Double scaling limit of rectangular fishnets

Ivan Kostov, IPhT Saclay and UFES

[https://link.springer.com/article/10.1007/JHEP03\(2023\)156](https://link.springer.com/article/10.1007/JHEP03(2023)156)

Fishnets: Conformal Field Theories and Feynman Graphs

[Bethe Center for Theoretical Physics](http://www.bctp.uni-bonn.de/)

Motivation:

Is there a dual description of open fishnets in terms of string world surface? $\ddot{?}$

If so, it is expected to depend on

 — the intrinsic geometry (the form of the fishnet) Ω . These correlations to the four-point correlators of the four-poin

 A *m* the embedding of the boundary in the Minkowski space.

In $[12]$, the octagon was expanded in a basis of minors of the in the minors of the semi-infi

For $\ell > 0$, the lowest term is identified as a rectangular $n \times (n + \ell)$ fishnet Feynman diagr

*^X ⁿ ^g*²*n*(*n*+)

det ⇣ $[f_{i+j+1+m}]$

 $\prod_{i=0}^{n-1}$

 $\sum_{N}^{\infty} \chi_N \left(\det \mathcal{R}_{N \times N}^{[\ell]} \right) +$

This property of the octagon is obvious from the representation (15) , which can be written

 $det ($ $\mathcal{R}^{[\ell]}_{i_\alpha}$ *ij ,*=1*,...,N* ◆

*x*2 $\alpha, \beta = 1,$ *x*2 13*x*²

*x*3

 $f =$ $\sqrt{ }$ $\overline{}$

 $\mathscr{B}\rightarrow \mathscr{B}$ *n*=0 $\chi^n g^{2n^2}$ (

*x*₂

 $\frac{\partial}{\partial x}$ *n*=0

 $[\text{fish}]_{n,n+m} =$

*x*4

In [12], the octagon was expanded in a basis of minors of the in the minors of the semi-infi

*f*¹ *f*² *f*³ *f*⁴ *f*⁵ *. f*² *f*³ *f*⁴ *f*⁵ *f*⁶ *. f*³ *f*⁴ *f*⁵ *f*⁶ *f*⁷ *. f*⁴ *f*⁵ *f*⁶ *f*⁷ *f*⁸ *. f*⁵ *f*⁶ *f*⁷ *f*⁸ *f*⁹ *.* $\sqrt{2}$ $\overline{}$

in a basis of minors of the in the minors of the semi-infi

 $[\text{fish}]_{n,n} + o(g^2)$ ١

 $[\operatorname{fish}]_{n,n+\ell} + o(g^2)$

i,j=0*,...,n*1 λ

 $\int_{N \times N}^{[\ell]}$ = [fish] $N, N+\ell, g^{2N(N+\ell)} + o(g^{2N(N+\ell)+2}).$

 $C(x,y) = \frac{1}{x^{\ell}y^{\ell}} \frac{x-y}{xy-1} \rightarrow C(x,1/y) = \frac{y^{\ell}}{x^{\ell}} \frac{xy-1}{x-y}$

١

 (e) fishnet Feynman diagr (r^2)),

 $\frac{n-1}{i=0}$ $(2i+m)!(2i+m+1)!$.

 $\frac{R}{N \times N}$ is given by the fishnet integral normalised not

. (19)

, (20)

 $G_t = \sum_i A_i N_i + \sum_i A_i C_i$

 $0_{\ell} = \sum_{n=1}^{\infty}$ *N*=0 *X^N* $\overline{ }$ ⁰*i*1*<...<iN* ⁰*j*1*<...<jN*

> $=$ $\sum_{n=1}^{\infty}$ *N*=0 *X^N* ⇣ $\det \mathcal{R}^{[\ell]}_{_N}$ $\frac{[\ell]}{N \times N} + o(g^2)$ \mathcal{L}

 $\det \mathcal{R}_N^{[\ell]}$

minors of the matrix *R*, eq. (16),

This property of the octagon is obvious from the minors of the matrix \mathcal{R} , eq. (16),

*x*1

Explicit solutions to the thermodynamical (large size) limit of open fishnets could shade light on that. Feynman graph representing regular square lattices of size *m* ⇥ *n* with the external legs on could shade light on that. *4.4 Fishnets*

The simplest case of a 4-point $m \times n$ rectangular fishnet have a simple matrix-model-like $\frac{N_{\rm data, 6.6} \hat{h}_{\rm data, 6.6} }{N_{\rm data, 6.6} \hat{h}_{\rm data, 6.6} }$ representation [Basso and Dixon, 2017]. $t_{\rm w}$ In particular, for $\ell = 0$, the lowest loop order *n*-particle contribution is proportional to of the matrix (18) restricted to the first n rows and columns, which has been identified in Feynman integral for an $n \times n$ fishnet diagram,

— intrinsic geometry = aspect ratio *n*/*m*

 — embedding of the boundary = coordinates of the four operators The $n \times (n + m)$ rectangular fishnet graph is expressed as a diagonal minor of the determinant (18) If $n \times (n + m)$

[Basso-Dixon-Kosower-Krajenbrink-Zhong, 2021] observed that:

— For generic kinematics, the thermodynamical limit depend only on the intrinsic geometry in the lowest order the determinant of the matrix $\mathcal{R}^{[l]}$ $=\frac{2}{N}$ **ILI II IOIU YUUIIIU LI''Y'**"

— The embedding shows up only in a scaling limit with a pair of the points getting light-like. The semiclasical limit of the system of fermion of the system is corresponds to the semiclassical limit of the system of fermio 5 Strong coupling limit energy is given by an integral over the Fermi sea. First let us note that the pole of the ferm $C(x, y)$ is at $xy = 1$. It is more natural to replace the correlator by *x* 5 Strong coupling limit **a** ∴ **1**, **1**, 1, *x* ⊂ $C(x, y)$ is at $xy = 1$. It is more natural to replace the correlator by

This talk: the solution in the most general **double scaling limit** where two pairs of points become nearly light-like. axis such that ¯*z* = *z*⇤. Due to the symmetries *z* \$ *z*¯ and *z* \$ 1*/z*¯ one can consider only

1. Rectangular fishnet graphs

[Aprile, Basso, Caetano, Chicherin, **Open fishnets:** single-trace correlators in the fishnet theory. In most cases described by a single planar graph (but not always!).

— Interesting mathematical objects: SoV, Y-B, Yangian, Calabi-Yau, …

Derkachov, Dixon, Duhr, Ferrando, Fleury, Gromov, Kazakov, Klemm, Korchemsky, Loebbert, Müller, Münkler, Nega, Negro, Olivucci, Porkert, Preti, Sever, Sizov, Staudacher, Stawinski, Zhong, …]

The simplest **4-point correlators in the fishnet CFT** [Basso-Dixon]

$$
G_{m,n}(x_1, x_2, x_3, x_4) = \left\langle \text{Tr}\{\phi_2(x_1)^n \phi_1(x_2)^m \phi_2^{\dagger}(x_3)^n \phi_1^{\dagger}(x_4)^m \} \right\rangle
$$

Can be looked at as a lattice model defined on a rectangle with four different Dirichlet b.c. on the edges

$$
G_{m,n}(x_1, x_2, x_3, x_4) = \int_{\mathbb{R}^4} \prod_{r \in \text{bulk}} d^4x(r) \prod_{r \leftarrow r'} \frac{1}{|x(r) - x(r')|^2}
$$

- Fluctuation variable $x\in\mathbb{R}^4$,
- nearest-neighbour interaction $\left\vert \, x-y\, \right\vert ^{-2}$ ∙ ∙

— Continuum limit, if exists, is different from that for cylindrical fishnets [Basso-Zhong, Gromov-Sever]

Conformal symmetry

 $G_{m,n}(x_1, x_2, x_3, x_4)$ is a correlation function of spinless fields with dimensions $\Delta_2 = \Delta_4 = m$, $\Delta_1 = \Delta_3 = n$

By the conformal invariance, the correlator depends, up to a standard factor, on the positions x_1, x_2, x_3, x_4 through the two conformal invariant cross ratios

$$
U = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2} = \frac{z\overline{z}}{(1-z)(1-\overline{z})}, \qquad V = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2} = \frac{1}{(1-z)(1-\overline{z})}
$$

By conformal transformation $x_1 = (0,0), x_2 = (z, \bar{z}), x_3 = (\infty, \infty), x_4 = (1,1)$

Parametrisation by hyperbolic angles: $z = -e^{-\sigma-\varphi}, \quad \bar{z} = -e^{-\sigma+\varphi}$ (in Minkowski

kinematics $\sigma, \varphi \in \mathbb{R}$

$$
G_{m,n}(x_1, x_2, x_3, x_4) = \frac{g^{2mn}}{(x_{13}^2)^n (x_{24}^2)^m} \times I_{m,n}^{BD}(z, \bar{z})
$$

Basso-Dixon integral

2. Basso-Dixon integral

Matrix-model like integral conjectured by Basso and Dixon (2017) using the AdS/CFT integrability and proved by Derkachov and Olivucci (2019-2020).

 $I_{m,n}^{\rm BD}(z, \bar{z}) = (2 \cosh \sigma + 2 \cosh \varphi)^m$

$$
\times \sum_{a_1,\dots,a_m=1}^{\infty} \prod_{j=1}^m \frac{\sinh(a_i \varphi)}{\sinh \varphi} a_j (-1)^{a_j-1} \int \prod_{j=1}^m \frac{du_j}{2\pi} \exp(2i \sigma u_j)
$$

$$
\times \prod_{i=1}^m \left(u_i^2 + \frac{a_j^2}{4} \right)^{-m-n} \prod_{i < j} \left[(u_i - u_j)^2 + \frac{(a_i + a_j)^2}{4} \right] \left[(u_i - u_j)^2 + \frac{(a_i - a_j)^2}{4} \right]
$$

"Dual integral representation" [Basso-Dixon-Kosower-Krajenbrink-Zhong, 2021] By Fourier transformation $u \rightarrow i\partial/\partial t$, $\partial/\partial u \rightarrow -it$, the discrete sum can be done explicitly

$$
I_{m,n}^{\text{BD}}(z,\bar{z}) = \frac{1}{\mathcal{N}} \frac{1}{m!} \int_{|\sigma|}^{\infty} \prod_{j=1}^{m} dt_j (t_j^2 - \sigma^2)^{(n-m)} \frac{\cosh \sigma + \cosh \varphi}{\cosh t_j + \cosh \varphi} \prod_{j,k=1}^{m} (t_j + t_k) \prod_{j
$$

"Gluing ladders into fishnet"

B-D integral generalises the integral for the ladder diagrams ($m = 1$)

k-ladder diagram:

$$
f_k(z, \bar{z}) = \int_{|\sigma|}^{\infty} \frac{\cosh \sigma + \cosh \varphi}{\cosh t + \cosh \varphi} (t^2 - \sigma^2)^{k-1} 2t dt
$$

Broadhurst-Davydychev, 2010

 $m \times n$ fishnet $(n = m + \ell)$:

$$
I_{m,m+\ell}^{\text{BD}} = \frac{1}{\mathcal{N}} \det \left(\left[f_{j+k+\ell-1} \right]_{j,k=1,\dots,m} \right)
$$

B. Basso, L. Dixon 1705.03545,

Effective matrix model:

— The B-D integral takes the form of the partition function of the $O(n)$ matrix model with $n=-\,2$ and unusual confining potential:

 $I_{m,n}^{\text{BD}} = \mathscr{Z}_m(\ell, \sigma, \varphi), \qquad \ell \equiv n - m$ - "bridge"

$$
\mathcal{Z}_{m}(\ell, \sigma, \varphi) = \frac{1}{\mathcal{N}} \frac{1}{m!} \int_{|\sigma|}^{\infty} \prod_{j=1}^{m} dt_{j} e^{-V(t_{j})} \prod_{j,k=1}^{m} (t_{j} + t_{k}) \prod_{j

$$
V(t) = \log \frac{\cosh t + \cosh \varphi}{\cosh \sigma + \cosh \varphi} - \ell \log(t^{2} - \sigma^{2}) + \text{infinite wall at } t = |\sigma|
$$
$$

- unusual confining potential:
- grows slowly (linearly) at $t \to \pm \infty$;
- has an infinite array of simple poles on the imaginary axis. *V*′(*t*)

3. Thermodynamical limit $(m, n \rightarrow \infty)$

$$
\text{Effective action:} \quad \mathcal{S} \equiv \sum_{j=1}^{m} V(t_j) - \sum_{k \neq j}^{m} \log(t_k^2 - t_j^2) - \sum_{j=1}^{m} \log(2t_j)
$$

$$
-V'(t_j) + \sum_{k \neq j}^{m} \frac{2}{t_j - t_k} + \sum_{k=1}^{m} \frac{2}{t_j + t_k} = 0 \qquad (j = 1,...,m)
$$

⇒ Riemann-Hilbert problem for the meromorphic function $H(t) \equiv -\frac{1}{2}V'(t) + G(t) - G(-t),$ 2 $V'(t) + G(t) - G(-t)$ $G(t) =$ *m* ∑ *k*=1 1 $t - t_k$ = ∫ *a b dt*′*ρ*(*t*′) *t* − *t*′

R-H problem:

1) $H(t)$ is analytic in the *t*-plane with two symmetric cuts $[b, a]$ and $[-a, -b]$ and a puncture at $t = \infty$.

2) $H(t)$ satisfies for t on the real axis $H(t + i0) + H(t - i0) = 0$ on the cuts, $H(t + i0) - H(t - i0) = 0$ outside the cuts

3) Asymptotics at infinity:
$$
H(t) = -\frac{1}{2}V'(t) + \frac{2m}{t} + O(t^{-3})
$$

.Explicit solution of the R-H problem [M. Gaudin, unpublished notes, 1988]

The solution for any potential $V(t)$ analytic around the real axis takes form of elliptic integral

$$
H(t) = -2\int_b^a \frac{dt_1}{2\pi} \frac{y(t)}{y(t_1)} \frac{tV'(t) - t_1 V'(t_1)}{t^2 - t_1^2}, \qquad y = \frac{1}{a} \sqrt{(a^2 - t^2)(t^2 - b^2)}
$$

$$
\int_b^a \frac{dt}{y(t)} V'(t) = 0, \qquad \frac{1}{a} \int_b^a \frac{dt}{y(t)} t^2 V'(t) = 2\pi m \qquad \Rightarrow \qquad a, b
$$

Our potential is given by different analytic expressions in different kinematical domains \Rightarrow different scaling regimes in the thermodynamical limit

$$
V(t) = \log \frac{\cosh t + \cosh \varphi}{\cosh \sigma + \cosh \varphi} - \ell \log(t^2 - \sigma^2)
$$

- \rightarrow Infinite potential wall at $t = \sigma$, grows linearly at $t \rightarrow \infty$
- \Rightarrow the "eigenvalues" are confined to the interval $t > \sigma$ and spread at distance $\sim m$

— Infinite array of logarithmic poles which lead to a cusp at $t=\varphi$ if $\varphi \sim m$ If $\sigma, \varphi \sim m$, the solution depends on whether $|\varphi| < |\sigma|$ or $|\varphi| > |\sigma|$:

$$
\frac{\partial V(t)}{\partial t} \underset{t \to \infty}{\to} \text{sgn}(t) \,\theta\left(\left|t\right| - \left|\varphi\right|\right) - \frac{2t}{\sigma^2 - t^2} \ell, \qquad t \in \mathbb{R}
$$

Bulk, scaling and double scaling limits

● In the bulk thermodynamical limit

 $m \to \infty$ with $\ell = \ell/m$, σ and φ finite,

 $V(t) \rightarrow |t| - \ell \log(t^2) \Rightarrow$ the solution depends only on ℓ

• In the scaling limit

$$
m, \sigma \rightarrow \infty
$$
 with $\hat{\ell} = \ell/m, \ \hat{\sigma} \sim \sigma/m$ and φ finite,

 $V(t) = \log|t| - \ell \log(t^2 - \sigma^2) \Rightarrow$ the solution depends on ℓ and σ

 $m,\sigma,\varphi\rightarrow\infty$ with $\ell'=\ell/m,\hat{\sigma}\sim\sigma/m,\hat{\varphi}\sim\varphi/m$ finite

[Basso-Dixon-Kosower-Generic position of the four points

Krajenbrink-Zhong, 2021]

Euclidean shortdistance limit (always in regime I)

[Basso-Dixon-Kosower-Krajenbrink-Zhong, 2021]

• In the **double scaling limit**

Double light-cone limit (regime I and regime II)

[I.K., 2022]

$$
V(t) \to \max\left(\left|t\right|, \left|\varphi\right|\right) - \max\left(\left|\sigma\right|, \varphi\right| \right) - \ell \log(t^2 - \sigma^2) \Rightarrow \text{ the solution depends on } \ell, \sigma \text{ and}
$$

̂

This is the most general limit containing the other two as particular cases.

Fishnets: Conformal Field Theories and Feynman Graphs

3. Solution in the double scaling limit

We are looking for the spectral density $\rho(t)$ and the free-energy density in the double scaling limit

 $\ell, m, \sigma, \varphi, t \to \infty$ with $\hat{\sigma} = \frac{\tau}{\rho}, \hat{\varphi} = \frac{\tau}{\rho}, \ell = \frac{\tau}{\rho}, \hat{t} = \frac{\tau}{\rho}$ finite. *σ m* , $\hat{\varphi}=% {\textstyle\sum\nolimits_{\alpha}} q_{\alpha}q^{\alpha}$ *φ m* $, \hat{\ell} =$ *ℓ m* $\hat{t} =$ *t m*

However we will work with the original variables keeping in mind that they all scale as *m*.

The "Free energy" defined as $\mathscr{F}_m(\ell,\sigma,\varphi)\equiv\log{\mathscr{Z}}_m(\ell,\sigma,\varphi)$ is an extended quantity: it grows as "area" $mn = m(m+\ell)$

$$
\hat{\mathcal{F}}(\hat{\sigma}, \hat{\varphi}, \hat{\ell}) = \lim_{m \to \infty} \frac{\mathcal{F}_m(\ell, \sigma, \varphi)}{m(m + \ell)} \qquad \text{free energy per unit area (finite)}.
$$

Assume we have computed the function $H(t)$. Then $\Phi(t) = \Phi(-t) = \int_t^t H(t)dt$ gives the ∞ *t H*(*t*)*dt*

effective potential of a probe particle at the point $t\in\mathbb{C}$ in the collective field of the other particles. The effective potential is constant on the support of the spectral density:

 $\Phi(t) = \Phi_0, \quad b < |t| < a$. The constant $\Phi_0 = \Phi(a)$ is the energy needed to bring a new particle from $t = \infty$ to $t = a$, hence $\partial_m S = \Phi_0$. The second derivative of the free energy is simply related to the positions of the branch points

$$
\partial_m^2 \mathcal{F} = -\partial_m^2 \log \mathcal{N} - \partial_m \Phi(a) = 2 \log \frac{a^2 - b^2}{4(2m + \ell)^2}
$$

Fishnets: Conformal Field Theories and Feynman Graphs

The solution in **regime** $| \ell, \sigma, \varphi \sim m, | \varphi | < | \sigma |$ [Basso-Dixon-Kosower-Krajenbrink-Zhong, 2021] **••** The solution in regime I $(\ell, \sigma, \varphi \sim m, |\varphi| < |\sigma|$
[Basso-Dixon-Kosower-Krajenbrink-Zhong, 2021]

∙ Density:

$$
\rho(t) = \frac{1}{\pi} \frac{\ell t}{t^2 - \sigma^2} \sqrt{\frac{(a^2 - t^2)(t^2 - b^2)}{(a^2 - \sigma^2)(b^2 - \sigma^2)}} + \frac{1}{\pi^2} \frac{t}{a} \sqrt{\frac{t^2 - b^2}{a^2 - t^2}} \Pi \left(\frac{a^2 - b^2}{a^2 - t^2} \middle| 1 - \frac{b^2}{a^2} \right)
$$

\n
$$
k^2 = 1 - (k')^2, \quad k' = \frac{b}{a}
$$

\n
$$
a^2 \mathbb{E} - \sigma^2 \mathbb{K} = \pi (2m + \ell)a
$$

\n
$$
\sqrt{(a^2 - \sigma^2)(b^2 - \sigma^2)} \mathbb{K} = \pi \ell a
$$

\n
$$
a^2 \mathbb{E} - \sigma^2 \mathbb{K} = \pi (2m + \ell)a
$$

\n
$$
-a \qquad -b \qquad b \qquad a
$$

[Basso-Dixon-Kosower-Krajenbrink-Zhong, 2021] This is the density of the Bethe roots that correspond to the Frolov-Tseytlin folded string.

• **Free energy:**
$$
\partial_m \mathcal{F} = (2m + \ell) \log \frac{(a^2 - b^2)}{4(2m + \ell)^2} + 2\ell \arctanh \frac{\sqrt{b^2 - \sigma^2}}{\sqrt{a^2 - \sigma^2}} - \frac{2\ell \sigma^2}{\sqrt{(a^2 - \sigma^2)(b^2 - \sigma^2)}} + \max(|\varphi|, |\sigma)
$$

$$
\mathbb{E} = E(k^2) = \int_0^{\pi/2} d\theta \sqrt{1 - k^2 \sin^2 \theta}, \quad \mathbb{K} = K(k^2) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}}, \qquad \qquad \Pi(\alpha^2 | k^2) = \int_0^{\pi/2} \frac{d\theta}{(1 - \alpha^2 \sin^2 \theta)\sqrt{1 - k^2 \sin^2 \theta}}
$$

Fishnets: Conformal Field Theories and Feynman Graphs

Solution in **regime II** $(\ell, \sigma, \varphi \sim m, |\varphi| > |\sigma|)$.

• Density:
$$
\rho(t) = \frac{1}{\pi} \frac{\ell \ell}{t^2 - \sigma^2} \sqrt{\frac{(a^2 - t^2)(t^2 - b^2)}{(a^2 - \sigma^2)(b^2 - \sigma^2)}} + \frac{1}{\pi^2} \frac{t}{a} \sqrt{\frac{t^2 - b^2}{a^2 - t^2}} \ln\left(\frac{a^2 - b^2}{a^2 - t^2}; \psi | k^2\right)
$$
 $k^2 = 1 - \frac{b^2}{a^2}$, $\psi = \arcsin \frac{\sqrt{a^2 - \varphi^2}}{\sqrt{a^2 - b^2}}$
\n $a^2 E(\psi | k^2) - \sigma^2 F(\psi | k^2) = \pi (2m + \ell)a$
\n $F(\psi | k^2) \sqrt{(a^2 - \sigma^2)(b^2 - \sigma^2)} = \pi \ell a$
\n• Free energy:
\n $a_m \mathscr{F} = (2m + \ell) \log \frac{(a^2 - b^2)}{4(2m + \ell)^2} + \frac{2\varphi}{\pi} \arctan \frac{\sqrt{a^2 - \varphi^2}}{\sqrt{\varphi^2 - b^2}} + 2\ell \arctan \frac{\sqrt{b^2 - \sigma^2}}{\sqrt{a^2 - \sigma^2}} - \frac{2\ell \sigma^2}{\sqrt{(a^2 - \sigma^2)(b^2 - \sigma^2)}}$
\n $F(\psi | k^2) = \int_0^{\psi} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}}$, $E(\psi | k^2) = \int_0^{\psi} d\theta \sqrt{1 - k^2 \sin^2 \theta}$ incomplete elliptic integrals of first and second kind

$$
\Pi(\alpha^2; \psi | k^2) = \int_0^{\psi} \frac{d\theta}{(1 - \alpha^2 \sin^2 \theta)\sqrt{1 - k^2 \sin^2 \theta}}
$$
 incomplete elliptic integral of third kind

14 Eq. (4.30) can be used to generate series expansions of the free energy in di↵erent $\frac{\sin^2 \theta}{14}$ modified diffusion independent and the double limit, but and the double limit, but $\frac{1}{4}$

Fishnets: Conformal Field Theories and Feynman Graphs

\n- **Explicit solution for square fishnet**
$$
(\ell = 0)
$$
 with $\sigma = 0$ \Leftrightarrow $x_{12}^2 x_{34}^2 = x_{14}^2 x_{23}^2$
\n- $\Delta_1 = \Delta_2 = \Delta_3 = \Delta_4 = m$ and special kinematics $x_{12}^2 x_{34}^2 = x_{14}^2 x_{23}^2$ $\rho(t)$
\n- Density: $b = 0$, $a = \sqrt{\varphi^2 + 4\pi^2 m^2}$
\n- $\rho(t) = \frac{1}{2\pi^2} \log \left| \frac{\sqrt{\varphi^2 + 4\pi^2 m^2 - t^2} + 2\pi m}{\sqrt{\varphi^2 + 4\pi^2 m^2 - t^2} - 2\pi m} \right|$
\n

∙ The free energy can be evaluated in elementary functions::

$$
\mathcal{F} = m^2 \log \left(\frac{\varphi^2 + 4\pi^2 m^2}{16m^2} \right) - \frac{\varphi^2}{4\pi^2} \log \left(\frac{\varphi^2 + 4\pi^2 m^2}{\varphi^2} \right) + \frac{2\varphi m}{\pi} \arccot \left(\frac{\varphi}{2\pi m} \right)
$$

\nBulk thermodynamical limit
\n
$$
\varphi \to 0
$$
\nBulk thermodynamical limit
\nBasso-Dixon-Kosower-Krajenbrink-Zhong, 2021]

4. Euclidean OPE and light-like limits

∙ **Euclidean short-distance (OPE) limit** (*σ*̂→ ∞ with *φ*̂finite)

 $\sigma \rightarrow \infty \Rightarrow \{U, V\} \rightarrow \{0, 1\}$ [Basso-Dixon-Kosower-Krajenbrink-Zhong, 2021]

 $|x_{12}|^2$, $|x_{34}|^2 \sim \sqrt{U} |x_{13}|^2$ $(U \to 0, V \to 1)$ OPE limit in the U-channel: $x_1 \sim x_2$, $x_3 \sim x_4$. $x_{14}^2 x_{23}^2 = x_{13}^2 x_{24}^2$

∙ **Double light-cone, or nul, limit** (*φ*̂→ ∞ with *σ*̂finite)

 $\varphi \to \infty \quad \Rightarrow \quad \{U, V\} \to \{0, 0\}$

 x_{12}^2 , $x_{34}^2 \sim \sqrt{U |x_{13}| |x_{24}|};$ x_{14}^2 , $x_{23}^2 \sim \sqrt{V |x_{13}| |x_{24}|}$

i.e. Minkowski intervals $x_{12}^2,\, x_{23}^2, x_{34}^2, x_{41}^2$ become simultaneously light-like

Exact solutions:

[Basso-Dixon-Kosower-Krajenbrink-Zhong, 2021] ∙ **Euclidean short-distance limit** (*σ*̂→ ∞ with *φ*̂fixed) :

∞

Asymptotics of the ladder integrals:

$$
f_k(z, \bar{z}) \to \int_0^{\infty} (2|\sigma|)^k t^{k-1} e^{-t} dt = (2|\sigma|)^k (k-1)!
$$

\n
$$
I_{m,n}^{BD} \to \frac{(2|\sigma|)^{mn}}{\mathcal{N}} \det_{j,k} [(j+k+\ell-2)!] = \left(\log \frac{1}{U} \right)^{mn} C_{m,n}
$$

\n
$$
C_{m,n} = \frac{G(m+1)G(n+1)}{G(m+n+1)}, \quad G(m) = 1!2! \dots (m-2)!
$$

Barnes' G-function

• **Double light-cone, or nul, limit** $(\hat{\varphi} \rightarrow \infty \text{ with } \hat{\sigma} \text{ fixed})$:

Asymptotics of the ladder integrals:
$$
f_k(z, \bar{z}) \rightarrow z \int_0^{\varphi} t^{2k-1} dt = \frac{\varphi^{2k}}{k}
$$

$$
I_{m,n}^{\text{BD}} \to \frac{\varphi^{2m(m+\ell)}}{\mathcal{N}} \times \det \left[\frac{1}{i+j-1+n-m} \right]_{i,j=1,\dots,m} = \frac{\varphi^{2mn}}{\mathcal{N}} \times \mathcal{N} (C_{m,n})^2
$$

$$
= C_{m,n} \left(\log \frac{1}{U} \right)^{mn} \times C_{m,n} \left(\log \frac{1}{V} \right)^{mn}
$$

What happens with the spectral density in these limits?

• $m \to \infty$ asymptotics of exact solution in Euclidean OPE and double light-cone limits $\hat{\sigma}$ \rightarrow ∞ and $\hat{\varphi}$ \rightarrow ∞ limits of the saddle-point solution

∙ **Euclidean short-distance limit** (*σ*̂→ ∞ with *φ*̂fixed) : [Basso-Dixon-Kosower-Krajenbrink-Zhong, 2021] 2*σ* $\mathcal{F} = mn\left[\frac{3}{2} + \log(2\sigma)\right]$ $+\frac{1}{2}m^2 \log(m) + \frac{1}{2}n^2 \log n - \frac{1}{2}(m+n)^2 \log(m+n)$ $a \approx \sigma + (\sqrt{m} + \sqrt{n})^2$, $b \approx \sigma + (\sqrt{m} - \sqrt{n})^2$, $n = m + \ell$

• **Double light-cone, or nul, limit** $(\hat{\varphi} \rightarrow \infty \text{ with } \sigma \text{ fixed})$:

$$
a \approx \varphi, \, b \approx \frac{n-m}{n+m}\varphi
$$

$$
\mathcal{F} = mn[3 + 2\log(\varphi)]
$$

+ $m^2 \log(m) + n^2 \log n - (m+n)^2 \log(m+n)$

Phase diagram:

● Saddle-point equations as Bethe-Yang equations

At large argument, the derivative of the potential is approximated by a piecewise linear function:

$$
V'(t) \underset{t \to \infty}{\to} \text{sgn}(t) \,\theta\left(\left|t\right| - \left|\varphi\right|\right) - \frac{2t}{\sigma^2 - t^2} \ell, \qquad t \in \mathbb{R}
$$

 $2m$ Bethe roots $\{t_1, \ldots, t_{2n}\}$:

1) BAE
$$
\frac{2\ell t_j}{t_j^2 - \sigma^2} + \sum_{k \neq j}^{2m} \frac{2}{t_j - t_k} = n_j \in \mathbb{Z} \qquad (j = 1,...,2m)
$$

2) Symmetry
$$
t_j = -t_{2m-j+1}, n_j = -n_{2m-j+1}
$$

3)
$$
V'(t) \Rightarrow
$$
 $n_j = 1$ if $t > \varphi$, $n_j = 0$ if $\sigma < |t| < \varphi$; $n_j = -1$ if $t < -\varphi$

Two choices for the "Bethe numbers":

Regime I. If
$$
|\varphi| \le |\sigma|
$$
, then $n_j = sign(t_j)$, $j = 1,...,2m$

Regime II. If $|\varphi| > |\sigma|$, then $n_j = sign(t_j)$ if $|t_j| > |\varphi|$ and $n_j = 0$ if $|t_j| < |\varphi|$, $j = 1,...,2m$.

Fishnets: Conformal Field Theories and Feynman Graphs

The qualitative form of the solution for the spectral density in the two regimes: .

Regime I. $|\varphi| \leq |\sigma|$ ("Mode numbers" $n_j = sign(t_j)$)

For large number of magnons this is the finite-zone solution for the the Frolov-Tseytlin folded string rotating in $AdS_3 \times S^1$ with $\{S, J\} = \{2m, \ell\}$

[Basso et al, 2021]

∙ Note that these fictive magnons have nothing to do with the original mirror magnons. Figure 5. Profile of the spectral density when *b* = *|*'*|* (left) and for *a* ! *|*'*|* (right). ● Results compatible with existence of holographic dual. Saddle-point equations = Bethe equations for some magnons in t-space.

 However, not clear how to interpret the "unphysical" mode numbers in regime II. — Problem still open.

● Curious factorisation observed in the light-cone limit where the result is a product of two factors associated with the direct and with the cross channels

$$
I_{m,n}^{\text{BD}} = C_{m,n} \left(\log \frac{1}{U} \right)^{mn} \times C_{m,n} \left(\log \frac{1}{V} \right)^{mn}
$$

 — There is interpretation of the OPE limit in terms of hopping magnons ("stampedes") [Olivucci-Vieira, 2022]. Seems that similar description is possible in the light-like limit as well [Enrico]. If so, how the above factorisation appears?

Thank you!