^a_\sigma := \sigma J^a \sigma^{-1}$$
 and $\widehat{J}^a_\sigma := \sigma \widehat{J}^a \sigma^{-1}$

$$\widehat{\mathbf{J}}_{\sigma}^{a} \coloneqq \sigma \widehat{\mathbf{J}}^{a} \sigma^{-1}$$

different representations due to ordering

Obviously, on the level zero generators this has no effect but on the level one generators:

$$\widehat{\mathbf{P}}^{\mu}_{\sigma}I_G^{(D)} = 0$$

new differential equations

• In total, fishnet integrals have the symmetry group:

Question: Does this large symmetry algebra fix the Fishnet integrals?

• Most importantly, we can use complex variables in two dimensions:

$$\mathbb{R}^2 \simeq \mathbb{C}$$

$$a_j \coloneqq \alpha_j^1 + i\alpha_j^2$$
 and $x_j \coloneqq \xi_j^1 + i\xi_j^2$

$$x_j \coloneqq \xi_j^1 + i\xi_j^2$$

such that the fishnet integral becomes:

$$I_{G}(\underline{a}) = \int \left(\prod_{j=1}^{\ell} \frac{\mathrm{d}x_{j} \wedge \mathrm{d}\overline{x}_{j}}{-2i} \right) \frac{1}{|P_{G}(\underline{x},\underline{a})|^{4/V}} \quad \text{with} \quad P_{G}(\underline{x},\underline{a}) = \left[\prod_{i,j} (x_{i} - x_{j}) \right] \left[\prod_{i,j} (x_{i} - a_{j}) \right]$$

• Most importantly, we can use complex variables in two dimensions:

$$\mathbb{R}^2 \simeq \mathbb{C}$$

$$a_j \coloneqq \alpha_j^1 + i\alpha_j^2$$
 and $x_j \coloneqq \xi_j^1 + i\xi_j^2$

$$x_j \coloneqq \xi_j^1 + i\xi_j^2$$

such that the fishnet integral becomes:

$$I_G(\underline{a}) = \int \left(\prod_{j=1}^{\ell} \frac{\mathrm{d}x_j \wedge \mathrm{d}\overline{x}_j}{-2i} \right) \frac{1}{|P_G(\underline{x},\underline{a})|^{4/V}} \quad \text{with} \quad P_G(\underline{x},\underline{a}) = \left[\prod_{i,j} (x_i - x_j) \right] \left[\prod_{i,j} (x_i - a_j) \right]$$

The conformal algebra splits into a holomorphic and anti-holomorphic part likewise the Yangian:

$$Y(\mathfrak{so}(1,3)) = Y(\mathfrak{sl}(2,\mathbb{R})) \oplus \overline{Y(\mathfrak{sl}(2,\mathbb{R}))}$$

Thus, the whole **symmetry algebra** of the fishnet integrals splits:

$$\operatorname{Perm}_G \ltimes \mathcal{Y}_G = (\operatorname{Perm}_G \ltimes Y_G) \oplus (\operatorname{Perm}_G \ltimes \overline{Y}_G)$$

Yangian differential ideal YDI(G)

set holomorphic differential operators annihilating the Fishnet integral

• The whole integral can also be split into holomorphic and anti-holomorphic parts:

$$I_G(\underline{a}) = \left|F_G(\underline{a})\right|^2 \phi_G(\underline{z}) = (-1)^{\frac{\ell(\ell-1)}{2}} \left(-2i\right)^{-\ell} \left|F_G(\underline{a})\right|^2 \int \overline{\Omega} \wedge \Omega$$
 holomorphic vector of holomorphic rational function cross ratios

with the holomorphic and conformal $(\ell, 0)$ -form:

$$\Omega = \frac{1}{F_G(\underline{a})} \frac{\mathrm{d}x_1 \wedge \ldots \wedge \mathrm{d}x_\ell}{P_G(\underline{x}, \underline{a})^{2/V}}$$

The whole integral can also be split into holomorphic and anti-holomorphic parts:

$$I_G(\underline{a}) = \left|F_G(\underline{a})\right|^2 \phi_G(\underline{z}) = (-1)^{\frac{\ell(\ell-1)}{2}} \left(-2i\right)^{-\ell} \left|F_G(\underline{a})\right|^2 \int \overline{\Omega} \wedge \Omega$$
 holomorphic vector of holomorphic rational function cross ratios

with the holomorphic and conformal $(\ell, 0)$ -form:

$$\Omega = \frac{1}{F_G(\underline{a})} \frac{\mathrm{d}x_1 \wedge \ldots \wedge \mathrm{d}x_\ell}{P_G(\underline{x}, \underline{a})^{2/V}}$$

In the following, we will argue that this form gives rise to a monodromy invariant bilinear form:

$$\phi_G(\underline{z}) = (-i)^{\ell} \, \underline{\Pi}_G(\underline{z})^{\dagger} \Sigma_G \underline{\Pi}_G(\underline{z})$$

with the **period vector**:

$$\underline{\Pi}_{G}(\underline{z}) = \left(\int_{\Gamma_{0}} \Omega, \dots, \int_{\Gamma_{b_{\ell}-1}} \Omega \right)^{T}$$

associated to a Calabi-Yau variety or Picard variety for square and hexagonal fishnets, respectively.

Calabi-Yau Manifolds

Definition:

A Calabi-Yau (CY) n-fold X is a complex n-dimensional Kähler manifold equipped with a Kähler (1,1)-form ω . There are the (equivalent) additional properties:

- the first Chern class vanishes: $c_1(T_X) = 0$
- there exists a Ricci flat metric g: $R_{i\bar{j}}(g)=0$
- ullet there exists a no-where vanishing holomorphic (n,0)-form Ω
- ullet the holonomy group of X is $\mathrm{SU}(N)$
- on X there exist two covariant constant spinors.

Calabi-Yau Manifolds

Definition:

A Calabi-Yau (CY) n-fold X is a complex n-dimensional Kähler manifold equipped with a Kähler (1,1)-form ω . There are the (equivalent) additional properties:

- the first Chern class vanishes: $c_1(T_X) = 0$
- there exists a Ricci flat metric g: $R_{i\bar{j}}(g)=0$
- ullet there exists a no-where vanishing holomorphic (n,0)-form Ω
- ullet the holonomy group of X is $\mathrm{SU}(N)$
- on X there exist two covariant constant spinors.
- \bullet Forms Ω and ω are both **characteristic** for a CY X \longrightarrow (X,Ω,ω)

- cf. $(\mathcal{E}, dx/y, dx \wedge dy)$
- The tangent space of the complex structure deformation space of a CY \mathcal{M}_{cs} is given by $H^{n-1,1}(X)$.
- It is natural to consider families of CYs:

Constructions of CYs

How can we construct CYs?

• CYs can be defined via polynomial constraints:

"Vanishing of the first Chern class $c_1(T_X)$ gives relation between ambient space and degree of the constraints."

Single polynomial constraint:

Hypersurface CY

Cubic one-fold:

$$\{Y^2Z - 4X^3 + g_2(t)XZ^2 + g_3(t)Z^3 = 0\} \subset \mathbb{P}^2$$

Quintic three-fold:

$$\left\{X_0^5 + X_1^5 + X_2^5 + X_3^5 + X_4^5 - \psi X_0 X_1 X_2 X_3 X_4 = 0\right\} \subset \mathbb{P}^4$$

Constructions of CYs

How can we construct CYs?

• CYs can be defined via polynomial constraints:

"Vanishing of the first Chern class $c_1(T_X)$ gives relation between ambient space and degree of the constraints."

Single polynomial constraint:

Hypersurface CY

Cubic one-fold:

$$\{Y^2Z - 4X^3 + g_2(t)XZ^2 + g_3(t)Z^3 = 0\} \subset \mathbb{P}^2$$

Quintic three-fold:

$$\left\{X_0^5 + X_1^5 + X_2^5 + X_3^5 + X_4^5 - \psi X_0 X_1 X_2 X_3 X_4 = 0\right\} \subset \mathbb{P}^4$$

For the fishnets we find:

Square tiling:

$$\{W = y^2 - P_G([\underline{x} : \underline{u}]; \underline{a}) = 0\} \subset (\mathbb{P}^1)^{\ell}$$

Hexagonal tiling:

$$\{W = y^3 - P_G([\underline{x} : \underline{u}]; \underline{a}) = 0\} \subset (\mathbb{P}^1)^{\ell}$$

Triangular tiling:

no direct CY construction possible only via star-triangle relation

 $P_G([\underline{x}:\underline{u}];\underline{a})$ homogenized version of the fishnet graph polynomial

Periods of a CY

Definition:

Periods define a pairing between the homology $H_n(X)$ and the cohomology $H_{\mathrm{dR}}^n(X)$ of the CY X:

$$\Pi: H_n(X) \times H_{\mathrm{dR}}^n(X) \longrightarrow \mathbb{C}$$

$$(\Gamma, \alpha) \longmapsto \int_{\Gamma} \alpha$$

On a CY there is a monodromy invariant intersection matrix Σ defining a bilinear pairing on the periods.

Periods of a CY

Definition:

Periods define a pairing between the homology $H_n(X)$ and the cohomology $H_{\mathrm{dR}}^n(X)$ of the CY X:

$$\Pi: H_n(X) \times H^n_{\mathrm{dR}}(X) \longrightarrow \mathbb{C}$$

$$(\Gamma, \alpha) \longmapsto \int_{\Gamma} \alpha$$

On a CY there is a monodromy invariant intersection matrix Σ defining a bilinear pairing on the periods.

Example: CY one-fold (elliptic curve)

$$\alpha = \frac{\mathrm{d}X}{Y} \quad \beta = \frac{X\mathrm{d}X}{Y}$$

$$P_3 = Y^2 - X(X - 1)(X - \lambda)$$

$$\Pi = \begin{pmatrix} \int_{\Gamma_a} \alpha & \int_{\Gamma_a} \beta \\ \int_{\Gamma_b} \alpha & \int_{\Gamma_b} \beta \end{pmatrix}$$
Elliptic integrals
$$K(\lambda), K(1 - \lambda)$$

Periods of a CY

Definition:

Periods define a pairing between the homology $H_n(X)$ and the cohomology $H_{\mathrm{dR}}^n(X)$ of the CY X:

$$\Pi: \quad H_n(X) \times H^n_{\mathrm{dR}}(X) \longrightarrow \mathbb{C}$$

$$(\Gamma, \alpha) \qquad \longmapsto \int_{\Gamma} \alpha$$

On a CY there is a monodromy invariant intersection matrix Σ defining a bilinear pairing on the periods.

Example: CY one-fold (elliptic curve)

$$P_3 = Y^2 - X(X - 1)(X - \lambda)$$

$$\Pi = \begin{pmatrix} \int_{\Gamma_a} \alpha & \int_{\Gamma_a} \beta \\ \int_{\Gamma_b} \alpha & \int_{\Gamma_b} \beta \end{pmatrix}$$
Elliptic integrals
$$K(\lambda), K(1 - \lambda)$$

"Periods describe the shape of a CY."

Periods of a CY

Definition:

Periods define a pairing between the homology $H_n(X)$ and the cohomology $H_{\mathrm{dR}}^n(X)$ of the CY X:

$$\Pi: H_n(X) \times H_{\mathrm{dR}}^n(X) \longrightarrow \mathbb{C}$$

$$(\Gamma, \alpha) \longmapsto \int_{\Gamma} \alpha$$

On a CY there is a monodromy invariant intersection matrix Σ defining a bilinear pairing on the periods.

Example: CY one-fold (elliptic curve)

$$P_3 = Y^2 - X(X - 1)(X - \lambda)$$

$$\Pi = \begin{pmatrix} \int_{\Gamma_a} \alpha & \int_{\Gamma_a} \beta \\ \int_{\Gamma_b} \alpha & \int_{\Gamma_b} \beta \end{pmatrix}$$
Elliptic integrals

 $K(\lambda), K(1-\lambda)$

"Periods describe the shape of a CY."

Particularly interesting are the periods over which can be defined through the defining constraints:

$$\Pi_i = \int_{\Gamma_i} \Omega$$

cf.
$$\Omega = \int_{S^1} \frac{\mathrm{d}X \wedge \mathrm{d}Y}{P_3} \sim \frac{\mathrm{d}X}{Y}$$

• For generic CYs it is not even simple to explicitly define all cycles $\Gamma_i \in H_n(X,\mathbb{Z})$.

How can we compute periods?

How can we compute periods?

"Use differential equations"

 Periods are governed by linear differential equations known as Gauss-Manin System or Picard-Fuchs equations.

How can we compute periods?

"Use differential equations"

- Periods are governed by linear differential equations known as Gauss-Manin System or Picard-Fuchs equations.
- There are different techniques to find these differential equations:
 - Integration by Parts identities
 - Griffiths reduction method or GKZ approach
 - ullet Compute a **single period** and operators via ansatz, e.g. "torus period" $\Pi_0 = \int_{T^n} \Omega$

How can we compute periods?

"Use differential equations"

- Periods are governed by linear differential equations known as Gauss-Manin System or Picard-Fuchs equations.
- There are different techniques to find these differential equations:
 - Integration by Parts identities
 - Griffiths reduction method or GKZ approach
 - ullet Compute a **single period** and operators via ansatz, e.g. "torus period" $\Pi_0 = \int_{T^n} \Omega$

Example: $G_{1,1}$

$$\oint_{T^1} dx \frac{1}{\sqrt{x(1-x)(x-z)}} = \oint_{T^1} \frac{dx}{x} \frac{1}{\sqrt{(1-x)(1-z/x)}}$$

$$= \oint_{T^1} \frac{dx}{x} \sum_{i,j} {2i \choose i} {2j \choose j} \frac{z^j}{4^{i+j}} x^{i-j} = 2\pi i \sum_{i=0}^{\infty} {2i \choose i}^2 \left(\frac{z}{4^2}\right)^i$$

How can we compute periods?

"Use differential equations"

- Periods are governed by linear differential equations known as Gauss-Manin System or Picard-Fuchs equations.
- There are different techniques to find these differential equations:
 - Integration by Parts identities
 - Griffiths reduction method or GKZ approach
 - ullet Compute a **single period** and operators via ansatz, e.g. "torus period" $\Pi_0 = \int_{T^n} \Omega$

Example: $G_{1,1}$

$$\oint_{T^1} dx \frac{1}{\sqrt{x(1-x)(x-z)}} = \oint_{T^1} \frac{dx}{x} \frac{1}{\sqrt{(1-x)(1-z/x)}}$$

$$= \oint_{T^1} \frac{dx}{x} \sum_{i,j} {2i \choose i} {2j \choose j} \frac{z^j}{4^{i+j}} x^{i-j} = 2\pi i \sum_{i=0}^{\infty} {2i \choose i}^2 \left(\frac{z}{4^2}\right)^i$$

In a similar way, we have computed the Picard-Fuchs differential ideal for our fishnet integrals.

- A basis of the solution space $\{\varpi_i\}$ to these differential equations can be obtained by standard techniques, e.g. Frobenius Method.
- This is particularly simple if a **MUM point** (= total degeneration of indicials) exists:

logarithmic structure reflects the cohomology of the CY

$$\varpi_0$$
 = power series in z
$$\varpi_1 = \varpi_0 \log(z) + \Sigma_1$$

$$\varpi_2 = \frac{1}{2} \varpi_0 \log(z)^2 + \Sigma_1 \log(z) + \Sigma_2$$

$$\vdots$$

- ullet A **basis of the solution space** $\{\varpi_i\}$ to these differential equations can be obtained by standard techniques, e.g. **Frobenius Method**.
- This is particularly simple if a **MUM point** (= total degeneration of indicials) exists:

logarithmic structure reflects the cohomology of the CY

$$\varpi_0 = \text{power series in z}$$

$$\varpi_1 = \varpi_0 \log(z) + \Sigma_1$$

$$\varpi_2 = \frac{1}{2} \varpi_0 \log(z)^2 + \Sigma_1 \log(z) + \Sigma_2$$

$$\vdots$$

$$\varpi_0 = \varpi_0(\rho)|_{\rho=0} = \sum_n a(n+\rho)z^{n+\rho}|_{\rho=0}
\varpi_1 = (\partial_\rho \varpi_0(\rho))|_{\rho=0}
\varpi_2 = (\frac{1}{2}\partial_\rho^2 \varpi_0(\rho))|_{\rho=0}
\vdots$$

- A basis of the solution space $\{\varpi_i\}$ to these differential equations can be obtained by standard techniques, e.g. Frobenius Method.
- This is particularly simple if a MUM point (= total degeneration of indicials) exists:

logarithmic structure reflects the cohomology of the CY

$$\varpi_0 = \text{power series in z}$$

$$\varpi_1 = \varpi_0 \log(z) + \Sigma_1$$

$$\varpi_2 = \frac{1}{2} \varpi_0 \log(z)^2 + \Sigma_1 \log(z) + \Sigma_2$$

$$\vdots$$

$$\varpi_0 = \varpi_0(\rho)|_{\rho=0} = \sum_n a(n+\rho)z^{n+\rho}|_{\rho=0}$$

$$\varpi_1 = \left(\partial_\rho \varpi_0(\rho)\right)|_{\rho=0}$$

$$\varpi_2 = \left(\frac{1}{2}\partial_\rho^2 \varpi_0(\rho)\right)|_{\rho=0}$$
:

- Finally, a **basis change** from $\{\varpi_i\}$ to $\{\Pi_i\}$ (basis over \mathbb{Z} or $\mathbb{Z}[\alpha]$) has to be determined. This change of basis can be found from **monodromy considerations**:
 - ullet There exist special points in \mathcal{M}_{cs} where the CY gets singular.
 - Analytic continuation around these points corresponds to a monodromy: $\Pi \longmapsto M_{\gamma_i} \Pi$

(S)

- ullet All monodromies have to respect the intersection pairing Σ between the periods.
 - In a good basis $\{\Pi_i\}$ all monodromies M_{γ_i} have to be "integral", i.e. $M_{\gamma_i} \in \mathcal{O}(\Sigma, \mathbb{Z})$
- The deformation method produces for hypergeometric CYs directly a rational monodromy basis. [Ker
- ullet If all monodromies are known, one can also determine Σ by requiring: $M^T\Sigma M=\Sigma$

Conjeture

The Picard-Fuchs Ideal for Calabi-Yau varieties of square and hexagonal Fishnet integrals is equal to the Yangian Differential Operator Ideal.

Therefore, these fishnet integrals are completely fixed by their symmetry algebra.

 $\operatorname{Perm}_G \ltimes \mathcal{Y}_G$

Griffiths Transversality

Is there a **better/faster way** on a CY to determine than computing all monodromies?

Griffiths Transversality

- Is there a **better/faster way** on a CY to determine than computing all monodromies?
- On a CY there exists the phenomenon of Griffiths transversality:

$$\Omega \in H^{n,0}(X)$$

$$\partial_z \Omega \in H^{n,0}(X) \oplus H^{n-1,1}(X)$$

$$\partial_z^2 \Omega \in H^{n,0}(X) \oplus H^{n-1,1}(X) \oplus H^{n-2,2}(X)$$

$$\vdots$$

$$\partial_z^n \Omega \in H^{n,0}(X) \oplus \ldots \oplus H^{0,n}(X)$$

Consideration of type forbids many integrals:

$$\int_X \Omega \wedge \partial_z^k \Omega = \Pi^T \Sigma \partial_z^k \Pi = \begin{cases} 0, & k < n \\ C_n, & k = n \end{cases}$$

The rational function C_n is called the Yukawa Coupling.

ullet We can use these relations to easily determine Σ .

Monodromy Invariant Bilinear Form

On a CY there exists a natural real, positiv and monodromy invariant object namely the exponential of the Kähler potential:

$$i^{n^2} \int_X \Omega \wedge \bar{\Omega} = i^{n^2} \Pi^{\dagger} \Sigma \Pi = e^{-K(z,\bar{z})}$$

Monodromy invariance follows from:

$$\Pi^{\dagger} \Sigma \Pi \longrightarrow (M_{\gamma_i} \Pi)^{\dagger} \Sigma M_{\gamma_i} \Pi = \Pi^{\dagger} M_{\gamma_i}^{\dagger} \Sigma M_{\gamma_i} \Pi = \Pi^{\dagger} \Sigma \Pi$$

$$\text{if } M_{\gamma_i}^{\dagger} = M_{\gamma_i}^T$$

- This is particularly satisfied for our basis of solutions determined by the deformation method.
 [Kerr]
- The Fishnet integral is now just given by this monodromy invariant bilinear form:

$$I_G(\underline{a}) = (-i)^{\ell} |F_G(\underline{a})|^2 \underline{\Pi}_G(\underline{z})^{\dagger} \Sigma_G \underline{\Pi}_G(\underline{z})$$

Picard Varieties

• Another useful geometry for fishnet integrals are so-called **Picard curves**:

Tripple covering of \mathbb{P}^1 :

$$y^3 = \tilde{P}(x,\underline{a})$$

with
$$deg(\tilde{P}(x,\underline{a})) > 3$$

double covering of \mathbb{P}^1 :

$$y^2 = \hat{P}(x, \underline{b})$$

for $deg(\hat{P}(x,\underline{b})) = 3,4$ we get an elliptic curve

Picard curves have genus g>1 and thus are **not** elliptic curves (**Calabi-Yau** one-varieties).

Picard Varieties

• Another useful geometry for fishnet integrals are so-called Picard curves:

Tripple covering of \mathbb{P}^1 :

$$y^3 = \tilde{P}(x, \underline{a})$$

with
$$deg(\tilde{P}(x,\underline{a})) > 3$$

double covering of \mathbb{P}^1 :

$$y^2 = \hat{P}(x, \underline{b})$$

for $deg(\hat{P}(x,\underline{b})) = 3,4$ we get an elliptic curve

Picard curves have genus g > 1 and thus are **not** elliptic curves (Calabi-Yau one-varieties).

• For the hexagonal Fishnet integrals we find using the start-triangle relation:

$$y^{3} = P = (x_{1} - a_{1})(x_{1} - a_{2})$$
$$(x_{1} - x_{2})(x_{2} - a_{3})(x_{2} - a_{4})$$

singular **K3** variety

$$y^3 = \tilde{P} = (x - a_1)(x - a_2)(x - a_3)^2(x - a_4)^2$$

singular genus two Picard curve

Picard Varieties

• Another useful geometry for fishnet integrals are so-called Picard curves:

Tripple covering of \mathbb{P}^1 :

$$y^3 = \tilde{P}(x, \underline{a})$$

with
$$deg(\tilde{P}(x,\underline{a})) > 3$$

double covering of \mathbb{P}^1 :

$$y^2 = \hat{P}(x, \underline{b})$$

for $deg(\hat{P}(x,\underline{b})) = 3,4$ we get an elliptic curve

Picard curves have genus g > 1 and thus are **not** elliptic curves (**Calabi-Yau** one-varieties).

For the hexagonal Fishnet integrals we find using the start-triangle relation:

$$y^3 = \tilde{P} = (x - a_1)(x - a_2)(x - a_3)^2(x - a_4)^2$$

$$y^{3} = P = (x_{1} - a_{1})(x_{1} - a_{2})$$
$$(x_{1} - x_{2})(x_{2} - a_{3})(x_{2} - a_{4})$$

singular **genus two** Picard curve

• We can generalize Picard curves also to Picard varieties:

Tripple covering of $(\mathbb{P}^1)^r$:

$$y^3 = \tilde{P}(\underline{x}, \underline{a})$$

From the star-triangle relation we find in this way usually singular Picard varieties.

Calabi-Yau Varieties vs. Picard Varieties

• Using the star-triangle relation we can produce different geometries associated to a given Fishnet integral:

CY three-variety

Picard two-variety

Genus three Riemann curve

Due to the star-triangle relation we can **not** associate a **unique geometry** to a Fishnet integral. Even the **dimensions** are **different**.

Calabi-Yau Varieties vs. Picard Varieties

• Using the star-triangle relation we can produce different geometries associated to a given Fishnet integral:

CY three-variety

Picard two-variety

Genus three Riemann curve

Due to the star-triangle relation we can **not** associate a **unique geometry** to a Fishnet integral. Even the **dimensions** are **different**.

- Similar observations have been also made in the following cases:
 - Banana integrals:

$$\mathcal{F}=0$$
 hypersurface CY

[Bönisch, Duhr, Fischbach, Klemm, CN]

$$P_1=P_2=0$$
 complete intersection CY

Genus drop in Feynman integrals:

genus three

genus two

[Marzucca, McLeod, Page, Pögel, Weinzierl]

Examples: Train Track Graphs

• Our first examples are the so-called **train track graphs** $G_{1,\ell}$:

• These graphs have no hidden symmetries such that we find for the permutation symmetry group:

$$\operatorname{Perm}_{G_{1,\ell}} = \operatorname{Aut}(G_{1,\ell}) = \begin{cases} S_4, & \ell = 1 \\ S_3^2 \times \mathbb{Z}_2^{\ell-2} \times \mathbb{Z}_2, & \ell > 1, \end{cases}$$

• The following cross ratios give rise to a MUM point:

$$z_k = \frac{1}{4} \chi_{1,k+1,k+2,\ell+2}, \quad z_\ell = \frac{1}{4^{3-l}} \chi_{1,\ell+1,2\ell+2,\ell+2}, \quad z_{\ell+k} = \frac{1}{4} \chi_{1,2\ell+3-k,2\ell+2-k,\ell+2}$$

• For the **prefactor** we have chosen:

$$F_{G_{1,\ell}}^{(2)}(\underline{a}) = \frac{|a_1 - a_{\ell+2}|^{\ell-1}}{|a_{\ell+3} - a_1||a_{\ell+4} - a_1| \cdots |a_{2\ell+2} - a_1||a_2 - a_{\ell+2}||a_3 - a_{\ell+2}| \cdots |a_{\ell+1} - a_{\ell+2}|}$$

• Using the previous MUM point variables the Yangian Differential Ideal is generated by:

$$\mathcal{D}_{G_{1,2},1} = \theta_1^2 - 2z_1 (\theta_1 - \theta_2) (1 + 2\theta_1 + 2\theta_2) - 4z_1 z_2 (1 + 2\theta_2 - 2\theta_3)^2 - 32z_1 z_2 z_3 (1 + 2\theta_2 - \theta_3) (1 + 2\theta_3) ,$$

$$\mathcal{D}_{G_{1,2},2} = \theta_1 \theta_2 - \theta_3 (\theta_2 - \theta_3) + 2z_3 (\theta_2 - \theta_3) (1 + 2\theta_3) - 4z_1 z_2 (1 + 2\theta_1) (1 + 2\theta_2 - 2\theta_3) - 4z_1 z_2 z_3 (1 + 2\theta_1) (4 + 8\theta_3) ,$$

$$\mathcal{D}_{G_{1,2},3} = (\theta_1 - \theta_2) \theta_3 + 4z_3 (\theta_1 - \theta_2) (\theta_2 - \theta_3) + 4z_2 z_3 (-4\theta_1 (1 + \theta_2) + (1 + 2\theta_2)^2 - 4\theta_2 \theta_3 + 4\theta_3^2) + 32z_2 z_3^2 (\theta_2 - \theta_3) (1 + 2\theta_3)$$

$$\theta_i = z_i \partial_i$$

• Using the previous MUM point variables the Yangian Differential Ideal is generated by:

$$\mathcal{D}_{G_{1,2},1} = \theta_1^2 - 2z_1 (\theta_1 - \theta_2) (1 + 2\theta_1 + 2\theta_2) - 4z_1 z_2 (1 + 2\theta_2 - 2\theta_3)^2 - 32z_1 z_2 z_3 (1 + 2\theta_2 - \theta_3) (1 + 2\theta_3) ,$$

$$\mathcal{D}_{G_{1,2},2} = \theta_1 \theta_2 - \theta_3 (\theta_2 - \theta_3) + 2z_3 (\theta_2 - \theta_3) (1 + 2\theta_3) - 4z_1 z_2 (1 + 2\theta_1) (1 + 2\theta_2 - 2\theta_3) - 4z_1 z_2 z_3 (1 + 2\theta_1) (4 + 8\theta_3) ,$$

$$\mathcal{D}_{G_{1,2},3} = (\theta_1 - \theta_2) \theta_3 + 4z_3 (\theta_1 - \theta_2) (\theta_2 - \theta_3) + 4z_2 z_3 (-4\theta_1 (1 + \theta_2) + (1 + 2\theta_2)^2 - 4\theta_2 \theta_3 + 4\theta_3^2) + 32z_2 z_3^2 (\theta_2 - \theta_3) (1 + 2\theta_3)$$

 $\theta_i = z_i \partial_i$

- We find **5=1+3+1 solutions** as expected from a three-parameter K3 surface.
- These solutions can be constructed from the deformation method:

$$\Phi_{G_{1,2},0}(\underline{z}) = \varpi(\underline{z};0)$$

$$\Phi_{G_{1,2},1,i}(\underline{z}) = \partial_{\rho_i}\varpi(\underline{z};\underline{\rho})|_{\underline{\rho}=0}$$

$$\Phi_{G_{1,2},2}(\underline{z}) = \left[\partial_{\rho_2}^2 + 2\left(\partial_{\rho_1}\partial_{\rho_2} + \partial_{\rho_1}\partial_{\rho_3} + \partial_{\rho_2}\partial_{\rho_3}\right)\right]\varpi(\underline{z};\underline{\rho})|_{\underline{\rho}=0}$$

$$\varpi(\underline{z};\underline{\rho}) = \sum_{\underline{n}=0}^{\infty} c(\underline{n} + \underline{\rho}) \underline{z}^{\underline{n}+\underline{\rho}}$$
$$c(\underline{n}) = (n_1)(n_3)(n_2 - n_1)(n_2 - n_3)(n_1 - n_2 + n_3)$$

• We get a rational monodromy basis after normalizing the logarithms:

$$\underline{\Pi}_{G_{1,2}}(\underline{z}) = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2\pi i} & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2\pi i} & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2\pi i} & 0 \\
-\frac{1}{4} & 0 & 0 & 0 & \frac{1}{(2\pi i)^2}
\end{pmatrix} \underline{\Phi}_{G_{1,2}}(\underline{z})$$

The two-loop train track integral is then given by

$$\phi_{G_{1,2}}(\underline{z}) = -\underline{\Pi}_{G_{1,2}}(\underline{z})^{\dagger} \Sigma_{G_{1,2}} \underline{\Pi}_{G_{1,2}}(\underline{z})$$

with intersection form:

$$\Sigma_{G_{1,2}} = \begin{pmatrix} 0 & 0 & 0 & 0 & 1\\ 0 & 0 & -2 & -2 & 0\\ 0 & -2 & -2 & -2 & 0\\ 0 & -2 & -2 & 0 & 0\\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

• Let us particularly discuss the **three-loop triangle track integral**. Its permutation symmetry is given by:

$$Perm_{Z_3} = S_4$$

• Convenient variables are given by the following two cross ratios:

$$z_1 = \frac{1}{3^3} \chi_{1,5,3,4} \,, \quad z_2 = \chi_{1,3,2,4}$$

• Let us particularly discuss the **three-loop triangle track integral**. Its permutation symmetry is given by:

$$Perm_{Z_3} = S_4$$

• Convenient variables are given by the following two cross ratios:

$$z_1 = \frac{1}{3^3} \chi_{1,5,3,4} \,, \quad z_2 = \chi_{1,3,2,4}$$

The Yangian Differential Ideal is generated by

$$\mathcal{D}_{Z_3,1} = \theta_1 \theta_2 - 9z_1 \left(1 + 3\theta_1 - 3\theta_2 \right) \theta_2 - 3z_1 z_2 \left[2 + 9\theta_2 \left(1 + \theta_2 \right) \right] ,$$

$$\mathcal{D}_{Z_3,2} = \theta_2 \left(-1 + 3\theta_2 \right) + z_2 \left[-3\theta_1^2 + \theta_1 \left(1 + 3\theta_2 \right) - \theta_2 \left(1 + 3\theta_2 \right) \right]$$

$$+ 27z_1 z_2 \left[6\theta_1^2 + \theta_1 \left(2 - 6\theta_2 \right) - 3\theta_2 \left(1 + \theta_2 \right) \right] - 9z_1 z_2 \left[27z_1 \left(2 + 3\theta_1 \right) \left(1 + 3\theta_1 - 3\theta_2 \right) \right]$$

$$- z_2 \left(2 + 9\theta_2 \left(1 + \theta_2 \right) \right)$$

which is the set of differential equations of an Appell hypergeometric system:

$$\begin{split} \Phi_{Z_3,0}(\underline{z}) &= F_1(2/3,1/3,1/3,1;3^3z_1z_2,3^3z_1) \\ &= 1 + 6z_1 + \left(90z_1^2 + 6z_1z_2\right) + \left(1680z_1^3 + 45z_1^2z_2\right) + \mathcal{O}(z_i^4) \,, \\ \Phi_{Z_3,1}(\underline{z}) &= \Phi_0(\underline{z})\log(z_1) + \left(15z_1 - \frac{z_2}{2}\right) + \left(\frac{513z_1^2}{2} + 3z_1z_2 - \frac{z_2^2}{5}\right) + \mathcal{O}(z_i^3) \,, \\ \varphi_{Z_3,0}(\underline{z}) &= z_2^{1/3} \left[1 + \frac{\lambda z_2}{6} + \lambda^2 \left(9z_1z_2 + \frac{5z_2^2}{63}\right) + \lambda^3 \left(\frac{15}{7}z_1z_2^2 + \frac{4z_2^3}{81}\right) + \mathcal{O}(z_i^4)\right] \\ &= 26 \end{split}$$

• In this case, we have to compute the **intersection form** computing **all monodromies** and requiring that:

$$M^T \Sigma_{Z_3} M = \Sigma_{Z_3}$$

From this we then find:

$$\Sigma_{Z_3} = \left(\begin{array}{ccc} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -i\sqrt{3} \end{array}\right)$$

In this case, we have to compute the intersection form computing all monodromies and requiring that:

$$M^T \Sigma_{Z_3} M = \Sigma_{Z_3}$$

From this we then find:

$$\Sigma_{Z_3} = \left(\begin{array}{ccc} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -i\sqrt{3} \end{array} \right)$$

With the intersection form we find similarly as before for the three-loop triangle track integral:

$$I_{Z_3}(\underline{a}) = i \frac{|a_{14}|^{2/3}}{|a_{12}|^{4/3}|a_{13}|^{2/3}|a_{45}|^{4/3}|a_{34}|^{2/3}} \underline{\Pi}_{Z_3}(\underline{z})^{\dagger} \Sigma_{Z_3} \underline{\Pi}_{Z_3}(\underline{z})$$

with

$$\underline{\Pi}_{Z_3}(\underline{z}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2\pi i} & 0 \\ 0 & 0 & \frac{2i\pi}{\Gamma(\frac{1}{3})^3} \end{pmatrix} \underline{\Phi}_{Z_3}(\underline{z})$$

Examples: 4-pt Limit of Triangle Tracks

• We can also consider the **4-pt limit** of the **triangle track integrals** (similarly as the ladder graphs):

Examples: 4-pt Limit of Triangle Tracks

• We can also consider the 4-pt limit of the triangle track integrals (similarly as the ladder graphs):

• These integrals are related to interesting hypergeometric period integrals:

$$z = \frac{1}{(3\sqrt{3})^{m+1}} \chi_{1,4,2,3}$$

$$\mathcal{L}_m^{\text{Odd}} = \theta^{m+1} - (\sqrt{3})^{m+1} z (1+3\theta)^{m+1},$$

$$\Phi_{m,0}^{\text{Odd}}(z) = {}_{m+1} F_m(1/3, \dots, 1/3; 1, \dots, 1; (3\sqrt{3})^{m+1} z)$$

Examples: 4-pt Limit of Triangle Tracks

• We can also consider the 4-pt limit of the triangle track integrals (similarly as the ladder graphs):

• These integrals are related to interesting hypergeometric period integrals:

$$z = \frac{1}{(3\sqrt{3})^{m+1}} \chi_{1,4,2,3}$$

$$\mathcal{L}_m^{\text{Odd}} = \theta^{m+1} - (\sqrt{3})^{m+1} z (1+3\theta)^{m+1},$$

$$\Phi_{m,0}^{\text{Odd}}(z) = {}_{m+1} F_m(1/3, \dots, 1/3; 1, \dots, 1; (3\sqrt{3})^{m+1} z)$$

• These hypergeometric systems give rise to $\mathbb{Z}[\alpha]$ -integral monodromies ($\alpha = e^{i\pi/3}$):

$$M_{0} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 3 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}, \qquad M_{\frac{1}{3^{6}}} = \begin{pmatrix} 1 & 2 - \alpha & -(1 + \alpha) & 3(1 - \alpha) \\ 0 & 1 - \alpha & -1 + \alpha & -(1 + \alpha) \\ 0 & 1 - \alpha & 0 & 1 - 2\alpha \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad M_{\infty} = \begin{pmatrix} -2 + 3\alpha & 7 - 11\alpha & -2(1 - 2\alpha) & -3\alpha \\ \alpha & -(4 + \alpha) & 2 & -2 + \alpha \\ 2\alpha & -2(1 + 3\alpha) & 1 + 2\alpha & -1 - \alpha \\ 0 & 2 & -1 & 1 \end{pmatrix}$$

• To construct the $\mathbb{Z}[\alpha]$ -integral monodromy basis we need **interesting transcendental numbers**:

$$\pi, \sqrt{3}, \zeta(n)$$

$$\zeta(n, 1/3) \qquad \text{Hurwitz ζ-function}$$

Conclusion

- We have analyzed Fishnet integrals in two spacetime dimensions with special emphasis on the interplay between their symmetries and geometries.
- We have seen that in **two dimensions** the Fishnet integrals are **fully determined** by their symmetries, i.e. **Yangian** and **permutation symmetry**.
- Due to the star-triangle relation we can not associate a unique geometry to a Fishnet integral.

Conclusion

- We have analyzed Fishnet integrals in two spacetime dimensions with special emphasis on the interplay between their symmetries and geometries.
- We have seen that in **two dimensions** the Fishnet integrals are **fully determined** by their symmetries, i.e. **Yangian** and **permutation symmetry**.
- Due to the **star-triangle relation** we can **not** associate a **unique geometry** to a Fishnet integral.

- For the **future two natural generalization** could be interesting:
 - Considering Fishnet integrals with different propagator powers (anisotropic fishnets)
 - How constraining is the interplay between geometry, Yangian and permutation symmetry in higher dimensions?

Conclusion

- We have analyzed Fishnet integrals in two spacetime dimensions with special emphasis on the interplay between their symmetries and geometries.
- We have seen that in **two dimensions** the Fishnet integrals are **fully determined** by their symmetries, i.e. **Yangian** and **permutation symmetry**.
- Due to the star-triangle relation we can not associate a unique geometry to a Fishnet integral.

- For the **future two natural generalization** could be interesting:
 - Considering Fishnet integrals with different propagator powers (anisotropic fishnets)
 - How constraining is the interplay between geometry, Yangian and permutation symmetry in higher dimensions?

Thank you for your attention

