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DiffDock & FlexDock

Advancing Molecular Docking
with Generative Models

!

5 Gabriele Corso
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Based on joint work with Vignesh Ram Somnath, Noah Getz,
Regina Barzilay, Tommi Jaakkola, Hannes Stark, Bowen Jing and others!

\




Protein-Ligand Docking

Input: protein structure + molecule Output: bound structure



Protein-Ligand Docking

Virtual screening

Hit discovery
Lead optimization

—_—




Protein-Ligand Docking

Virtual screening

Hit discovery
Lead optimization

—_—
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Reverse screening

MOA identification
Toxicity prediction




We are NOT doing sampling

“It’s tfake”...

Output: bound structure



We are NOT doing sampling

“It’s fake”... but It IS useful
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David Demis John M.
Baker Hassabis Jumper

“for computational “for protein structure prediction”
protein design”

THE ROYAL SWEDISH ACADEMY OF SCIENCES

Output: bound structure



Different Approaches to Docking

Search-based methods
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Sampling & optimization
over scoring function

Corso, Stark, Jing, Barzilay, Jaakkola. ICLR 2023



Different Approaches to Docking

Search-based methods

Sampling & optimization
over scoring function

=» no finite-time guarantees

Fail to grasp with the vast
search space of blind docking

Corso, Stark, Jing, Barzilay, Jaakkola. ICLR 2023



Different Approaches to Docking

Search-based methods

e [all to grasp with the vast

< | search space of blind docking

gg e Struggle with, e.g., side chain
flexibility from unbound to

* ? bound protein structures

/

Sampling & optimization
over scoring function

=» no finite-time guarantees

Corso, Stark, Jing, Barzilay, Jaakkola. ICLR 2023



Different Approaches to Docking

Search-based methods Regression models
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Sampling & optimization Previous deep learning methods were
over scoring function based on regression objective

=» no finite-time guarantees

Corso, Stark, Jing, Barzilay, Jaakkola. ICLR 2023



Different Approaches to Docking

Search-based methods Regression models
PDBBInd blind docking
% complexes with RMSD < 2A
24
18
‘ 12
I. | 6
— 0
EquiBind SMINA TANKBind QVinaW GLIDE GNINA  E3Bind

No clear improvement to existing models

Sampling & optimization Previous deep learning methods were
over scoring function based on regression objective
=» no finite-time guarantees =» fast but poor-quality predictions

Corso, Stark, Jing, Barzilay, Jaakkola. ICLR 2023



Different Approaches to Docking

Search-based methods

P
q
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Regression models

Sampling & optimization
over scoring function

=> no finite-time guarantees

o

Previous deep learning methods were
based on regression objective

=» fast but poor-quality predictions

Generative models

-

Deep generative models
with finite time sampling

=» correct handling of uncertainty

Corso, Stark, Jing, Barzilay, Jaakkola. ICLR 2023
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Blind Docking Performance
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Holo protein structures ESMFold structures



Biggest Outstanding Challenges

e Generalization: DiffDock struggles when given
completely unseen protein classes

e Receptor flexibility needs to to be accounted for In
order to obtain highly-accurate blind predictions

e Pose relaxation is currently required to do some
downstream predictions

 No direct binding affinity measure

15



Biggest Outstanding Challenges

e Generalization: DiffDock struggles when given
completely unseen protein classes

Receptor flexibility needs to to be accounted for In

order to obtain highly-accurate blind predictions

e Pose relaxation is currently required to do some
downstream predictions

 No direct binding affinity measure

Corso, Deng, Fry, Polizzi,
Barzilay, Jaakkola. ICLR 2024

Corso, Somnath, Getz, Barzilay,

Jaakkola, Krause. Under review.

Coming soon!
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Generative Modeling for Flexible Docking

Flexible docking involves also predicting the
conformational change of the protein from
the apo (unbound) to holo (bound) state



Generative Modeling for Flexible Docking

Flexible docking involves also predicting the
conformational change of the protein from

the apo (unbound) to holo (bound) state
apo distribution

We can frame flexible docking as the process of ’.
mapping the distribution of apo protein structures | |
.

to that of holo structures bound to a given ligand.

holo distribution




Flow Matching

FM Sampling process

1. Sample from x, ~ ¢

2. Flow XO to xl

FM Objective

min E, o o [0 0) — 5, 1%

where g has marginals g, and ¢.

apo distribution

holo distribution




Flow Matching

FM Sampling process

1. Sample from x, ~ ¢

2. Flow XO to xl

FM Objective

min E, o o [0 0) — 5, 1%

where g has marginals g, and ¢.

apo distribution

holo distribution

Problem: flow matching imposes very complex transport problem

resulting in high (Wasserstein) approximation errors.




Unbalanced Flow Matching

|[dea: relaxing marginal preservation condition of flow
matching we can define much easier transport problems

Corso, Somnath, Getz, Barzilay, Jaakkola, Krause. Under review.



Unbalanced Flow Matching

|[dea: relaxing marginal preservation condition of flow
matching we can define much easier transport problems

Unbalanced FM Sampling process

1. Sample from x4y ~ ¢

2. Flow X to X4 apo distribution

<

holo distribution

3. Accept x; or return to 1

Corso, Somnath, Getz, Barzilay, Jaakkola, Krause. Under review.



Unbalanced Flow Matching

|[dea: relaxing marginal preservation condition of flow
matching we can define much easier transport problems

Unbalanced FM Sampling process

1. Sample from x4y ~ ¢
2. Flow X to X4 apo distribution

3. Accept x; or return to 1

5
Unbalanced FM Objective &

min @ E, ey (1906 0) = 06 1%)IP] + Dol 45 + Dot 19 .
q,

holo distribution

with arbitrary coupling distribution g with marginals dx, and ¢y .

Corso, Somnath, Getz, Barzilay, Jaakkola, Krause. Under review.
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Efficiency vs Approximation e

Ix, > qxl
marginal of ¢ W]( . ;C]) marginal of ¢
f optimal flow T
We can show that the UFM objective is a bound on the 1 Dy(qolgx,) v Dalay 1q))
approximation error vs sampling efficiency tradeoft. 90 g
starting distribution target distribution

Zur(g,0) = a [Et,(xo,xl)Nq [||Vt(X;§ 0) — u X, | X1)||2] + D5(q | QXO) + Dz(qxl | 1)
e ——
Proposition (Benton et al., 2023): under
appropriate assumptions the approximation error
of the learned flow is bounded by FM objective:

W2y (- 10),4) < L2 - E,., [IIv,%: 0) — u(x, 1 %I
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Efficiency vs Approximation e

Ix, > qxl
marginal of ¢ W]( . ;C]) marginal of g
f optimal flow T
We can show that the UFM objective is a bound on the 1 Dy(qolgx,) v Dalay 1q))
approximation error vs sampling efficiency tradeoft. 90 g
starting distribution target distribution

Zur(g,0) = a [Et,(xo,xl)Nq [||Vt(X;§ 0) — u X, | X1)||2] + D5(q | QXO) + Dz(qxl | 1)
— —

Proposition (Benton et al., 2023): under Proposition: ESS*, for sampling g; when having
appropriate assumptions the approximation error access to samples of g, and a perfectly trained
of the learned flow is bounded by FM objective: unbalanced flow with coupling ¢ is bounded by:

sz(éxl( -1 0), qxl) <L*. —1.q [Hvt(xt; ) — u,(x]| XI)HZ] ESS*(Q) > exp [—D,(q QXO) — Dz(qxl | 1)




P
4y,

(- 39,0) .
Efficiency vs Approximation e

qxo > qxl
marginal of ¢ AR . q) marginal of
f optimal flow T
We can show that the UFM objective is a bound on the 1 Dy(qolgx,) v Dalay 1q))
approximation error vs sampling efficiency tradeoft. 90 g
starting distribution target distribution
Zur(g,0) = a [Et,(xo,xl)Nq [||Vt(X;§ 0) — u X, | X1)||2] + D5(q | QXO) + Dz(qxl | 1)
— —
Proposition (Benton et al., 2023): under Proposition: ESS*, for sampling g; when having
appropriate assumptions the approximation error access to samples of g, and a perfectly trained
of the learned flow Is bounded by FM objective: unbalanced flow with COup”ng q IS bounded by
sz(éxl( - 0), qxl) <L*. —1.q [Hvt(xt; 0) — u(x,| XI)HZ] ESS*(Q) > exp | —D,(qp ]| qxo) — Dz(qxl | q1)

p W@ (-10).q,) — 1ogESS(q) < Zypm

Approximation error  Sampling efficiency




Unbalanced FM optimization

gUFM(Q9 9) — _t,(xo,xl)qu [HVt(Xt; 9) o l/tt(Xt | Xl)Hz] T DZ(QO ‘ qu) + Dz(qxl ‘ Q1)




Unbalanced FM optimization

gUFM(Qa 9) — _t,(xo,xl)qu [HVt(Xt; 6)) o l/tt(Xt | Xl)Hz] T Dz(% ‘ qu) + Dz(qxl ‘ Q1)

< Eixox)ogl CXoo X1 + Do(qp | Gx) + Da(gy, 1 41) = UOT(qp, 41)




Unbalanced FM optimization
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he UFM objective can be bound by the
Unbalanced OT objective which suggests set

of families to choose g from.



Unbalanced FM optimization
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Unbalanced FM optimization

gUFM(Qa 8) — _fa(X()axl)"’q [Hvt(xt; 6)) o l/tt(Xt | Xl)Hz] T Dz(% ‘ qu) + Dz(qxl ‘ Q1)

< Exyx,)~gl C0> X1 + Da(qp | 45,) + Doy, | 91) = UOT(gp, 1)

Un

he UFM objective can be bound by the

palanced OT objective which suggests set
of families to choose g from.

Because we on
iINdividual sam

nles we ¢

q(Xp, X1) = qo(Xp) q1(X1)

Then, given g, the UFM objective boils down to Flow Matching:

0

min E, o [Iv(x:6) — u(x,]x)]|7]

v have access to

N100SEe

lixo—x,l1<C



Flexible Docking with Unbalanced FM

Choosing g with different tra
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Biggest Outstanding Challenges

e Generalization: DiffDock struggles when given
completely unseen protein classes

e Receptor flexibility needs to to be accounted for In
order to obtain highly-accurate blind predictions

Pose relaxation is currently required to do some

downstream predictions

 No direct binding affinity measure

Corso, Deng, Fry, Polizzi,
Barzilay, Jaakkola. ICLR 2024

Corso, Somnath, Getz, Barzilay,

Jaakkola, Krause. Under review.

Coming soon!
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Pose relaxation

Although docking is typically framed as
trying to obtain poses as close as possible
to crystal structure, the “physicality” of the

poses IS also Important.

PoseBusters: Al-based docking methods fail to generate
physically valid poses or generalise to novel sequences’

Martin Buttenschoen, Garrett M. Morris, and Charlotte M. Deane*

(h) Clash with protein. DiffDock prediction for ligand XQ1 of protein-ligand com-
plex 7L7C. RMSD 1.6 A.




Pose relaxation

Although docking is typically framed as
trying to obtain poses as close as possible
to crystal structure, the “physicality” of the

poses IS also Important.

Pose

struct

Mo
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e e

relaxation: refine the

conformation to
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nergetically favorable

PoseBusters: Al-based docking methods fail to generate
physically valid poses or generalise to novel sequences’

Martin Buttenschoen, Garrett M. Morris, and Charlotte M. Deane*
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(h) Clash with protein. DiffDock prediction for ligand XQ1 of protein-ligand com-
plex 7L7C. RMSD 1.6 A.

predicted distribution

true Boltzmann distribution




Pose relaxation with Unbalanced FM

Applying “vanilla™ Unbala
performance but it is still

vast scale disparity of diffe

.:ar

en

nced FM improves the
from optimal due to

- degrees of freedom

(-

predicted distribution

true Boltzmann distribution

GNINA

DiffDock
Pocket

UFM
4A

UFM
4A + 2A

Ligand RMSD < 2A & PoseBusters Valid
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Energy Loss

To incentivize the model to preserve physicality
also In very narrow degrees of freedom we would
want an objective like reverse KL.
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To incentivize the model to preserve physicality
also In very narrow degrees of freedom we would
want an objective like reverse KL.

However, reverse KL (e.g. training Boltzmann
Generators with reverse KL) has a few challenges:

1, Requires invertible transformation
2.  Requires back propagating through full flow
3. Loss (energy) is very unstable



Energy Loss

To incentivize the model to preserve physicality
also In very narrow degrees of freedom we would
want an objective like reverse KL.

However, reverse KL (e.g. training Boltzmann
Generators with reverse KL) has a few challenges:

1, Requires invertible transformation
2.  Requires back propagating through full flow
3. Loss (energy) is very unstable

Y max (uﬁ@ 3D -U..
ZLenergy = w ! ! W

0 otherwise

) + max (Ll-,j — I = Y|, 0) fr>1—¢



Energy Loss

Ligand RMSD < 2A & PoseBusters Valid

To incentivize the model to preserve physicality GNINA -
also in very narrow degrees of freedom we would N
want an objective like reverse KL. Pocket
UFM
4A
However, reverse KL (e.g. training Boltzmann UFM
Generators with reverse KL) has a few challenges: A
UFM +
1. Requires invertible transformation Energy loss
2. Requires back propagating through full flow I ey
3. Loss (energy) is very unstable
( 2 Y 0 10 20 30
Zoneoray = Zi,jmax (Hf((f) -3yl - U, ) + max (Ll-,j — 1% — &1, 0) ft>1—¢

0 otherwise



Pocket-based Flexible Docking

Ligand RMSD < 2A

Ligand RMSD < 2A Pocket All Atom RMSD < 1A & PoseBusters Valid
50 50 40
37,5 37,5 30
25 25 20
12,5 12,5 10
| =il 1 , M | . .
SMINA GNINA DiffDock DiffDock ReDock SMINA GNINA DiffDock DiffDock ReDock GNINA DiffDock
(rigid)  Pocket (rigid)  Pocket Pocket

Ligand accuracy Receptor accuracy Pose quality
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Thank You!

Collaborators: Resources: Contact me:
Tommi Jaakkola DiffDock _
Regina Barzilay Paper: arxiv.org/abs/2210.01776 M gcorso@mit.edu

Vignesh Ram Somnath Code: github.com/gcorso/DiffDock

Noah Getz , @GabriCorso
Andreas Krause Unbalanced FM
Hannes Stark

Preprint and code soon!

Bowen Jing Or just ask me ;)


https://arxiv.org/abs/2210.01776
https://github.com/gcorso/DiffDock
mailto:gcorso@mit.edu
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Confidence Bootstrapping
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Confidence Bootstrapping finetuning
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Finetuning on specific protein classes

e \We validate the effectiveness of Confide

Nce

on protein classes with no binding struc

Bootstrappl
ural data is aval

Ng by fine-tuning
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able In training set

Dock to work well
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Finetuning on specific protein classes

e \\e validate the effectiveness of Confidence Bootstrappi
on protein classes with no binding structural data is aval

able In training set

ng by fine-tuning DiffDock to work well

* As expected the confidence of generated .
samples increases over iterations

3

6

4

Median Confidence Score

. Bacterial fluorinating enzyme...

. FAD-binding domain

. Carbon-nitrogen hydrolase

. Molybdenum cofactor biosynthesis...
. Homo-oligomeric flavin-containing...
. Nucleotide-binding domain

. SGNH hydrolase

00O NO UL WN -

. Glutaminase/Asparaginase... ~/"\‘\/—__~/~

10 20 30 40

A. Bootstrapping lterations

48



Finetuning on specific protein classes

e \\e validate the effectiveness of Confidence

on protein classes with no binding structural data is aval

* As expected the confidence of generated
samples increases over iterations

 (On average this translates in significant
improvements in docking accuracy

30

Bootstrappl

ng by fine-tuning DiffDock to work well
able In training set

N)
U

N
o

=]

RMSD < 2A (%)
=
un

B B R BB N N BN B B B B B B N B B N B =B &N §N §F =N =B N B N N N B =N B B §N §N

—  Fine-tuned DiffDock

oS S - == Best baseline DiffDock
- == GNINA (ex. 64)
- == SMINA (ex. 64)
0
0] 10 20 30 40 50 60

Bootstrapping Iterations
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Finetuning on specific protein classes

e \Ve validate the effectiveness of Confidence Bootstrapping by fine-tuning DiffDock to work well
on protein classes with no binding structural data is available in training set

 As expected the confidence of generated .
| | | 60 B Before Bootstrappmg
samples increases over iterations mwm  After Bootstrapping

7 8
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 (On average this translates in significant
improvements in docking accuracy
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present interesting insights
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Finetuning on specific protein classes

We validate the effectiveness of Confidence

Bootstrapping by fine-tuning DiffDock to work well

on protein classes with no binding structural data is available in training set

 As expected the confidence of generated
samples increases over iterations

On average this translates in significant

improvements in docking accuracy

* [he performance o

present inte

resting

For many protein families the model
drastically improves docking accuracy

N Individual clusters
INnsights

mmm Before Bootstrapping

60 .
mam After Bootstrapping

RMSD < 2A (%)
w IS U
(@) o o

N
o

=
-

B8] |EY|.S
2 3]s s|e |78

Test Clusters

-

C.
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Finetuning on specific protein classes

e \Ve validate the effectiveness of Confidence Bootstrapping by fine-tuning DiffDock to work well
on protein classes with no binding structural data is available in training set
6 3

 As expected the confidence of generated .
| | | 60 B Before Bootstrappmg
samples increases over iterations mwm  After Bootstrapping

But for some where the diffusion model had ) 5 3

little/no coverage the method has no way of improve C. Test Clusters

(92
o

 (On average this translates in significant
improvements in docking accuracy

~
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W
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* [he performance on individual clusters
present interesting insights
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=
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DiffDock-Pocket

A step towards all-atoms flexible docking

DIFFDOCK-POCKET

DiffDock-Pocket: Diffusion for Pocket-Level Docking with Sidechain Flexibility, Plainer et al., Under review



DiffDock-Pocket

A step towards all-atoms flexible docking

Released very soon!

Pocket-based apo-docking on PDBBInd

80 Stay tuned:
B Before relaxation B After relaxation y @GabriCorso

g 45
QA
V
a
=
= 30
S

15 | I | I |

0

GNINA (rigid) GNINA (flex) DiffDock DiffDock-Pocket DiffDock-Pocket
no flexibility

DiffDock-Pocket: Diffusion for Pocket-Level Docking with Sidechain Flexibility, Plainer et al., Under review



DiffDock for reverse screening

| | Preprint
National Institutes of Health . )
A DUAL MTOR/NAD+ ACTING GEROTHERAPY m> o to peer review

Jinmei Li,>3" Sandeep Kumar,! Kirill Miachin,!? Nicholas L. Bean,'? Ornella Halawi,® Scott Lee,? JiWoong_Park,’
Tanya H. Pierre,! Jin-Hui Hor,* Shi-Yan Ng,* Kelvin J. Wallace,® Niklas Rindtorff,> Timothy M. Miller,®
Michael L. Niehoff,” Susan A. Farr,” Rolf E._Kletzien,® Jerry Colca,® Steven P. Tanis,® Yana Chen,® Kristine Griffett,1°

Kyle S. McCommis,'! Brian N. Finck,> and Tim R. Peterson'23"

“DiffDock makes drug target identification much more
possible. Before one had to do laborious and costly
experiments (months to years) with each protein to
define the drug docking. But now one can screen many
proteins and do the triaging virtually in a day.”

= SIRT3

[ BIOIO-1001 (rank 1)
[l BIOIO-1001 (rank 5 - 40)
2 NAD-Ribose

Tim R. Peterson
Assistant Professor, Washington University in St. Louis

Used to understand the mechanism of action of a new drug



Pocket-conditioned docking

1. Restricted pocket focus 3. Side-chain torsional flexibility

2. Access to full-atomic structures built-into the diffusion process

56



Results

 Holo and cross docking performance on par with best pocket-based methods

Holo Crystal Proteins

Top-1 RMSD  Top-5 RMSD Top-1 RMSD
Method %<2 Med. | %<2 Med. Method To<2 Do<3

DIFFDOCK (blind, rigid)* 3.3 447 2.4 VINA* 11.7115.6) 40.2 (37.9)
SMINA (rigid) 4.5 46.4 2.2 GNINA* 21.5123.5) 51.7 (47.3)
SMINA 5.4 34.0 3.1 DIFFDOCK* (blind) 17.3]111.6) 51.7(47.3)
GNINA (rigid) 2.5 55.3 1.8 PLANTAIN* 24.4(15.2) 73.7 (71.9)
GNINA 4.6 4l.7 2.1 DIFFDOCK-POCKET (10) | 28.3117.7) 67.5(50.2)
DIFFDOCK-POCKET (10) 2.1 56.3 1.8 DIFFDOCK-POCKET (40) | 28.6 [18.5) 67.9(49.4)

DIFFDOCK-POCKET (40) 2.0 59.3 1.7

Cross-docking on unseen proteins

Holo-docking on PDBBINd from CrossDocked 2020




Results

 Holo and cross docking performance on par with best pocket-based methods

o Significantly better apo docking and modeling of receptor flexibility

1.0

Apo ESMFold Proteins
Top-1 RMSD  Top-5 RMSD
Method %<2 Med. | %<2 Med.

DIFFDOCK (blind, rigid)* 5.1 31.3 3.3

0.8 —

0.6 —

SMINA (rigid) 77 | 157 5.6 0.4 -
SMINA 73 | 13.0 48
GNINA (rigid) 75 | 191 52 02 -
GNINA 72 | 121 5.0

Fraction with lower SC-RMSD

0.0

2.6 476 2.2
2.6 47.8 2.1

DIFFDOCK-POCKET (10)

DIFFDOCK-POCKET (40) 0 1 2 3 4

Top-1 SC-RMSD in A

Apo-docking on PDBBINd

Sidechain RMSD on PDBBInd




Performance vs apo precision

B DiffDock PDB
B DiffDock ESMFold

IS
o

GNINA PDB

BN GNINA ESMFold

W
o

Fraction with RMSD < 2A
N
(@)

-
o

05A<d<15A
Backbone pocket RMSD

< 0.5A

>15A




Runtime

Number of seconds for a single complex

140
105 | |
70
| | DiffDock
) | | | |
0

EquiBind SMINA* TANKBIind QVinaW* GNINA  EquiBind + P2Rank +
GNINA GNINA

3x faster than the most accurate baseline

*Ran exclusively on CPU
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Physically plausible structures

o

X

.W\
/,L\..’

S

"
/
L

TANKBInd EquiBind DiffDock Crystal Structure

No self intersections unlike previous DL methods



Confidence score quality

oL 100 -

N

v 80 -

A

W

=

o 60-

S~

=

340

I

qc) - = Baseline performance

o 20- - = Perfect selection

nq_) — Confidence model
0 20 40 60 80

Percentage of rejected complexes

High selective accuracy: valuable information for practitioners
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Fraction with lower RMSD

Prediction correctness

0.74 =— DiffDock :
—— GLIDE |
0.67 — GNINA :
0.5 — SMINA |
QVinaW '
0.4{ — TANKBind ' L —
—— EquiBind | ST
0.3- : | o
0.2-
0.1-
0 4

Fraction with lower RMSD

0.7

0.6 -

0.5+

0.4 -

0.3-

0.2+

0.1-

Method
— DiffDock

— GNINA
— SMINA
— EquiBind
TANKBIind

RMSD (A)
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Top-N performance

Fraction with RMSD < 2A

0.5

0.45 -

O
D
|

0.35-

O
w

0.25-

—
N

e |
- -
ma W=
-

— Top-1 performance
— Top-5 performance

Top-10 performance
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Performance vs size

RMSD to crystal structure
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Generalization to unseen receptors
Percentage of predictions with RMSD < 2A
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Able to generalize: outperform classical methods
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Performance vs similarity
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Online Tools: HuggingFace Spaces

Protein Ranked samples
rank 2, confidence -1.68

Input structure

‘ Replay diffusion process

PDB Code or upload file below —
Uploaded ligand position - Predicted ligand position

(Y Input PDB

X
6rOv_protein_processed.pdb 134.3 KB Download
Ligand
SMILES string
Provide SMILES input or upload mol2/sdf file below
[ InputLigand >

6rov_ligand.sdf 2.2KB Download
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Online Tools: HuggingFace Spaces

Protein Ranked samples
rank 2, confidence -1.68

Input structure

‘ Replay diffusion process
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Online Tools: Google Colab

+ Code + Text & Copy to Drive

Q
~ DiffDock

{x}
Dock a PDB files and a SMILES with
- Select Runtime / Run all to run an example PDB file and SMILES.

May require "premium GPU" (colab pro), and even then it may fail on large complexes.

» PDB + SMILES input

O PDB_id: ' Insert text here

SMILES or pubchem id: ' Insert text here

Download a tar file containing all results?

download results: ¢
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Protein-protein docking

Input: unbound
protein structures

Amine Ketata Cedrik Laue Ruslan Mammadov

=025 t=0.125 =0
DittDock-PP Confidence-based
Reverse diffusion process pose selection
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Protein-protein docking

DIPS Test Set

Amine Ketata Cedrik Laue

Ruslan Mammadov

Complex RMSD (A) Interface RMSD (A) Runtime (s)
Methods %<2 %<5 <10 Median | <2 %<5 Y%<10 Median Mean
ATTRACT* 20 23 33 17.17 20 22 38 12.41 12857
HDOCK* 50 50 50 6.23 50 50 58 3.90 7781
CLUSPRO* 12 27 35 15.77 21 27 42 12.54 104751
PATCHDOCK* 31 32 36 15.25 32 32 42 11.45 73787
EQUIDOCK 0 8 29 13.30 0 12 47 10.19 3.88
DIFFDOCK-PP(1) 34 41 46 11.95 36 42 53 3.60 4.2
DIFFDOCK-PP(40) 42 50 55 4.85 45 52 63 4.23 153
DIFFDOCK-PP(40) - oracle 71 79 86 0.67 72 82 91 0.54 153
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