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Motivation: 

Is there a dual description of open fishnets in terms of string world surface? 

If so, it is expected to depend on  
                                              — the intrinsic geometry (the form of the fishnet) 
                                              — the embedding of the boundary in the Minkowski space.  

Explicit solutions to the thermodynamical (large size) limit of open fishnets could shade light on that. 

The simplest case of a 4-point  rectangular fishnet have a simple matrix-model-like 
representation [Basso and Dixon, 2017].  

                                     — intrinsic geometry = aspect ratio  
                                    — embedding of the boundary = coordinates of the four operators  

[Basso-Dixon-Kosower-Krajenbrink-Zhong, 2021]  observed that: 
     
— For generic kinematics, the thermodynamical limit depend only on the intrinsic geometry  

— The embedding shows up only in a scaling limit with a pair of the points getting light-like. 

This talk:  the solution in the most general double scaling limit where two pairs of points become 
nearly light-like.  

m × n

n /m

the symmetry of the string path integral. Remarkably, conformal fishnet integrals do have

holographic interpretation in case of periodic boundary conditions [8–12]. In particular,

large periodic fishnets can be interpreted as world sheets embedded in the AdS space [8].

It is still an open question whether a holographic interpretation exists also for large

fishnets with open boundaries. The open fishnets possess nice integrability properties

including Yangian symmetry, reviewed in [7], but for the moment it is not clear how to

use them to explore their continuum limit in general. Recently, a first step towards a

holographic description was made in the paper [13] in which the continuum limit was

found for the simplest fishnets with open boundaries introduced previously by Basso and

Dixon [14]. These correspond to the four-point correlators

Gm,n(x1, x2, x3, x4) = hTr{�n
2 (x1)�

m
1 (x2)�

†n
2 (x3)�

†m
1 (x4)}i , (1.1)

in a theory of two Nc ⇥ Nc complex matrix fields �1 and �2 with chiral quartic interaction

⇠ g2Tr[�1�2�
†
1�

†
2]. The perturbative series for the correlator Gm,n consists of a single

Feynman graph representing regular square lattices of size m ⇥ n with the external legs on

each side attached to four distinct points in the Minkowski space. The four operators can

be can be thought of as four di↵erent boundary conditions associated with the four edges

of the rectangle.

Up to a standard factor, Gm,n depends on the positions of the operators through the

two conformal cross ratios,

Gm,n(x1, x2, x3, x4) =
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4.4 Fishnets

In [12], the octagon was expanded in a basis of minors of the in the minors of the semi-infinite matrix

f =

0

������@

f1 f2 f3 f4 f5 .
f2 f3 f4 f5 f6 .
f3 f4 f5 f6 f7 .
f4 f5 f6 f7 f8 .
f5 f6 f7 f8 f9 .
. . . . . .

1

������A
(18)

In particular, for ` = 0, the lowest loop order n-particle contribution is proportional to the determinant
of the matrix (18) restricted to the first n rows and columns, which has been identified in [16] with the
Feynman integral for an n ⇥ n fishnet diagram,

O�=0 =
�X

n=0

X n g2n2 �
[fish]n,n + o(g2)

�
. (19)

For ` > 0, the lowest term is identified as a rectangular n ⇥ (n + `) fishnet Feynman diagram,

O� =
�X

n=0

X n g2n(n+�)
�
[fish]n,n+� + o(g2)

�
, (20)

The n ⇥ (n + m) rectangular fishnet graph is expressed as a diagonal minor of the determinant (18) [16]

[fish]n,n+m =
det

⇣
[fi+j+1+m]i,j=0,...,n�1

⌘

Qn�1
i=0 (2i + m)!(2i + m + 1)!

. (21)

This property of the octagon is obvious from the representation (15), which can be written as a sum over
minors of the matrix R, eq. (16),

O� =
�X

N=0

XN

X

0�i1<...<iN
0�j1<...<jN

det

✓h
R[�]

i�j�

i

�,�=1,...,N

◆

=
�X

N=0

XN

⇣
det R[�]

N�N
+ o(g2)

⌘
.

(22)

Indeed, to the lowest order the determinant of the matrix R[�]
N�N

is given by the fishnet integral normalised
as in (21),

det R[�]
N�N = [fish]N,N+� g2N(N+�) + o(g2N(N+�)+2). (23)

5 Strong coupling limit

The strong coupling limit corresponds to the semiclassical limit of the system of fermions and the free
energy is given by an integral over the Fermi sea. First let us note that the pole of the fermionic correlator
C(x, y) is at xy = 1. It is more natural to replace the correlator by

C(x, y) =
1

x�y�

x � y

xy � 1
! C(x, 1/y) =

y�

x�

xy � 1

x � y
(1)

x1

x2

x3

x4

The octagon - weak coupling

=
g2mn

(x2
13)

n(x2
24)

m
⇥ IBD

m,n(z, z̄) , (1.2)

where x2
ij = (xi � xj)2 and z, z̄ are defined by

u =
x2
12x

2
34

x2
13x

2
24

=
zz̄

(1 � z)(1 � z̄)
, v =

x2
14x

2
23

x2
13x

2
24

=
1

(1 � z)(1 � z̄)
. (1.3)

A canonical choice for the positions of the four operators is

x1 = (0, 0), x2 = (z, z̄), x3 = (1, 1), x4 = (1, 1). (1.4)

It is convenient to use (for Minkowski kinematics) the exponential parametrisation

z = �e���' , z̄ = �e��+' . (1.5)

The Euclidean kinematics is described by the analytic continuation of ' to the imaginary

axis such that z̄ = z⇤. Due to the symmetries z $ z̄ and z $ 1/z̄ one can consider only

the fundamental domain zz̄  1, z̄  1, or equivalently � > 0 and ' > 0. Basso and Dixon

[14] obtained, using the integrability properties inherited from N = 4 SYM, two di↵erent

integral representations for Gm,n which they named BMN (Berenstain-Maldacena-Nastase

– 2 –
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1. Rectangular fishnet graphs

Gm,n(x1, x2, x3, x4) = ⟨Tr{ϕ2(x1)nϕ1(x2)mϕ†
2 (x3)nϕ†

1 (x4)m}⟩
The simplest 4-point correlators in the fishnet CFT [Basso-Dixon]

x2

x4

x1 x3

x2 x2 x2 x2

∙ ∙ ∙ ∙ ∙
∙∙∙∙∙

∙ ∙ ∙ ∙ ∙
∙ ∙ ∙∙∙x1

x1

x1

x4 x4 x4 x4

x3

x3

x3

n

m

Can be looked at as a lattice model defined on a rectangle 
with four different Dirichlet b.c. on the edges

- Fluctuation variable ,  
- nearest-neighbour interaction 

x ∈ ℝ4

|x − y |−2 ∙ ∙

Gm,n(x1, x2, x3, x4) = ∫ℝ4
∏

r∙∈bulk

d4x(r) ∏
r∙−−−∙r′ 

1
|x(r) − x(r′ ) |2

— Continuum limit, if exists, is different from that for cylindrical fishnets [Basso-Zhong, Gromov-Sever]

— Exactly solvable open spin chain with  symmetry  
    [Derkachov-Olivucci, 2020], using the SOV  techniques in [Derkachov-Korchemsky-Manashov,2001].

SO(1,5)

[Aprile, Basso, Caetano, Chicherin, 
Derkachov, Dixon, Duhr, Ferrando, 
Fleury, Gromov, Kazakov, Klemm, 
Korchemsky, Loebbert, Müller, Münkler, 
Nega, Negro, Olivucci, Porkert, Preti, 
Sever, Sizov, Staudacher, Stawinski, 
Zhong, …]

Open fishnets: single-trace correlators in the fishnet theory. In most cases described by a single 
planar graph (but not always!).  

— Interesting mathematical objects: SoV, Y-B, Yangian, Calabi-Yau, …
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Parametrisation by hyperbolic angles:    z = − e−σ−φ, z̄ = − e−σ+φ (in Minkowski 
kinematics 

)σ, φ ∈ ℝ

U =
x2

12x2
34

x2
13x2

24
=

zz̄
(1 − z)(1 − z̄)

, V =
x2

14x2
23

x2
13x2

24
=

1
(1 − z)(1 − z̄)

By the conformal invariance, the correlator depends, up to a standard factor, on the positions 
 through the two  conformal invariant cross ratios x1, x2, x3, x4

By conformal transformation x1 = (0,0), x2 = (z, z̄), x3 = (∞, ∞), x4 = (1,1)

  is a correlation function of spinless fields with dimensions  Gm,n(x1, x2, x3, x4) Δ2 = Δ4 = m, Δ1 = Δ3 = n

Gm,n(x1, x2, x3, x4) =
g2mn

(x2
13)n(x2

24)m
× IBD

m,n(z, z̄)

Basso-Dixon integral

Conformal symmetry.
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2. Basso-Dixon integral

Matrix-model like integral conjectured by Basso and Dixon (2017)  using the AdS/CFT 
integrability and proved by Derkachov and Olivucci (2019-2020).

IBD
m,n(z, z̄) = (2 cosh σ+2 cosh φ)m

×
∞

∑
a1,...,am=1

m

∏
j=1

sinh(ai φ)
sinh φ

aj (−1)aj−1 ∫
m

∏
j=1

duj

2π
exp(2i σuj)

×
m

∏
i=1 (u2

j +
a2

j

4 )
−m−n

∏
i<j [(ui − uj)2 +

(ai + aj)2

4 ] [(ui − uj)2 +
(ai − aj)2

4 ]

IBD
m,n(z, z̄) =

1
𝒩

1
m! ∫

∞

|σ|

m

∏
j=1

dtj (t2
j − σ2)(n−m) cosh σ+cosh φ

cosh tj + cosh φ

m

∏
j,k=1

(tj + tk)
m

∏
j<k

(tj − tk)2

“Dual integral representation” [Basso-Dixon-Kosower-Krajenbrink-Zhong, 2021]

By Fourier transformation   , the discrete sum can be done explicitlyu → i∂/∂t, ∂/∂u → − it
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B. Basso, L. Dixon 1705.03545,

IBD
m,m+ℓ =

1
𝒩

det ([fj+k+ℓ−1]j,k=1,...,m)
x2

x4

x1 x3

x2 x2 x2 x2

∙ ∙ ∙ ∙ ∙
∙∙∙∙∙

∙ ∙ ∙ ∙ ∙
∙ ∙ ∙∙∙x1

x1

x1

x4 x4 x4 x4

x3

x3

x3

x1 x3∙ ∙ ∙ ∙ ∙
x2

x4

x2

x4

x2

x4

x2

x4

x2

x4

k

k-ladder diagram:

fk(z, z̄) = ∫
∞

|σ|

cosh σ+cosh φ
cosh t + cosh φ

(t2 − σ2)k−1 2tdt

Broadhurst-Davydychev, 2010

B-D integral generalises the integral for the ladder diagrams ( ) m = 1

 fishnet :m × n (n = m + ℓ)

“Gluing ladders into fishnet”
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— The B-D integral takes the form of the partition function of the  matrix model with 
 and unusual confining potential:

O(n)
n = − 2

IBD
m,n = 𝒵m(ℓ, σ, φ), ℓ ≡ n − m - “bridge”

𝒵m(ℓ, σ, φ) =
1
𝒩

1
m! ∫

∞

|σ|

m

∏
j=1

dtj e−V(tj)
m

∏
j,k=1

(tj + tk)
m

∏
j<k

(tj − tk)2

V(t) = log
cosh t + cosh φ
cosh σ+cosh φ

− ℓ log(t2 − σ2) + infinite wall at t = |σ |

Effective matrix model:

 unusual confining potential:  
—  grows slowly (linearly) at ; 
—   has an infinite array of simple poles on the imaginary axis.

∙
t → ± ∞

V′ (t)
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3. Thermodynamical limit  ( )m, n → ∞
Effective action:   𝒮 ≡

m

∑
j=1

V(tj) −
m

∑
k≠j

log(t2
k − t2

j ) −
m

∑
j=1

log(2tj)

      −V′ (tj) +
m

∑
k≠j

2
tj − tk

+
m

∑
k=1

2
tj + tk

= 0 ( j = 1,...,m)

R-H problem: 
       
  1)  is analytic in the -plane with two symmetric cuts 
       and  and a puncture at .  

   2)  satisfies for  on the real axis  
                       on the cuts, 
                       outside the cuts 
                             

  3) Asymptotics at infinity: 

H(t) t
[b, a] [−a, − b] t = ∞

H(t) t
H(t + i0) + H(t − i0) = 0
H(t + i0) − H(t − i0) = 0

H(t)) = −
1
2

V′ (t) +
2m
t

+ O(t−3)

  Riemann-Hilbert problem  
for the meromorphic function  

,  

⇒

H(t) ≡ −
1
2

V′ (t) + G(t) − G(−t)

G(t) =
m

∑
k=1

1
t − tk

= ∫
a

b

dt′ ρ(t′ )
t − t′ 

b−b−a a ℜt

ℑt
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Explicit solution of the R-H problem [M. Gaudin,  unpublished notes, 1988] .
The solution for any potential  analytic around the real axis takes form of elliptic integral 

 ,           

      

V(t)

H(t) = − 2∫
a

b

dt1
2π

y(t)
y(t1)

tV′ (t) − t1 V′ (t1)
t2 − t2

1
y =

1
a

(a2 − t2)(t2 − b2)

∫
a

b

dt
y(t)

V′ (t) = 0,
1
a ∫

a

b

dt
y(t)

t2 V′ (t) = 2πm ⇒ a, b

Our potential is given by different analytic expressions in different kinematical domains  different scaling 
regimes in the thermodynamical limit

⇒
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—  Infinite potential wall at , grows linearly at   
          the “eigenvalues” are confined to the interval   and spread at distance    

—  Infinite array of logarithmic poles which lead to a cusp at   if   
If , the solution depends on whether  or :  

                                                                     

V(t) = log
cosh t + cosh φ
cosh σ+cosh φ

− ℓ log(t2 − σ2)

t = σ t → ∞
⇒ t > σ ∼ m

t = φ φ ∼ m
σ, φ ∼ m |φ | < |σ | |φ | > |σ |

∂V(t)
∂t

→
t→∞

sgn(t) θ ( | t | − |φ |) −
2t

σ2 − t2
ℓ, t ∈ ℝ

Regime I:    |φ | ≤ |σ |

V(t)

φ σ

V(t)

Regime II: |φ | > |σ |

φσ
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 In the bulk thermodynamical limit 

   with ,   and  finite,  

∙

m → ∞ ̂ℓ = ℓ/m σ φ

 In the scaling limit 

  with ,   and  finite,  

∙

m, σ → ∞ ̂ℓ = ℓ/m ̂σ ∼ σ/m φ
[Basso-Dixon-Kosower-
Krajenbrink-Zhong, 2021]

 In the double scaling limit 

 with  , ,  finite 

     the solution depends on ,  and 
 

This is the most general limit containing the other two as particular cases.

∙

m, σ, φ → ∞ ̂ℓ = ℓ/m ̂σ ∼ σ/m φ̂ ∼ φ/m

V(t) → max ( | t | , |φ |) − max ( |σ | , φ |) − ℓ log(t2 − σ2) ⇒ ℓ σ
φ

Bulk, scaling and double scaling limits

[Basso-Dixon-Kosower-
Krajenbrink-Zhong, 2021]

Euclidean short-
distance limit 
(always in regime I)

Double light-cone limit 
 (regime I and regime II)

Generic position 
of the four points

     the solution depends only on V(t) → | t | − ℓ log(t2) ⇒ ℓ

       the solution depends on  and V(t) = log | t | − ℓ log(t2 − σ2) ⇒ ℓ σ

 [I.K.,  2022]
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The “Free energy” defined as  is 
an extended quantity: it grows as “area”  

ℱm(ℓ, σ, φ) ≡ log 𝒵m(ℓ, σ, φ)
mn = m(m + ℓ)

         —   free energy per unit area (finite). ℱ̂( ̂σ, φ̂, ̂ℓ) = lim
m→∞

ℱm(ℓ, σ, φ)
m(m + ℓ)

12

We are looking for the spectral density  and the free-energy density in the 
double scaling limit 

         with  ,    finite.

ρ(t)

ℓ, m, σ, φ, t → ∞ ̂σ =
σ
m

, φ̂ =
φ
m

, ̂ℓ =
ℓ
m

̂t =
t
m

However we will work with the original variables keeping in mind that they all scale as .m

3. Solution in the double scaling limit

Assume we have computed the function . Then    gives  the 

effective potential of a probe particle at the point  in the collective field  of the other particles. 
The effective potential is constant on the support of the spectral density:   

.  The constant  is the energy needed to bring a new particle 
from  to , hence . The second derivative of the free energy is simply related to 
the positions of the branch points 

                                   

  

H(t) Φ(t) = Φ(−t) = ∫
∞

t
H(t)dt

t ∈ ℂ

Φ(t) = Φ0, b < | t | < a Φ0 = Φ(a)
t = ∞ t = a ∂m𝒮 = Φ0

∂2
mℱ = − ∂2

m log 𝒩 − ∂mΦ(a) = 2 log
a2 − b2

4(2m + ℓ)2



Fishnets: Conformal Field Theories and Feynman Graphs
13

𝔼 = E(k2) = ∫
π/2

0
dθ 1 − k2 sin2 θ, 𝕂 = K(k2) = ∫

π/2

0

dθ

1 − k2 sin2 θ
,

k2 = 1 − (k′ )2, k′ =
b
a

Π(α2 |k2) = ∫
π/2

0

dθ

(1 − α2 sin2 θ) 1 − k2 sin2 θ

ρ(t) =
1
π

ℓ t
t2 − σ2

(a2 − t2)(t2 − b2)
(a2 − σ2)(b2 − σ2)

+
1
π2

t
a

t2 − b2

a2 − t2
Π ( a2 − b2

a2 − t2
1 −

b2

a2 )

−a

Figure 4. Profile of the spectral density ⇢(t) in regime II.

Figure 5. Profile of the spectral density when b = |'| (left) and for a ! |'| (right).

Eq. (4.30) can be used to generate series expansions of the free energy in di↵erent

limits of regime II, as the bulk thermodynmical limit and the double light-cone limit, but

this task is beyond the scope of this paper. Below I will only check that the limit �/m � 1

of (4.30) along the line � = 0 indeed reproduces the large m asymptotics of the expression

(2.9) for the double light-like limit.

• Double light-cone limit � = 0,' � m

If ' � m, then the right branch point is pushed far as well, a � m. The left branch

point can be anywhere depending on the value of `. The two conditions (4.26)-(4.27) are

compatible with  ⌧ 1. Retaining only the leading linear order in the expansion of the

elliptic integrals in  , they read

⇡
`

a
=

p
1 � k2  , ⇡

2m + `

a
=  ,

'

a
=

p
1 � k2 2, (4.31)

with solution to the leading order at  ⌧ 1

 ! ⇡(2m + `)

'
, k !

2
p

m(m + `)

2m + `
,

a = '+
2⇡2m(m + `)

'
, b =

' `

2m + `
.

(4.32)

At m ! 0, a = ' is the position of the minimum of the external potential. With the

condition Fm!0 = 0, the derivative of the free energy can be integrated to

F = 2m(m + `) log'+ 3m(m + `)

+ m2 log(m) + (m + `)2 log(m + `) � (2m + `)2 log(2m + `)

= 2mn log(') + 3mn + m2 log(m) + n2 log(n) � (m + n)2 log(m + n).

(4.33)

This expression matches the large-m asymptotics of (2.9).

– 17 –

t

ρ(t)

ab−b

This is the density of the Bethe roots that correspond to the Frolov-Tseytlin folded string.
[Basso-Dixon-Kosower-Krajenbrink-Zhong, 2021]

(a2 − σ2)(b2 − σ2) 𝕂 = πℓ a

a2𝔼 − σ2𝕂 = π(2m + ℓ)a
⇒ a, b}

 Density:∙

 Free energy:∙ ∂mℱ = (2m + ℓ)log
(a2 − b2)

4(2m + ℓ)2
+ 2ℓ arctanh

b2 − σ2

a2 − σ2
−

2ℓ σ2

(a2 − σ2) (b2 − σ2)
+ max( |φ | , |σ)

The solution in regime I    ( )   
[Basso-Dixon-Kosower-Krajenbrink-Zhong, 2021]

ℓ, σ, φ ∼ m, |φ | < |σ |.
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Solution in regime II    ( )ℓ, σ, φ ∼ m, |φ | > |σ |

−a
t

ρ(t)

ab−b
Figure 4. Profile of the spectral density ⇢(t) in regime II.

Figure 5. Profile of the spectral density when b = |')| (left) and for a ! |'| (right).

Eq. (4.30) can be used to generate series expansions of the free energy in di↵erent

limits of regime II, as the bulk thermodynmical limit and the double light-cone limit, but

this task is beyond the scope of this paper. Below I will only check that the limit �/m � 1

of (4.30) along the line � = 0 indeed reproduces the large m asymptotics of the expression

(2.9) for the double light-like limit.

• Double light-cone limit � = 0,' � m

If ' � m, then the right branch point is pushed far as well, a � m. The left branch

point can be anywhere depending on the value of `. The two conditions (4.26)-(4.27) are

compatible with  ⌧ 1. Retaining only the leading linear order in the expansion of the

elliptic integrals in  , they read

⇡
`

a
=

p
1 � k2  , ⇡

2m + `

a
=  ,

'

a
=

p
1 � k2 2, (4.31)

with solution to the leading order at  ⌧ 1

 ! ⇡(2m + `)

'
, k !

2
p

m(m + `)

2m + `
,

a = '+
2⇡2m(m + `)

'
, b =

' `

2m + `
.

(4.32)

At m ! 0, a = ' is the position of the minimum of the external potential. With the

condition Fm!0 = 0, the derivative of the free energy can be integrated to

F = 2m(m + `) log'+ 3m(m + `)

+ m2 log(m) + (m + `)2 log(m + `) � (2m + `)2 log(2m + `)

= 2mn log(') + 3mn + m2 log(m) + n2 log(n) � (m + n)2 log(m + n).

(4.33)

This expression matches the large-m asymptotics of (2.9).

– 17 –

F (ψ k2) (a2 − σ2) (b2 − σ2) = πℓa

a2E (ψ k2) − σ2F (ψ k2) = π(2m + ℓ)a
⇒ a, b}

ρ(t) =
1
π

ℓ t
t2 − σ2

(a2 − t2)(t2 − b2)
(a2 − σ2)(b2 − σ2)

+
1
π2

t
a

t2 − b2

a2 − t2
Π ( a2 − b2

a2 − t2
; ψ k2)

incomplete elliptic integral of third kindΠ(α2; ψ |k2) = ∫
ψ

0

dθ

(1 − α2 sin2 θ) 1 − k2 sin2 θ

F(ψ |k2) = ∫
ψ

0

dθ

1 − k2 sin2 θ
, E(ψ |k2) = ∫

ψ

0
dθ 1 − k2 sin2 θ incomplete elliptic integrals 

of first and second kind

∂mℱ = (2m + ℓ)log
(a2 − b2)

4(2m + ℓ)2
+

2φ
π

arctan
a2 − φ2

φ2 − b2
+ 2ℓ arctanh

b2 − σ2

a2 − σ2
−

2ℓ σ2

(a2 − σ2) (b2 − σ2)

 Free energy:∙

 Density:∙ k2 = 1 −
b2

a2
, ψ = arcsin

a2 − φ2

a2 − b2

.
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Explicit solution for square fishnet  with (ℓ = 0) σ = 0 ⇔ x2
12x2

34 = x2
14x2

23

ρ(t) =
1

2π2
log

φ2 + 4π2m2 − t2 + 2π m

φ2 + 4π2m2 − t2 − 2π m

ℱ = m2 log ( φ2 + 4π2m2

16m2 ) −
φ2

4π2
log ( φ2 + 4π2m2

φ2 ) +
2φm

π
arccot ( φ

2πm )

b = 0, a = φ2 + 4π2m2

Figure 2. Profile of the spectral density for a large square fishnet with � = 0. The density is finite
at t = 0 and develops a cusp at t = '.

Figure 3. When ' ! 0, the cusp moves to the origin and the density becomes singular at t = 0
(left). When ' ! 1, the (right).

continued by symmetry to negative t has a profile shown in fig. 2. It exhibits a logarithmic

cusp localised at t = ' which is a consequence of the non-analyticity of the external

potential at this point at scale t ⇠ m. Near the cusp the density behaves as

⇢(t)sing ⇡ 1

2⇡2
log |t � '| + smooth function, 1 ⌧ |t � '| ⌧ m. (4.18)

In this simple case the expression for the derivative of the free energy

@mF = 2m log

✓
'2 + 4⇡2m2

16m2

◆
+

2'

⇡
arccot

⇣ '

2⇡m

⌘
� log(2⇡m) + O(1) (4.19)

can be integrated explicitly, with the integration constant fixed by the condition that the

free energy vanishes at m = 0,

F = m2 log

✓
'2 + 4⇡2m2

16m2

◆
� '2

4⇡2
log

✓
'2 + 4⇡2m2

'2

◆
+

2'm

⇡
arccot

⇣ '

2⇡m

⌘
. (4.20)

One can check that the ' � m asymptotics of (4.20) coincides with the large m

asymptotics of the solution in the double light-like limit (2.9) with u = v = e�|'|,

F = m2 log
'2

16m2
+ 3m2 +

2⇡2m4

3'2
+ O('�4). (4.21)

The solution (4.20) interpolates smoothly between the bulk thermodynamical limit (' ! 0)

and the double light-like limit (' ! 1) of the large square fishnet. The first term in the

small ' expansion

F = m2 log
⇡2

4
+ m' + (log

'2

4⇡2m2
� 3)

'2

4⇡2
+ O('4) (4.22)
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|φ |− |φ | a−a 0

ρ(t)

t

 Density:∙

 The free energy can be evaluated in elementary functions::∙

φ → ∞
[Basso-Dixon-Kosower-Krajenbrink-Zhong, 2021]
Bulk thermodynamical limit ”Double light-like limit”Figure 2. Profile of the spectral density for a large square fishnet with � = 0. The density is finite

at t = 0 and develops a cusp at t = '.

Figure 3. When ' ! 0, the cusp moves to the origin and the density becomes singular at t = 0
(left). When ' ! 1, the (right).

continued by symmetry to negative t has a profile shown in fig. 2. It exhibits a logarithmic

cusp localised at t = ' which is a consequence of the non-analyticity of the external

potential at this point at scale t ⇠ m. Near the cusp the density behaves as

⇢(t)sing ⇡ 1

2⇡2
log |t � '| + smooth function, 1 ⌧ |t � '| ⌧ m. (4.18)

In this simple case the expression for the derivative of the free energy

@mF = 2m log

✓
'2 + 4⇡2m2

16m2

◆
+

2'

⇡
arccot

⇣ '

2⇡m

⌘
� log(2⇡m) + O(1) (4.19)

can be integrated explicitly, with the integration constant fixed by the condition that the

free energy vanishes at m = 0,

F = m2 log

✓
'2 + 4⇡2m2

16m2

◆
� '2

4⇡2
log

✓
'2 + 4⇡2m2

'2

◆
+

2'm

⇡
arccot

⇣ '

2⇡m

⌘
. (4.20)

One can check that the ' � m asymptotics of (4.20) coincides with the large m

asymptotics of the solution in the double light-like limit (2.9) with u = v = e�|'|,

F = m2 log
'2

16m2
+ 3m2 +

2⇡2m4

3'2
+ O('�4). (4.21)

The solution (4.20) interpolates smoothly between the bulk thermodynamical limit (' ! 0)

and the double light-like limit (' ! 1) of the large square fishnet. The first term in the

small ' expansion

F = m2 log
⇡2

4
+ m' + (log

'2

4⇡2m2
� 3)

'2

4⇡2
+ O('4) (4.22)
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φ → 0

 and special kinematics Δ1 = Δ2 = Δ3 = Δ4 = m x2
12x2

34 = x2
14x2

23

.
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4. Euclidean OPE and light-like limits

 Euclidean short-distance (OPE)  limit   ∙ ( ̂σ → ∞ with φ̂ finite)
[Basso-Dixon-Kosower-Krajenbrink-Zhong, 2021]σ → ∞ ⇒ {U, V} → {0,1}

|x12 |2 , |x34 |2 ∼ U |x13 |2 (U → 0, V → 1)

  OPE limit in the U-channel:   .x1 ∼ x2, x3 ∼ x4

 Double light-cone, or nul,  limit ∙ (φ̂ → ∞ with ̂σ finite)

φ → ∞ ⇒ {U, V} → {0,0}

x2
12, x2

34 ∼ U |x13 | |x24 | ; x2
14, x2

23 ∼ V |x13 | |x24 |

i.e.  Minkowski intervals  become simultaneously light-like x2
12, x2

23, x2
34, x2

41

x2
14x2

23 = x2
13x2

24
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Exact solutions:

Asymptotics of the ladder integrals:   fk(z, z̄) →
φ≫k

2∫
φ

0
t2k−1dt =

φ2k

k

IBD
m,n →

φ2m(m+ℓ)

𝒩
× det [ 1

i + j − 1 + n − m ]
i, j=1,...,m

=
φ2mn

𝒩
× 𝒩 (Cm,n)2

= Cm,n (log
1
U )

mn

× Cm,n (log
1
V )

mn

 Double light-cone, or nul,  limit     (                                    ) :∙ φ̂ → ∞ with ̂σ fixed

[Basso-Dixon-Kosower-
Krajenbrink-Zhong, 2021]

fk(z, z̄) → ∫
∞

0
(2 |σ | )k tk−1e−tdt = (2 |σ | )k (k − 1)!Asymptotics of the ladder integrals:

Cm,n =
G(m + 1)G(n + 1)

G(m + n + 1)
, G(m) = 1!2! . . . (m − 2)!

Barnes’ G-function

IBD
m,n →

(2 |σ | )mn

𝒩
det
j,k

[( j + k + ℓ − 2)!]= (log
1
U )

mn

Cm,n

 Euclidean short-distance limit∙ ( ̂σ → ∞ with φ̂ fixed) :
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   asymptotics of exact solution in Euclidean OPE and double light-cone limits 
matches  and  limits of the saddle-point solution 
∙ m → ∞

̂σ → ∞ φ̂ → ∞

 Double light-cone, or nul,  limit     (                                    ) :∙ φ̂ → ∞ with σ fixed

2φ

a ≈ φ, b ≈
n − m
n + m

φ

 Euclidean short-distance limit∙ ( ̂σ → ∞ with φ̂ fixed) : [Basso-Dixon-Kosower-
Krajenbrink-Zhong, 2021]

2σ

ℱ = mn[ 3
2 + log(2σ)]

+ 1
2 m2 log(m) + 1

2 n2 log n − 1
2 (m + n)2log(m + n)

a ≈ σ + ( m + n)2, b ≈ σ + ( m − n)2, n = m + ℓ

What happens with the spectral density in these limits? 

ℱ = mn[3 + 2 log(φ)]
+m2 log(m) + n2 log n − (m + n)2log(m + n)
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Phase diagram:

.
σ ∼ m, φ ∼ m

φ ≫ m

φ

σ
σ ≫ m

Euclidean 
short 
distance limit

Ia

Ib

II
σ ∼ m, φ ∼ m

σ, φ ∼ 1

Double light-like limit 
Single light-
like limit 

Bulk td limit
mapping to Folded 
string solution

short string limit

Double scaling limit

(φ < σ)

Figure 4. Profile of the spectral density ⇢(t) in regime II.

Figure 5. Profile of the spectral density when b = |'| (left) and for a ! |'| (right).

Eq. (4.30) can be used to generate series expansions of the free energy in di↵erent

limits of regime II, as the bulk thermodynmical limit and the double light-cone limit, but

this task is beyond the scope of this paper. Below I will only check that the limit �/m � 1

of (4.30) along the line � = 0 indeed reproduces the large m asymptotics of the expression

(2.9) for the double light-like limit.

• Double light-cone limit � = 0,' � m

If ' � m, then the right branch point is pushed far as well, a � m. The left branch

point can be anywhere depending on the value of `. The two conditions (4.26)-(4.27) are

compatible with  ⌧ 1. Retaining only the leading linear order in the expansion of the

elliptic integrals in  , they read

⇡
`

a
=

p
1 � k2  , ⇡

2m + `

a
=  ,

'

a
=

p
1 � k2 2, (4.31)

with solution to the leading order at  ⌧ 1

 ! ⇡(2m + `)

'
, k !

2
p

m(m + `)

2m + `
,

a = '+
2⇡2m(m + `)

'
, b =

' `

2m + `
.

(4.32)

At m ! 0, a = ' is the position of the minimum of the external potential. With the

condition Fm!0 = 0, the derivative of the free energy can be integrated to

F = 2m(m + `) log'+ 3m(m + `)

+ m2 log(m) + (m + `)2 log(m + `) � (2m + `)2 log(2m + `)

= 2mn log(') + 3mn + m2 log(m) + n2 log(n) � (m + n)2 log(m + n).

(4.33)

This expression matches the large-m asymptotics of (2.9).
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φ → ∞, μ ≡ φ − σ fixed
Figure 4. Profile of the spectral density ⇢(t) in regime II.

Figure 5. Profile of the spectral density when b = |'| (left) and for a ! |'| (right).

Eq. (4.30) can be used to generate series expansions of the free energy in di↵erent

limits of regime II, as the bulk thermodynmical limit and the double light-cone limit, but

this task is beyond the scope of this paper. Below I will only check that the limit �/m � 1

of (4.30) along the line � = 0 indeed reproduces the large m asymptotics of the expression

(2.9) for the double light-like limit.

• Double light-cone limit � = 0,' � m

If ' � m, then the right branch point is pushed far as well, a � m. The left branch

point can be anywhere depending on the value of `. The two conditions (4.26)-(4.27) are

compatible with  ⌧ 1. Retaining only the leading linear order in the expansion of the

elliptic integrals in  , they read

⇡
`

a
=

p
1 � k2  , ⇡

2m + `

a
=  ,

'

a
=

p
1 � k2 2, (4.31)

with solution to the leading order at  ⌧ 1

 ! ⇡(2m + `)

'
, k !

2
p

m(m + `)

2m + `
,

a = '+
2⇡2m(m + `)

'
, b =

' `

2m + `
.

(4.32)

At m ! 0, a = ' is the position of the minimum of the external potential. With the

condition Fm!0 = 0, the derivative of the free energy can be integrated to

F = 2m(m + `) log'+ 3m(m + `)

+ m2 log(m) + (m + `)2 log(m + `) � (2m + `)2 log(2m + `)

= 2mn log(') + 3mn + m2 log(m) + n2 log(n) � (m + n)2 log(m + n).

(4.33)

This expression matches the large-m asymptotics of (2.9).
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Double light-like limit
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V′ (t) →
t→∞

sgn(t) θ ( | t | − |φ |) −
2t

σ2 − t2
ℓ, t ∈ ℝ

At large argument, the derivative of the potential is approximated by a piecewise linear function:

Saddle-point equations as Bethe-Yang equations.

Two choices for the “Bethe numbers”:  
  
Regime I.   If , then    

Regime II.   If , then  if  and  if ,  .  

|φ | ≤ |σ | nj = sign(tj), j = 1,...,2m

|φ | > |σ | nj = sign(tj) | tj | > |φ | nj = 0 | tj | < |φ | j = 1,...,2m

 Bethe roots :  

1) BAE                            

2) Symmetry                    ,  

3)                      if ,       if  ;   if    

2m {t1, . . . , t2n}

2ℓ tj
t2
j − σ2

+
2m

∑
k≠j

2
tj − tk

= nj ∈ ℤ ( j = 1,...,2m)

tj = − t2m−j+1 nj = − n2m−j+1

V′ (t) ⇒ nj = 1 t > φ nj = 0 σ < | t | < φ nj = − 1 t < − φ
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Not a finite-gap solution: the two groups of 
roots (with mode numbers 1 and 0 respectively) 
do not repel but attract. Logarithmic cusp of the 
spectral density observed at the collision point.  

The qualitative form of the solution for the spectral density in the two regimes:

Regime I.            ( “Mode numbers”  ) |φ | ≤ |σ | nj = sign(tj)

For large number of magnons this is the finite-zone 
solution for the the Frolov-Tseytlin folded string 
rotating in  with  AdS3 × S1 {S, J} = {2m, ℓ}

[Basso et al, 2021]

Figure 4. Profile of the spectral density ⇢(t) in regime II.

Figure 5. Profile of the spectral density when b = |'| (left) and for a ! |'| (right).

Eq. (4.30) can be used to generate series expansions of the free energy in di↵erent

limits of regime II, as the bulk thermodynmical limit and the double light-cone limit, but

this task is beyond the scope of this paper. Below I will only check that the limit �/m � 1

of (4.30) along the line � = 0 indeed reproduces the large m asymptotics of the expression

(2.9) for the double light-like limit.

• Double light-cone limit � = 0,' � m

If ' � m, then the right branch point is pushed far as well, a � m. The left branch

point can be anywhere depending on the value of `. The two conditions (4.26)-(4.27) are

compatible with  ⌧ 1. Retaining only the leading linear order in the expansion of the

elliptic integrals in  , they read

⇡
`

a
=

p
1 � k2  , ⇡

2m + `

a
=  ,

'

a
=

p
1 � k2 2, (4.31)

with solution to the leading order at  ⌧ 1

 ! ⇡(2m + `)

'
, k !

2
p

m(m + `)

2m + `
,

a = '+
2⇡2m(m + `)

'
, b =

' `

2m + `
.

(4.32)

At m ! 0, a = ' is the position of the minimum of the external potential. With the

condition Fm!0 = 0, the derivative of the free energy can be integrated to

F = 2m(m + `) log'+ 3m(m + `)

+ m2 log(m) + (m + `)2 log(m + `) � (2m + `)2 log(2m + `)

= 2mn log(') + 3mn + m2 log(m) + n2 log(n) � (m + n)2 log(m + n).

(4.33)

This expression matches the large-m asymptotics of (2.9).
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t

ρ(t)

n = 1n = − 1

 Note that these fictive magnons have nothing to do with the original mirror magnons.  ∙

Regime II.         (“Mode numbers”   |φ | > |σ | nj = sign(tj) θ( | tj | − |φ | )

t

ρ(t)

Figure 4. Profile of the spectral density ⇢(t) in regime II.

Figure 5. Profile of the spectral density when b = |'| (left) and for a ! |'| (right).

Eq. (4.30) can be used to generate series expansions of the free energy in di↵erent

limits of regime II, as the bulk thermodynmical limit and the double light-cone limit, but

this task is beyond the scope of this paper. Below I will only check that the limit �/m � 1

of (4.30) along the line � = 0 indeed reproduces the large m asymptotics of the expression

(2.9) for the double light-like limit.

• Double light-cone limit � = 0,' � m

If ' � m, then the right branch point is pushed far as well, a � m. The left branch

point can be anywhere depending on the value of `. The two conditions (4.26)-(4.27) are

compatible with  ⌧ 1. Retaining only the leading linear order in the expansion of the

elliptic integrals in  , they read

⇡
`

a
=

p
1 � k2  , ⇡

2m + `

a
=  ,

'

a
=

p
1 � k2 2, (4.31)

with solution to the leading order at  ⌧ 1

 ! ⇡(2m + `)

'
, k !

2
p

m(m + `)

2m + `
,

a = '+
2⇡2m(m + `)

'
, b =

' `

2m + `
.

(4.32)

At m ! 0, a = ' is the position of the minimum of the external potential. With the

condition Fm!0 = 0, the derivative of the free energy can be integrated to

F = 2m(m + `) log'+ 3m(m + `)

+ m2 log(m) + (m + `)2 log(m + `) � (2m + `)2 log(2m + `)

= 2mn log(') + 3mn + m2 log(m) + n2 log(n) � (m + n)2 log(m + n).

(4.33)

This expression matches the large-m asymptotics of (2.9).
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n = 1n = − 1 n = 0n = 0

φ

.
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 Curious factorisation observed in the light-cone limit where the result is a product of two 
factors associated with the direct and with the cross channels  
∙

 —  There is interpretation of the OPE limit in terms of hopping magnons (“stampedes”) 
[Olivucci-Vieira, 2022]. Seems that similar description is possible in the light-like limit as well 
[Enrico]. If so, how the above factorisation appears? 

IBD
m,n = Cm,n (log

1
U )

mn

× Cm,n (log
1
V )

mn

  Results compatible with existence of holographic dual. 
     Saddle-point equations = Bethe equations for some magnons in t-space. 

    However, not clear how to interpret the “unphysical” mode numbers in regime II. 
     — Problem still open.

∙
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Thank you!


