

Timewarp

Transferable acceleration of molecular dynamics by learning time-coarsened dynamics

Speaker: Leon Klein
+ Main contributors: Andrew Foong, Tor Fjelde, Bruno Mlodozeniec,
Marc Brockschmidt, Sebastian Nowozin, Frank Noé, Ryota Tomioka

25 October 2024

The Timewarp team

Leon

Andrew

Tor

Frank

Bruno

Ryota

+ entire AI4Science team

Marc

Sebastian

Breakthrough in ML for Proteins

- DeepMind's AlphaFold solves proteinfolding.
- Predicts 3D structure from amino acid sequence.
- *But* static 3D protein structure not everything!
- Want to understand *dynamics* and *interactions*.
- Need to return to *Molecular Dynamics* (*MD*).

Molecular Dynamics (MD)

• MD simulates stochastic molecular motions

$$m\frac{d^2x}{dt^2} = -\nabla U(x) - \gamma \frac{dx}{dt} + \mathbf{R}(t)$$

 Problem: Biophysical processes take ~1ms or more. Too long!

Boltzmann distribution

• We want to sample the Boltzmann distribution

$$\mu(x) \propto \exp\left(-\frac{U(x)}{k_B T}\right)$$

- Long MD trajectories provide samples from $\mu(x)$ asymptotically.
- But first consider the conditional distribution $\mu(x(t + \tau)|x(t))$

Timewarp – acceleration of molecular dynamics

- Speed-up by proposing large time steps $\tau \gg \Delta t$.
- Unbiased: correct samples with Metropolis-Hastings.

Datasets

- Generate MD trajectories of small peptides.
- Subsample the trajectories: $x(\tau), x(2\tau), x(3\tau), ...$
- Train model to predict $x(t + \tau)$ given x(t).
- **Goal:** speed up sampling on *test* peptides.

Model desiderata

Fast sampling to quickly generate trajectories.

Tractable likelihood to allow for Metropolis-Hastings correction.

Train on train set of proteins, **transfer** to test set of new proteins.

Incorporate symmetries of the physical system.

Conditional normalising flows

- Want to model $\mu(x(t+\tau)|\mathbf{x}(t))$ with $p_{\theta}(x(t+\tau)|\mathbf{x}(t))$.
- Use a *conditional* normalising flow: $x(t + \tau) \coloneqq f_{\theta}(z; x(t))$

- Map from z to $x(t + \tau)$ is invertible, but not x(t) to $x(t + \tau)$.
- Tractable formula for $p_{\theta}(x(t+\tau)|x(t))$.

Model desiderata

Fast sampling to quickly generate trajectories.

Tractable likelihood to allow for Metropolis-Hastings correction

Train on train set of proteins, **transfer** to test set of new proteins

Incorporate symmetries of the physical system.

Conditional flow architecture

- Augmented RealNVP
- All-atom representation
- Cartesian coordinates
- Permutation equivariant transformer

Model desiderata

Fast sampling to quickly generate trajectories.

Tractable likelihood to allow for Metropolis-Hastings correction

Train on train set of proteins, **transfer** to test set of new proteins

Incorporate symmetries of the physical system.

Training objective

- Two stages: *likelihood training* and *acceptance training*.
- Likelihood training: $L_{\text{lik}}(\theta) = \frac{1}{\kappa} \sum_{k=1}^{K} \log p_{\theta}(x_k(t+\tau) | x_k(t))$.
- Acceptance training maximises acceptance probability:

$$r_{\theta}(\boldsymbol{x}, \tilde{\boldsymbol{x}}) = \frac{\mu(\tilde{\boldsymbol{x}}) p_{\theta}(\boldsymbol{x} | \tilde{\boldsymbol{x}})}{\mu(\boldsymbol{x}) p_{\theta}(\tilde{\boldsymbol{x}} | \boldsymbol{x})}, \quad L_{\text{acc}}(\theta) = \frac{1}{K} \sum_{k=1}^{K} \log r_{\theta}(\boldsymbol{x}_{k}(t), \tilde{\boldsymbol{x}}_{k}(t+\tau)).$$

• Weighted with an entropy term to encourage exploration:

$$L_{\text{ent}}(\theta) = -\frac{1}{K} \sum_{k=1}^{K} \log p_{\theta}(\tilde{x}_{k}(t+\tau) | \boldsymbol{x}_{k}(t))$$

Timewarp MCMC

- Sample with Metropolis-Hastings correction
- Asymptotically unbiased

Timewarp MCMC algorithm

- 1. Sample $\tilde{x}_i \sim p_{\theta}(\cdot | \mathbf{x})$ in parallel.
- 2. Compute acceptance ratios

$$\alpha(\mathbf{x}, \tilde{x}_i) = \min\left(1, \frac{\mu(\tilde{x}_i) p_{\theta}(\mathbf{x}|\tilde{x}_i)}{\mu(\mathbf{x}) p_{\theta}(\tilde{x}_i|\mathbf{x})}\right)$$

- 3. Accept \tilde{x}_i with probability $\alpha(\mathbf{x}, \tilde{x}_i)$.
- 4. Add *x* for each rejected sample to Markov Chain
- 5. Add the first accepted \tilde{x}_i to the Markov Chain

 $\widetilde{\chi}_{5}$

 $\widetilde{\chi}_4$

 $\tilde{\chi}_{3}$

 \tilde{x}_2

 $\widetilde{\chi}_1$

 $\sim p_{\theta}(\cdot | \mathbf{x})$

Sampling

• Timewarp MCMC

- Sample with Metropolis-Hastings correction
- Asymptotically unbiased
- Timewarp exploration
 - Every proposal is accepted
 - Potentially biased samples
 - Faster exploration

Experiments

Datasets

- Dipeptides (2 amino acids)
 - Number of peptides: 400
 - Train set: 200 dipeptides
 - Time step $\tau = 1ns = 10^6$ MD steps
- Tetrapeptides (4 amino acids)
 - Number of peptides: 20⁴
 - Train set: 1500 tetrapeptides ~ 1%
 - Time step $\tau = 100 ps = 10^5$ MD steps

Training trajectories

- Short training trajectories of 50*ns*
- Training trajectories miss some metastable states

Boltzmann Training trajectory

TICA projections:

- Extract slowest processes
- Shows meta-stable states

Conditional distribution $\mu(x(t+\tau)|x(t))$

Targeting the Boltzmann distribution - dipeptides

Targeting the Boltzmann distribution - dipeptides

Targeting the Boltzmann distribution - tetrapeptides

Wall-clock time speed-up – Timewarp MCMC

Compare effective samples per second

Exploration with the Timewarp model

Exploration with the Timewarp model - CTSA

Exploration with the Timewarp model - CTSA

Timewarp MCMC

Timewarp exploration

Wall-clock time speed-up - Timewarp exploration

Compare effective samples per second

Timewarp – Summary

- Transferable model that predicts future states of unseen peptides
- Two sampling algorithms
 - 1. Timewarp MCMC
 - Speed-up for dipeptides
 - Speed-up for minority of tetrapeptides
 - 2. Timewarp exploration
 - Speed-up for dipeptides and tetrapeptides
 - No longer asymptotically unbiased
 - Discovers metastable states that MD misses initially

Thanks for listening!

Validation of new-metastable states

Validation of new-metastable states

Boltzmann distribution

- Many MD applications boil down to sampling the *Boltzmann distribution*.
- Equilibrium distribution at a temperature *T*.

$$\mu(x) \propto \exp\left(-\frac{U(x)}{k_BT}\right).$$

- U(x) is the potential energy function, k_B is Boltzmann's constant.
- Sampling i.i.d. is **intractable**.
- Long MD trajectories provide samples from $\mu(x)$ asymptotically.

Conditional flow architecture

RealNVP

- RealNVP: affine transformation of some dimensions based on others.
- Transform z^p based on z^v and vice versa.
- Each transformation uses an atom transformer.
- Stack many transformations.
- Flow predicts the *change*, $x^p(t + \tau) x^p(t)$.

Atom transformer

Atom transformer

- Concatenate latent variables z, conditioning state x(t) and atom feature embedding h.
- Pass through multiple transformer blocks.
- Use kernel self-attention.
- Output scale/translation factor of RealNVP.

Kernel self-attention

Kernel self-attention

- Gaussian RBF on interatomic distance to compute attention weights.
- Inductive bias: nearby atoms should have greater effect.
- Multihead version: each head uses a different RBF lengthscale.

Timewarp + MCMC

Training times

Table 6. Timewarp training parameters				
Dataset + training method	Batch size	No. of A-100s	Training time	
AD — likelihood	256	1	1 week	
AD — acceptance	64	1	2 days	
2AA — likelihood	256	4	2 weeks	
2AA — acceptance	256	4	4 days	
4AA — likelihood	256	4	3 weeks	

Timewarp MCMC algorithm

Metropolis Hastings proposal:

- 1. Sample $\tilde{x} \sim p_{\theta}(\cdot | \mathbf{x})$.
- 2. Compute acceptance ratio:

$$\alpha(\mathbf{x}, \tilde{\mathbf{x}}) = \min\left(1, \frac{\mu(\tilde{\mathbf{x}}) p_{\theta}(\mathbf{x}|\tilde{\mathbf{x}})}{\mu(\mathbf{x}) p_{\theta}(\tilde{\mathbf{x}}|\mathbf{x})}\right)$$

3. Accept \tilde{x} with probability $\alpha(x, \tilde{x})$.

Timewarp exploration algorithm

- Timewarp MCMC can sometimes have very low acceptance.
- We also try *exploration* mode, where we accept all proposals.
- Biased samples, but can explore metastable states faster.

Augmented MCMC

- In practice we only care about positions of atoms, not velocities.
- Replace velocities with auxiliary variables $x^{\nu} \sim N(0, I)$.
- Joint augmented Boltzmann distribution:

$$\mu_{\text{aug}} \propto \exp\left(-\frac{U(x^p)}{k_BT}\right) N(x^v; 0, I).$$

- Target μ_{aug} with MCMC, then discard x^{ν} .
- Why augment?
 - Allows more expressive distribution for x^p .
 - Easier to incorporate permutation symmetry.

Timewarp MCMC algorithm

1. Sample $\tilde{x} \sim p_{\theta}(\cdot | \mathbf{x}_{m}^{p})$

$$x_m = (x_m^p, x_m^v)$$

2. Compute acceptance ratios

$$\alpha(\mathbf{x}_{m}, \tilde{x}) = \min\left(1, \frac{\mu_{\text{aug}}(\tilde{x}) p_{\theta}(\mathbf{x}_{m} | \tilde{x}^{p})}{\mu_{\text{aug}}(\mathbf{x}_{m}) p_{\theta}(\tilde{x} | \mathbf{x}_{m}^{p})}\right)$$

- 3. With probability $\alpha(x_m, \tilde{x})$ set $x_{m+1} = \tilde{x}$ else $x_{m+1} = x_m$.
- 4. Resample $x_{m+1}^{\nu} \sim N(0, I)$ (Gibbs update)

Batching the Timewarp MCMC algorithm

Markov Chain

Algorithm 1	Timewarp MCMC with batched proposals
Require: Ini	tial state $X_0 = (X_0^p, X_0^v)$ chain length M
proposal ba	atch size B
$m \leftarrow 0$	
while $m <$	M do
Sample	$\tilde{X}_1 = \tilde{X}_P \sim p_0(\cdot X^p)$ {Batch sample}
for $h =$	$1 \qquad B do$
$\epsilon \sim \Lambda$	$\int (0 I) \{ \text{Resample auxiliary variables} \}$
$X_{1} \leftarrow$	(x^p, ϵ)
Samp	$ = (X_{\tilde{m}}, \epsilon) $
and for	$(\alpha(\Lambda_b,\Lambda_b))$
	$[h \cdot L = 1, 1 \leq h \leq P] \neq \emptyset$ then
$\mathbf{n} := \mathbf{v}$	$\{0: I_b = 1, 1 \leq 0 \leq D\} \neq \emptyset$ then are $\{C\}$ (First accord completed)
a = n	$\lim(S)$ {First accepted sample}
(X_{m+}^{P})	$(X_m^p, \dots, X_m^p, \dots, X_m^p) \leftarrow (X_m^p, \dots, X_m^p)$
X_{m+a}^p	$_{a} \leftarrow X_{a}^{p}$
$m \leftarrow$	m + a
else	
(X_{m+}^p)	$(X_{m+B}^p) \leftarrow (X_m^p, \dots, X_m^p)$
$m \leftarrow$	m + B
end if	
end while	
output X_2^p	X^p .
bulput x_0 ,	····· M

 x_m

Timewarp exploration algorithm

- Timewarp MCMC can sometimes have very low acceptance.
- We also try *exploration* mode, where we accept all proposals.
- Biased samples, but can explore metastable states faster.

```
Algorithm 2 Fast exploration of the state space with Timewarp

Require: Initial state X_0^p, number of steps M, maximum allowed energy increase \Delta U_{\max}

for m = 0, \ldots, M do

Sample \tilde{X}_m^p \sim p_{\theta}(\cdot \mid X_m^p) {Sample from conditional flow}

if U(\tilde{X}_m^p) - U(X_m^p) < \Delta U_{\max} then

X_{m+1}^p \leftarrow \tilde{X}_m^p

else

X_{m+1}^p \leftarrow X_m^p {Reject if energy change is too high}

end if

end for

output X_0^p, \ldots X_M^p
```

Related work

• Implicit Transfer Operator Learning: Multiple Time-Resolution Surrogates for Molecular Dynamics. Schreiner et al. NeurIPS2023

- Different time resolutions possible
- Accurate prediction of dynamic observables
- Not transferable yet

Future work

- Different flow architecture to scale to larger systems
- SE(3) equivariant augmented coupling flows. *Midgley et al. NeurIPS 2023*
- Allow to include rotational symmetry

