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Protein-Ligand Docking

+

Input: protein structure + molecule Output: bound structure

2



Protein-Ligand Docking
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Protein-Ligand Docking
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Virtual screening Reverse screening

Hit discovery

Lead optimization

MoA identification

Toxicity prediction



We are NOT doing sampling

Output: bound structure
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“It’s fake”… 
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“It’s fake”… but it is useful 




Sampling & optimization 
over scoring function


Different Approaches to Docking
Search-based methods

Corso, Stark, Jing, Barzilay, Jaakkola. ICLR 2023



Sampling & optimization 
over scoring function


➜  no finite-time guarantees

Different Approaches to Docking
Search-based methods

• Fail to grasp with the vast 
search space of blind docking

Corso, Stark, Jing, Barzilay, Jaakkola. ICLR 2023



Sampling & optimization 
over scoring function


➜  no finite-time guarantees

Different Approaches to Docking

• Fail to grasp with the vast 
search space of blind docking


• Struggle with, e.g., side chain 
flexibility from unbound to 
bound protein structures 

Search-based methods

Corso, Stark, Jing, Barzilay, Jaakkola. ICLR 2023
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Different Approaches to Docking

Previous deep learning methods were 
based on regression objective


➜  fast but poor-quality predictions

Sampling & optimization 
over scoring function


➜  no finite-time guarantees

Regression models Generative models

Deep generative models 
with finite time sampling


➜  correct handling of uncertainty

Search-based methods

Corso, Stark, Jing, Barzilay, Jaakkola. ICLR 2023
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Biggest Outstanding Challenges
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• Generalization: DiffDock struggles when given 
completely unseen protein classes 


• Receptor flexibility needs to to be accounted for in 
order to obtain highly-accurate blind predictions


• Pose relaxation is currently required to do some 
downstream predictions


• No direct binding affinity measure
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• Receptor flexibility needs to to be accounted for in 
order to obtain highly-accurate blind predictions


• Pose relaxation is currently required to do some 
downstream predictions


• No direct binding affinity measure
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Jaakkola, Krause. Under review.

Coming soon!



Generative Modeling for Flexible Docking

Flexible docking involves also predicting the 
conformational change of the protein from 
the apo (unbound) to holo (bound) state




Generative Modeling for Flexible Docking

apo distribution 

holo distribution 

We can frame flexible docking as the process of 
mapping the distribution of apo protein structures 
to that of holo structures bound to a given ligand.


Flexible docking involves also predicting the 
conformational change of the protein from 
the apo (unbound) to holo (bound) state
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min
θ

𝔼t,(x0,x1)∼q [∥vt(xt; θ) − ut(xt |x1)∥2]
where  has marginals  and .q q0 q1

Flow Matching

apo distribution 

holo distribution 

FM Objective

FM Sampling process

1. Sample from 

2. Flow  to 

x0 ∼ q0
x0 x1

Problem: flow matching imposes very complex transport problem 
resulting in high (Wasserstein) approximation errors.




Unbalanced Flow Matching

Corso, Somnath, Getz, Barzilay, Jaakkola, Krause. Under review.

Idea: relaxing marginal preservation condition of flow 
matching we can define much easier transport problems 
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Unbalanced Flow Matching

Corso, Somnath, Getz, Barzilay, Jaakkola, Krause. Under review.

Unbalanced FM Objective

Unbalanced FM Sampling process

1. Sample from 

2. Flow  to 

3. Accept  or return to 1

x0 ∼ q0
x0 x1

x1

Idea: relaxing marginal preservation condition of flow 
matching we can define much easier transport problems 

apo distribution 

holo distribution 

min
q,θ

α 𝔼t,(x0,x1)∼q [∥vt(xt; θ) − ut(xt |x1)∥2] + D2(q0 |qx0
) + D2(qx1

|q1)

with arbitrary coupling distribution  with marginals  and .q qx0
qx1



Efficiency vs Approximation
We can show that the UFM objective is a bound on the 

approximation error vs sampling efficiency tradeoff. 

ℒUFM(q, θ) = α 𝔼t,(x0,x1)∼q [∥vt(xt; θ) − ut(xt |x1)∥2] + D2(q0 |qx0
) + D2(qx1

|q1)
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β W2
2( ̂qx1

( ⋅ |θ), qx1
)

Approximation error

− log ESS*(q)

Sampling efficiency

≤ ℒUFM
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Unbalanced FM optimization

≤ 𝔼(x0,x1)∼q[C(x0, x1)] + D2(q0 |qx0
) + D2(qx1

|q1) ≜ UOT(q0, q1)

The UFM objective can be bound by the 
Unbalanced OT objective which suggests set 

of families to choose  from.q

Then, given , the UFM objective boils down to Flow Matching:q
min

θ
𝔼t,(x0,x1)∼q [∥vt(xt; θ) − ut(xt |x1)∥2]

Because we only have access to 
individual samples we choose 

q(x0, x1) = q0(x0) q1(x1) 𝕀∥x0−x1∥<C

ℒUFM(q, θ) = α 𝔼t,(x0,x1)∼q [∥vt(xt; θ) − ut(xt |x1)∥2] + D2(q0 |qx0
) + D2(qx1

|q1)



Flexible Docking with Unbalanced FM

Choosing  with different transport cutoffs 
highlights the value of UFM over FM 

q

q(x0, x1) = q0(x0) q1(x1) 𝕀∥x0−x1∥<C
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• Generalization: DiffDock struggles when given 
completely unseen protein classes 


• Receptor flexibility needs to to be accounted for in 
order to obtain highly-accurate blind predictions


• Pose relaxation is currently required to do some 
downstream predictions


• No direct binding affinity measure

Corso, Deng, Fry, Polizzi,  
Barzilay, Jaakkola. ICLR 2024

Corso, Somnath, Getz, Barzilay, 
Jaakkola, Krause. Under review.

Coming soon!



Pose relaxation

Although docking is typically framed as 
trying to obtain poses as close as possible 
to crystal structure, the “physicality” of the 

poses is also important.



Pose relaxation

true Boltzmann distribution

predicted distribution

Although docking is typically framed as 
trying to obtain poses as close as possible 
to crystal structure, the “physicality” of the 

poses is also important.

Pose relaxation: refine the 
structural conformation to find a 

more energetically favorable



Pose relaxation with Unbalanced FM

true Boltzmann distribution

predicted distribution

Applying “vanilla” Unbalanced FM improves the 
performance but it is still far from optimal due to 

vast scale disparity of different degrees of freedom
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Energy Loss
To incentivize the model to preserve physicality 

also in very narrow degrees of freedom we would 
want an objective like reverse KL.

However, reverse KL (e.g. training Boltzmann 
Generators with reverse KL) has a few challenges:


1. Requires invertible transformation

2. Requires back propagating through full flow

3. Loss (energy) is very unstable

ℒenergy = {∑i,j max (∥x̂(i)
1 − x̂( j)

1 ∥ − Ui,j, 0) + max (Li,j − ∥x̂(i)
1 − x̂( j)

1 ∥, 0) if t > 1 − ϵ

0 otherwise
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To incentivize the model to preserve physicality 
also in very narrow degrees of freedom we would 

want an objective like reverse KL.

However, reverse KL (e.g. training Boltzmann 
Generators with reverse KL) has a few challenges:


1. Requires invertible transformation

2. Requires back propagating through full flow

3. Loss (energy) is very unstable
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0 otherwise



Pocket-based Flexible Docking
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Thank You! 
 
 

DiffDock 
Paper: arxiv.org/abs/2210.01776  

Code: github.com/gcorso/DiffDock 

Unbalanced FM 
Preprint and code soon! 

Or just ask me ;) 

Collaborators: Resources:

                gcorso@mit.edu 

           @GabriCorso 

Contact me:
Tommi Jaakkola

Regina Barzilay


Vignesh Ram Somnath

Noah Getz 

Andreas Krause 
Hannes Stärk

Bowen Jing

https://arxiv.org/abs/2210.01776
https://github.com/gcorso/DiffDock
mailto:gcorso@mit.edu
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Finetuning on specific protein classes
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• We validate the effectiveness of Confidence Bootstrapping by fine-tuning DiffDock to work well 
on protein classes with no binding structural data is available in training set
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• We validate the effectiveness of Confidence Bootstrapping by fine-tuning DiffDock to work well 
on protein classes with no binding structural data is available in training set 


• As expected the confidence of generated  
samples increases over iterations


• On average this translates in significant  
improvements in docking accuracy


• The performance on individual clusters 
present interesting insights

Finetuning on specific protein classes
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For many protein families the model 
drastically improves docking accuracy



• We validate the effectiveness of Confidence Bootstrapping by fine-tuning DiffDock to work well 
on protein classes with no binding structural data is available in training set


• As expected the confidence of generated  
samples increases over iterations


• On average this translates in significant  
improvements in docking accuracy


• The performance on individual clusters 
present interesting insights

Finetuning on specific protein classes
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But for some where the diffusion model had  
little/no coverage the method has no way of improve 



DiffDock-Pocket
A step towards all-atoms flexible docking

DiffDock-Pocket: Diffusion for Pocket-Level Docking with Sidechain Flexibility, Plainer et al., Under review



DiffDock-Pocket

Pocket-based apo-docking on PDBBind

A step towards all-atoms flexible docking
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Released very soon! 
Stay tuned:

@GabriCorso

DiffDock-Pocket: Diffusion for Pocket-Level Docking with Sidechain Flexibility, Plainer et al., Under review



DiffDock for reverse screening

Used to understand the mechanism of action of a new drug

“DiffDock makes drug target identification much more 
possible. Before one had to do laborious and costly 
experiments (months to years) with each protein to 
define the drug docking. But now one can screen many 
proteins and do the triaging virtually in a day.”


Tim R. Peterson 
Assistant Professor, Washington University in St. Louis



Pocket-conditioned docking

56

1. Restricted pocket focus 
2. Access to full-atomic structures

3. Side-chain torsional flexibility  
built-into the diffusion process



Results
• Holo and cross docking performance on par with best pocket-based methods

Holo-docking on PDBBind
Cross-docking on unseen proteins  

from CrossDocked 2020



Results
• Holo and cross docking performance on par with best pocket-based methods

• Significantly better apo docking and modeling of receptor flexibility

Apo-docking on PDBBind
Sidechain RMSD on PDBBind



Performance vs apo precision 
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Runtime

60

0

35

70

105

140

EquiBind SMINA* TANKBind QVinaW* GNINA

DiffDock

Number of seconds for a single complex

EquiBind +

GNINA

P2Rank +

GNINA

3x faster than the most accurate baseline
*Ran exclusively on CPU



Physically plausible structures
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TANKBind EquiBind DiffDock Crystal Structure

No self intersections unlike previous DL methods



Confidence score quality
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High selective accuracy: valuable information for practitioners
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Prediction correctness
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Top-N performance
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Diverse set of structure predictions
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Number of Diffusion Steps
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Only 10 steps required for high performance
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Performance vs size
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Generalization to unseen receptors

67

0

7,5

15

22,5

30

EquiBind SMINATANKBind QVinaW GLIDEGNINA

DiffDock

Percentage of predictions with RMSD < 2Å

E3Bind

Able to generalize: outperform classical methods



Performance vs similarity
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Online Tools: HuggingFace Spaces
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Online Tools: HuggingFace Spaces
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Online Tools: Google Colab
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Protein-protein docking 
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Ruslan MammadovCedrik LaueAmine Ketata



Protein-protein docking 

72

Ruslan MammadovCedrik LaueAmine Ketata


