

DiffDock & FlexDock Advancing Molecular Docking with Generative Models

Gabriele Corso

Based on joint work with Vignesh Ram Somnath, Noah Getz, Regina Barzilay, Tommi Jaakkola, Hannes Stärk, Bowen Jing and others!

Protein-Ligand Docking

Input: protein structure + molecule

Output: bound structure

Protein-Ligand Docking

Virtual screening

Hit discovery Lead optimization

Protein-Ligand Docking

Virtual screening

Hit discovery Lead optimization

Reverse screening

MoA identification Toxicity prediction

We are NOT doing sampling

"It's fake"...

Output: bound structure

We are NOT doing sampling

"It's fake" ... but it is useful

Output: bound structure

Search-based methods

Sampling & optimization over scoring function

Search-based methods

Fail to grasp with the **vast** search space of blind docking

Sampling & optimization over scoring function

→ no finite-time guarantees

Search-based methods

Sampling & optimization over scoring function

→ no finite-time guarantees

Fail to grasp with the **vast** search space of blind docking

Struggle with, e.g., side chain flexibility from unbound to bound protein structures

Search-based methods

Sampling & optimization over scoring function

Previous deep learning methods were based on regression objective

Regression models

Search-based methods

Sampling & optimization over scoring function

Previous deep learning methods were based on regression objective

→ no finite-time guarantees

Regression models

→ fast but poor-quality predictions

Search-based methods

Sampling & optimization over scoring function

Previous deep learning methods were based on regression objective

→ no finite-time guarantees

Regression models

Generative models

→ fast but poor-quality predictions

Deep generative models with finite time sampling

→ correct handling of uncertainty

DiffDock

DiffDock

Blind Docking Performance

Holo protein structures

ESMFold structures

Biggest Outstanding Challenges

- **Generalization**: DiffDock struggles when given completely unseen protein classes
- **Receptor flexibility** needs to to be accounted for in order to obtain highly-accurate blind predictions
- **Pose relaxation** is currently required to do some downstream predictions
- No direct **binding affinity** measure

15

Biggest Outstanding Challenges

- **Generalization**: DiffDock struggles when given completely unseen protein classes
- **Receptor flexibility** needs to to be accounted for in order to obtain highly-accurate blind predictions
- Pose relaxation is currently required to do some downstream predictions
- No direct **binding affinity** measure

Corso, Deng, Fry, Polizzi, Barzilay, Jaakkola. ICLR 2024

Corso, Somnath, Getz, Barzilay, Jaakkola, Krause. Under review.

Coming soon!

16

Generative Modeling for Flexible Docking

Flexible docking involves also predicting the conformational change of the protein from the apo (unbound) to holo (bound) state

Generative Modeling for Flexible Docking

Flexible docking involves also predicting the conformational change of the protein from the apo (unbound) to holo (bound) state

We can frame flexible docking as the process of mapping the distribution of apo protein structures to that of holo structures bound to a given ligand.

Flow Matching

FM Sampling process

- 1. Sample from $x_0 \sim q_0$
- 2. Flow x_0 to x_1

FM Objective

$$\min_{\theta} \mathbb{E}_{t,(\mathbf{x}_0,\mathbf{x}_1)\sim q} \left[\| v_t(\mathbf{x}_t;\theta) - u_t(\mathbf{x}_t | \mathbf{x}_1) \|^2 \right]$$
where *q* has marginals *q*₀ and *q*₁.

Flow Matching

FM Sampling process

- 1. Sample from $x_0 \sim q_0$
- 2. Flow x_0 to x_1

FM Objective

 $\min_{\theta} \mathbb{E}_{t,(\mathbf{x}_0,\mathbf{x}_1)\sim q} \left[\| v_t(\mathbf{x}_t;\theta) - u_t(\mathbf{x}_t | \mathbf{x}_1) \|^2 \right]$

where q has marginals q_0 and q_1 .

Problem: flow matching imposes very complex transport problem resulting in high (Wasserstein) approximation errors.

Unbalanced Flow Matching

Idea: relaxing marginal preservation condition of flow matching we can define much easier transport problems

Unbalanced Flow Matching

Unbalanced FM Sampling process

- Sample from $x_0 \sim q_0$ 1.
- Flow x_0 to x_1 2.
- 3. Accept x_1 or return to 1

Idea: relaxing marginal preservation condition of flow matching we can define much easier transport problems

Corso, Somnath, Getz, Barzilay, Jaakkola, Krause. Under review.

Unbalanced Flow Matching

Unbalanced FM Sampling process

- Sample from $x_0 \sim q_0$ 1.
- Flow x_0 to x_1 2.
- 3. Accept x_1 or return to 1

Unbalanced FM Objective

 $\min_{q,\theta} \alpha \mathbb{E}_{t,(\mathbf{x}_0,\mathbf{x}_1)\sim q} \left[\|v_t(\mathbf{x}_t;\theta) - u_t(\mathbf{x}_t | \mathbf{x}_1) \|^2 \right] + D_2(q_0)$

with arbitrary coupling distribution q with marginals $q_{\mathbf{x}_0}$ and $q_{\mathbf{x}_1}$.

Idea: relaxing marginal preservation condition of flow matching we can define much easier transport problems

$$q_{\mathbf{x}_0}$$
) + $D_2(q_{\mathbf{x}_1} | q_1)$

Corso, Somnath, Getz, Barzilay, Jaakkola, Krause. Under review.

We can show that the UFM objective is a bound on the approximation error vs sampling efficiency tradeoff.

$$\mathscr{L}_{UFM}(q,\theta) = \alpha \mathbb{E}_{t,(\mathbf{x}_0,\mathbf{x}_1)\sim q} \left[\| v_t(\mathbf{x}_t;\theta) - v_t(\mathbf{x}_t;\theta) - v_t(\mathbf{x}_t;\theta) \right]$$

 $u_t(\mathbf{x}_t | \mathbf{x}_1) \|^2 + D_2(q_0 | q_{\mathbf{x}_0}) + D_2(q_{\mathbf{x}_1} | q_1)$

We can show that the UFM objective is a bound on the approximation error vs sampling efficiency tradeoff.

$$\mathscr{L}_{UFM}(q,\theta) = \alpha \mathbb{E}_{t,(\mathbf{x}_0,\mathbf{x}_1)\sim q} \left[\| v_t(\mathbf{x}_t;\theta) - \mathbf{x}_t(\mathbf{x}_t;\theta) - \mathbf{x}_t(\mathbf{x}_t;\theta) \right]$$

Proposition (Benton et al., 2023): under appropriate assumptions the approximation error of the learned flow is bounded by FM objective:

 $W_2^2(\hat{q}_{\mathbf{x}_1}(\cdot \mid \theta), q_{\mathbf{x}_1}) \le L^2 \cdot \mathbb{E}_{t,q} \left[\| v_t(\mathbf{x}_t; \theta) - u_t(\mathbf{x}_t \mid \mathbf{x}_1) \|^2 \right]$

 $u_t(\mathbf{x}_t | \mathbf{x}_1) \|^2] + D_2(q_0 | q_{\mathbf{x}_0}) + D_2(q_{\mathbf{x}_1} | q_1)$

We can show that the UFM objective is a bound on the approximation error vs sampling efficiency tradeoff.

$$\mathscr{L}_{UFM}(q,\theta) = \alpha \mathbb{E}_{t,(\mathbf{x}_0,\mathbf{x}_1)\sim q} \left[\|v_t(\mathbf{x}_t;\theta) - u_t(\mathbf{x}_t \,|\, \mathbf{x}_1)\|^2 \right] + D_2(q_0 \,|\, q_{\mathbf{x}_0}) + D_2(q_{\mathbf{x}_1} \,|\, q_1)$$

Proposition (Benton et al., 2023): under appropriate assumptions the approximation error of the learned flow is bounded by FM objective:

 $W_2^2(\hat{q}_{\mathbf{x}_1}(\cdot \mid \theta), q_{\mathbf{x}_1}) \le L^2 \cdot \mathbb{E}_{t,q} \left[\| v_t(\mathbf{x}_t; \theta) - u_t(\mathbf{x}_t \mid \mathbf{x}_1) \|^2 \right]$

Proposition: ESS*, for sampling q_1 when having access to samples of q_0 and a perfectly trained unbalanced flow with coupling q is bounded by:

$$\mathsf{ESS}^{*}(q) \ge \exp\left[-D_{2}(q_{0} | q_{\mathbf{x}_{0}}) - D_{2}(q_{\mathbf{x}_{1}} | q_{1})\right]$$

We can show that the UFM objective is a bound on the approximation error vs sampling efficiency tradeoff.

$$\mathscr{L}_{UFM}(q,\theta) = \alpha \mathbb{E}_{t,(\mathbf{x}_0,\mathbf{x}_1)\sim q} \left[\|v_t(\mathbf{x}_t;\theta) - u_t(\mathbf{x}_t \,|\, \mathbf{x}_1)\|^2 \right] + D_2(q_0 \,|\, q_{\mathbf{x}_0}) + D_2(q_{\mathbf{x}_1} \,|\, q_1)$$

Proposition (Benton et al., 2023): under appropriate assumptions the approximation error of the learned flow is bounded by FM objective:

$$W_2^2(\hat{q}_{\mathbf{x}_1}(\cdot \mid \theta), q_{\mathbf{x}_1}) \le L^2 \cdot \mathbb{E}_{t,q} \left[\| v_t(\mathbf{x}_t; \theta) - u_t(\mathbf{x}_t \mid \mathbf{x}_1) \|^2 \right]$$

$$\beta W_2^2(\hat{q}_{\mathbf{x}_1}(\cdot \mid \theta), q_{\mathbf{x}_1})$$

Approximation error

Proposition: ESS*, for sampling q_1 when having access to samples of q_0 and a perfectly trained unbalanced flow with coupling q is bounded by:

$$\mathsf{ESS}^{*}(q) \ge \exp\left[-D_{2}(q_{0} | q_{\mathbf{x}_{0}}) - D_{2}(q_{\mathbf{x}_{1}} | q_{1})\right]$$

$$\log \text{ESS}^*(q) \leq \mathscr{L}_{\text{UFM}}$$

Sampling efficiency

$\mathscr{L}_{UFM}(q,\theta) = \alpha \mathbb{E}_{t,(\mathbf{x}_0,\mathbf{x}_1)\sim q} \left[\|v_t(\mathbf{x}_t;\theta) - u_t(\mathbf{x}_t \,|\, \mathbf{x}_1)\|^2 \right] + D_2(q_0 \,|\, q_{\mathbf{x}_0}) + D_2(q_{\mathbf{x}_1} \,|\, q_1)$

 $\mathscr{L}_{UFM}(q,\theta) = \alpha \mathbb{E}_{t,(\mathbf{x}_0,\mathbf{x}_1)\sim q} \left[\|v_t(\mathbf{x}_t;\theta) - u_t(\mathbf{x}_t | \mathbf{x}_1) \|^2 \right] + D_2(q_0 | q_{\mathbf{x}_0}) + D_2(q_{\mathbf{x}_1} | q_1)$ $\leq \mathbb{E}_{(\mathbf{x}_0, \mathbf{x}_1) \sim q} [C(\mathbf{x}_0, \mathbf{x}_1)] + D_2(q_0 | q_{\mathbf{x}_0}) + D_2(q_{\mathbf{x}_1} | q_1) \triangleq UOT(q_0, q_1)$

$$\mathscr{L}_{UFM}(q,\theta) = \alpha \mathbb{E}_{t,(\mathbf{x}_0,\mathbf{x}_1)\sim q} \left[\| v_t(\mathbf{x}_t;\theta) \| \right]$$

The UFM objective can be bound by the Unbalanced OT objective which suggests set of families to choose q from.

 $\theta - u_t(\mathbf{x}_t | \mathbf{x}_1) \|^2 + D_2(q_0 | q_{\mathbf{x}_0}) + D_2(q_{\mathbf{x}_1} | q_1)$ $\leq \mathbb{E}_{(\mathbf{x}_{0},\mathbf{x}_{1})\sim q}[C(\mathbf{x}_{0},\mathbf{x}_{1})] + D_{2}(q_{0} | q_{\mathbf{x}_{0}}) + D_{2}(q_{\mathbf{x}_{1}} | q_{1}) \triangleq UOT(q_{0},q_{1})$

$$\mathscr{L}_{UFM}(q,\theta) = \alpha \mathbb{E}_{t,(\mathbf{x}_0,\mathbf{x}_1)\sim q} \left[\| v_t(\mathbf{x}_t;\theta) - v_t(\mathbf{x}_t;\theta) - v_t(\mathbf{x}_t;\theta) \right]$$

 $\theta - u_t(\mathbf{x}_t | \mathbf{x}_1) \|^2 + D_2(q_0 | q_{\mathbf{x}_0}) + D_2(q_{\mathbf{x}_1} | q_1)$ $\leq \mathbb{E}_{(\mathbf{x}_0,\mathbf{x}_1)\sim q}[C(\mathbf{x}_0,\mathbf{x}_1)] + D_2(q_0 | q_{\mathbf{x}_0}) + D_2(q_{\mathbf{x}_1} | q_1) \triangleq UOT(q_0,q_1)$

The UFM objective can be bound by the Unbalanced OT objective which suggests set of families to choose q from.

Because we only have access to individual samples we choose $q(\mathbf{x}_0, \mathbf{x}_1) = q_0(\mathbf{x}_0) \ q_1(\mathbf{x}_1) \ \|_{\|\mathbf{x}_0 - \mathbf{x}_1\| < C}$

$$\mathscr{L}_{UFM}(q,\theta) = \alpha \mathbb{E}_{t,(\mathbf{x}_0,\mathbf{x}_1)\sim q} \left[\| v_t(\mathbf{x}_t;\theta) - v_t(\mathbf{x}_t;\theta) - v_t(\mathbf{x}_t;\theta) \right]$$

 $\theta - u_t(\mathbf{x}_t | \mathbf{x}_1) \|^2 + D_2(q_0 | q_{\mathbf{x}_0}) + D_2(q_{\mathbf{x}_1} | q_1)$ $\leq \mathbb{E}_{(\mathbf{x}_0,\mathbf{x}_1)\sim q}[C(\mathbf{x}_0,\mathbf{x}_1)] + D_2(q_0 | q_{\mathbf{x}_0}) + D_2(q_{\mathbf{x}_1} | q_1) \triangleq UOT(q_0,q_1)$

The UFM objective can be bound by the Unbalanced OT objective which suggests set of families to choose q from.

 $\min_{\boldsymbol{\sigma}} \mathbb{E}_{t,(\mathbf{x}_0,\mathbf{x}_1)\sim q} \left[\| \boldsymbol{v}_t(\mathbf{x}_t;\boldsymbol{\theta}) - \boldsymbol{u}_t(\mathbf{x}_t | \mathbf{x}_1) \|^2 \right]$ θ

Because we only have access to individual samples we choose $q(\mathbf{x}_0, \mathbf{x}_1) = q_0(\mathbf{x}_0) \ q_1(\mathbf{x}_1) \ \|_{\|\mathbf{x}_0 - \mathbf{x}_1\| < C}$

Then, given q, the UFM objective boils down to Flow Matching:

Flexible Docking with Unbalanced FM

Choosing q with different transport cutoffs highlights the value of UFM over FM $q(\mathbf{x}_0, \mathbf{x}_1) = q_0(\mathbf{x}_0) \ q_1(\mathbf{x}_1) \ \|_{\|\mathbf{x}_0 - \mathbf{x}_1\| < C}$

Biggest Outstanding Challenges

- **Generalization**: DiffDock struggles when given completely unseen protein classes
- **Receptor flexibility** needs to to be accounted for in order to obtain highly-accurate blind predictions
- **Pose relaxation** is currently required to do some downstream predictions
- No direct **binding affinity** measure

Corso, Deng, Fry, Polizzi, Barzilay, Jaakkola. ICLR 2024

Corso, Somnath, Getz, Barzilay, Jaakkola, Krause. Under review.

Coming soon!

Pose relaxation

Although docking is typically framed as trying to obtain poses as close as possible to crystal structure, the "physicality" of the poses is also important.

PoseBusters: Al-based docking methods fail to generate physically valid poses or generalise to novel sequences[†]

Martin Buttenschoen, Garrett M. Morris, and Charlotte M. Deane[‡]

(h) Clash with protein. DiffDock prediction for ligand XQ1 of protein-ligand complex 7L7C. RMSD 1.6 Å.

Pose relaxation

Although docking is typically framed as trying to obtain poses as close as possible to crystal structure, the "physicality" of the poses is also important.

> Pose relaxation: refine the structural conformation to find a more energetically favorable

PoseBusters: Al-based docking methods fail to generate physically valid poses or generalise to novel sequences[†]

Martin Buttenschoen, Garrett M. Morris, and Charlotte M. Deane[‡]

(h) Clash with protein. DiffDock prediction for ligand XQ1 of protein-ligand complex 7L7C. RMSD 1.6 Å.

Pose relaxation with Unbalanced FM

Applying "vanilla" Unbalanced FM improves the performance but it is still far from optimal due to vast scale disparity of different degrees of freedom

To incentivize the model to preserve physicality also in very narrow degrees of freedom we would want an objective like reverse KL.

Energy Loss

To incentivize the model to preserve physicality also in very narrow degrees of freedom we would want an objective like reverse KL.

However, reverse KL (e.g. training Boltzmann Generators with reverse KL) has a few challenges:

- 1. Requires invertible transformation
- 2. Requires back propagating through full flow
- 3. Loss (energy) is very unstable

Energy Loss

To incentivize the model to preserve physicality also in very narrow degrees of freedom we would want an objective like reverse KL.

However, reverse KL (e.g. training Boltzmann Generators with reverse KL) has a few challenges:

- 1. Requires invertible transformation
- 2. Requires back propagating through full flow
- 3. Loss (energy) is very unstable

$$\begin{aligned} \mathscr{L}_{\text{energy}} = \begin{cases} \sum_{i,j} \max\left(\|\hat{\mathbf{x}}_{1}^{(i)} - \hat{\mathbf{x}}_{1}^{(j)}\| - U_{i,j}, 0 \right) + \max\left(L_{i,j} - \|\hat{\mathbf{x}}_{1}^{(i)} - \hat{\mathbf{x}}_{1}^{(j)}\|, 0 \right) & \text{if } t > 1 - \epsilon \\ 0 & \text{otherwise} \end{cases} \end{aligned}$$

Energy Loss

To incentivize the model to preserve physicality also in very narrow degrees of freedom we would want an objective like reverse KL.

However, reverse KL (e.g. training Boltzmann Generators with reverse KL) has a few challenges:

- 1. Requires invertible transformation
- 2. Requires back propagating through full flow
- 3. Loss (energy) is very unstable

$$\mathscr{L}_{\text{energy}} = \begin{cases} \sum_{i,j} \max\left(\|\hat{\mathbf{x}}_{1}^{(i)} - \hat{\mathbf{x}}_{1}^{(j)}\| - U_{i,j}, 0 \right) + \max\left(L_{i,j} - \|\hat{\mathbf{x}}_{1}^{(i)} - \hat{\mathbf{x}}_{1}^{(j)}\|, 0 \right) & \text{if } t > 1 - \epsilon \\ 0 & \text{otherwise} \end{cases}$$

Ligand RMSD < 2Å & PoseBusters Valid

Pocket-based Flexible Docking

Ligand accuracy

Receptor accuracy

Pose quality

Collaborators:

Tommi Jaakkola Regina Barzilay Vignesh Ram Somnath Noah Getz Andreas Krause Hannes Stärk Bowen Jing

Paper: <u>arxiv.org/abs/2210.01776</u> Code: github.com/gcorso/DiffDock

Preprint and code soon! Or just ask me ;)

Thank You!

Resources:

DiffDock

Unbalanced FM

Contact me:

gcorso@mit.edu

@GabriCorso

Confidence Bootstrapping

diffusion generation rollouts

44

Confidence Bootstrapping

diffusion generation rollouts

Confidence Bootstrapping

Confidence Bootstrapping finetuning

We validate the effectiveness of Confidence Bootstrapping by fine-tuning DiffDock to work well
on protein classes with no binding structural data is available in training set

- We validate the effectiveness of Confidence Bootstrapping by fine-tuning DiffDock to work well on protein classes with no binding structural data is available in training set
- As expected the confidence of generated samples increases over iterations

- on protein classes with no binding structural data is available in training set
- As expected the confidence of generated samples increases over iterations
- On average this translates in significant improvements in docking accuracy

We validate the effectiveness of Confidence Bootstrapping by fine-tuning DiffDock to work well

- We validate the effectiveness of Confidence Bootstrapping by fine-tuning DiffDock to work well
 on protein classes with no binding structural data is available in training set
- As expected the confidence of generated samples increases over iterations
- On average this translates in significant improvements in docking accuracy
- The performance on individual clusters present interesting insights

- We validate the effectiveness of Confidence Bootstrapping by fine-tuning DiffDock to work well
 on protein classes with no binding structural data is available in training set
- As expected the confidence of generated samples increases over iterations
- On average this translates in significant improvements in docking accuracy
- The performance on individual clusters present interesting insights

For many protein families the model drastically improves docking accuracy

51

- We validate the effectiveness of Confidence Bootstrapping by fine-tuning DiffDock to work well
 on protein classes with no binding structural data is available in training set
- As expected the confidence of generated samples increases over iterations
- On average this translates in significant improvements in docking accuracy
- The performance on individual clusters present interesting insights

But for some where the diffusion model had little/no coverage the method has no way of improve

DiffDock-Pocket A step towards all-atoms flexible docking

DiffDock-Pocket: Diffusion for Pocket-Level Docking with Sidechain Flexibility, Plainer et al., Under review

DIFFDOCK-POCKET

DiffDock-Pocket A step towards all-atoms flexible docking

DiffDock-Pocket: Diffusion for Pocket-Level Docking with Sidechain Flexibility, Plainer et al., Under review

DiffDock for reverse screening

SIRT3

- BIOIO-1001 (rank 1)
- BIOIO-1001 (rank 5 40)
- NAD-Ribose

Used to understand the mechanism of action of a new drug

A DUAL MTOR/NAD+ ACTING GEROTHERAPY

Jinmei Li,^{1,2,3,*} Sandeep Kumar,¹ Kirill Miachin,^{1,2} Nicholas L. Bean,^{1,2} Ornella Halawi,² Scott Lee,² JiWoong Park,¹ Tanya H. Pierre,¹ Jin-Hui Hor,⁴ Shi-Yan Ng,⁴ Kelvin J. Wallace,⁵ Niklas Rindtorff,⁵ Timothy M. Miller,⁶ Michael L. Niehoff,⁷ Susan A. Farr,⁷ Rolf F. Kletzien,⁸ Jerry Colca,⁸ Steven P. Tanis,⁸ Yana Chen,⁹ Kristine Griffett,¹⁰ Kyle S. McCommis,¹¹ Brian N. Finck,^{9,*} and Tim R. Peterson^{1,2,3,*}

"DiffDock makes drug target identification much more possible. Before one had to do laborious and costly experiments (months to years) with each protein to define the drug docking. But now one can screen many proteins and do the triaging virtually in a day."

Tim R. Peterson Assistant Professor, Washington University in St. Louis

Pocket-conditioned docking

Restricted pocket focus Access to full-atomic structures

3. Side-chain torsional flexibility built-into the diffusion process

Results

Holo and cross docking performance on par with best pocket-based methods

	Holo Crystal Proteins			
	Top-1 RMSD		Top-5 RMSD	
Method	%<2	Med.	%<2	Med.
DIFFDOCK (blind, rigid)*	38.2	3.3	44.7	2.4
SMINA (rigid)	32.5	4.5	46.4	2.2
SMINA	19.8	5.4	34.0	3.1
GNINA (rigid)	42.7	2.5	55.3	1.8
GNINA	27.8	4.6	41.7	2.7
DIFFDOCK-POCKET (10)	47.7	2.1	56.3	1.8
DIFFDOCK-POCKET (40)	49.8	2.0	59.3	1.7

Holo-docking on PDBBind

	Top-1 RMSD		
Method	%	<2	%<5
VINA* GNINA* DIFFDOCK* (blind)	11.7 21.5 17.3	(15.6) (23.5) (11.6)	40.2 (37.9) 51.7 (47.3) 51.7 (47.3)
Plantain*	24.4	(15.2)	73.7 (71.9)
DIFFDOCK-POCKET (10) DIFFDOCK-POCKET (40)	28.3 28.6	(17.7) (18.5)	67.5 (50.2) 67.9 (49.4)

Cross-docking on unseen proteins from CrossDocked 2020

Results

- \bullet
- Significantly better apo docking and modeling of receptor flexibility

	Apo ESMFold Proteins			
	Top-1 RMSD		Top-5 RMSI	
Method	%<2	Med.	%<2	Med
DIFFDOCK (blind, rigid)*	20.3	5.1	31.3	3.3
SMINA (rigid)	6.6	7.7	15.7	5.6
SMINA	3.6	7.3	13.0	4.8
GNINA (rigid)	9.7	7.5	19.1	5.2
GNINA	6.6	7.2	12.1	5.0
DIFFDOCK-POCKET (10) DIFFDOCK-POCKET (40)	41.0 41.7	2.6 2.6	47.6 47.8	2.2 2.1
DITIDOCK TOCKLI (10)	110/			

Apo-docking on PDBBind

Holo and cross docking performance on par with best pocket-based methods

Sidechain RMSD on PDBBind

Performance vs apo precision

Runtime

Number of seconds for a single complex

3x faster than the most accurate baseline

*Ran exclusively on CPU

No self intersections unlike previous DL methods

61

Confidence score quality

High selective accuracy: valuable information for practitioners

Percentage of rejected complexes

Prediction correctness

Top-N performance

Number of generative samples

Diverse set of structure predictions

Number of Diffusion Steps

Only 10 steps required for high performance

Number of reverse diffusion steps

Performance vs size

Generalization to unseen receptors

Percentage of predictions with RMSD < 2Å

Able to generalize: outperform classical methods

Performance vs similarity

Rank by Maximum Tanimoto Similarity

Online Tools: HuggingFace Spaces

 \times

Protein

Input structure

PDB Code or upload file below

🗅 Input PDB

6r0v_protein_processed.pdb 134.3 KB Download

Ligand

SMILES string

Provide SMILES input or upload mol2/sdf file below

🗅 Input Ligand

6r0v_ligand.sdf 2.2 KB Download

	Ranked samples	
	rank 2, confidence -1.68	~
	Replay diffusion process Uploaded ligand position Predicted ligand position	
×		

69

Online Tools: HuggingFace Spaces

 \times

Protein

Input structure

PDB Code or upload file below

🗅 Input PDB

6r0v_protein_processed.pdb 134.3 KB Download

Ligand

SMILES string

Provide SMILES input or upload mol2/sdf file below

🗅 Input Ligand

6r0v_ligand.sdf 2.2 KB Download

	Ranked samples	
	rank 2, confidence -1.68	~
	Replay diffusion process Uploaded ligand position Predicted ligand position	
×		

69

Online Tools: Google Colab

≣	+ Code + Text 🏾 📤 Copy to Drive
Q { <i>x</i> }	 DiffDock Dock a PDB files and a SMILES with Select Runtime / Run all to run and May require "premium GPU" (colab.)
	PDB + SMILES input PDB_id: "Insert text her
	SMILES_or_pubchem_id: Download a tar file containir download_results: V

h <u>DiffDock</u>.

example PDB file and SMILES.

pro), and even then it may fail on large complexes.

" Insert text here

ig all results?

Protein-protein docking

Input: unbound protein structures

DiffDock-PP Reverse diffusion process

Cedrik Laue

Confidence-based pose selection

Protein-protein docking

Methods	DIPS Test Set								
	Complex RMSD (Å)				Interface RMSD (Å)				Runtime
	%<2	%<5	%<10	Median	%<2	%<5	%<10	Median	Mean
ATTRACT*	20	23	33	17.17	20	22	38	12.41	1285 [†]
HDOCK*	50	50	50	6.23	50	50	58	3.90	778†
CLUSPRO*	12	27	35	15.77	21	27	42	12.54	10475 [†]
PATCHDOCK*	31	32	36	15.25	32	32	42	11.45	7378†
EquiDock	0	8	29	13.30	0	12	47	10.19	3.88
DIFFDOCK- $PP(1)$	34	41	46	11.95	36	42	53	8.60	4.2
DIFFDOCK-PP(40)	42	50	55	4.85	45	52	63	4.23	153
DIFFDOCK-PP(40) - oracle	71	79	86	0.67	72	82	91	0.54	153

Cedrik Laue

Ruslan Mammadov

