
Timewarp

Transferable acceleration of molecular dynamics

by learning time-coarsened dynamics

Speaker: Leon Klein 

+ Main contributors: Andrew Foong, Tor Fjelde, Bruno Mlodozeniec, 
Marc Brockschmidt, Sebastian Nowozin, Frank Noé, Ryota Tomioka

25 October 2024



The Timewarp team

Leon Andrew Tor Bruno

Marc Sebastian Frank Ryota

+ entire AI4Science team



Breakthrough in ML for Proteins

 DeepMind’s AlphaFold solves protein-

folding.

 Predicts 3D structure from amino acid 

sequence.

 But static 3D protein structure not 

everything!

 Want to understand dynamics and 

interactions.

 Need to return to Molecular Dynamics 

(MD).



• MD simulates stochastic molecular motions

• Problem: Biophysical processes take ~1ms or 

more. Too long!

→ Timewarp: can we tackle this with deep learning? 

Molecular Dynamics (MD)

Δ𝑡 = 1fs = 10−15s 

Δ𝑡 Δ𝑡 Δ𝑡 Δ𝑡 Δ𝑡 Δ𝑡



• We want to sample the Boltzmann 

distribution

𝜇 𝑥 ∝ exp −
𝑈 𝑥

𝑘𝐵𝑇

• Long MD trajectories provide 

samples from 𝜇(𝑥) asymptotically.

• But first consider the conditional 

distribution 𝜇 𝑥 𝑡 + 𝜏 𝑥 𝑡

Boltzmann distribution

𝑥(𝑡)
𝑥(𝑡 + 𝜏)

𝑥(𝑡 + 𝜏)

𝑥(𝑡 + 𝜏)

𝑥(𝑡 + 𝜏)

𝑥(𝑡 + 𝜏)



• Speed-up by proposing large time steps 𝜏 ≫ Δ𝑡. 

• Unbiased: correct samples with Metropolis-Hastings.

Timewarp – acceleration of molecular dynamics

𝑥(𝑡) 𝑥(𝑡 + 𝜏)



• Generate MD trajectories of small peptides.

• Subsample the trajectories: 𝑥 𝜏 , 𝑥 2𝜏 , 𝑥 3𝜏 , …

• Train model to predict 𝑥 𝑡 + 𝜏  given 𝑥 𝑡 .

• Goal: speed up sampling on test peptides.

Datasets

𝑥(0) 𝑥(τ) 𝑥(2τ)

Δ𝑡

𝜏



Fast sampling to 
quickly generate 

trajectories.

Tractable 
likelihood to allow 

for Metropolis-
Hastings correction.

Train on train set of 
proteins, transfer 
to test set of new 

proteins.

Incorporate 
symmetries of the 

physical system.

Model desiderata



• Want to model 𝜇 𝑥 𝑡 + 𝜏 𝑥 𝑡  with 𝑝𝜃 𝑥 𝑡 + 𝜏 𝑥 𝑡 .

• Use a conditional normalising flow:

Conditional normalising flows

𝑥 𝑡 + 𝜏 ≔ 𝑓𝜃(𝑧; 𝑥 𝑡 )

• Map from 𝑧 to 𝑥 𝑡 + 𝜏  is invertible, but not 𝑥 𝑡  to 𝑥 𝑡 + 𝜏 .

• Tractable formula for 𝑝𝜃 𝑥 𝑡 + 𝜏 𝑥 𝑡 .                 

𝑥(𝑡 + 𝜏)~𝑝𝜃 𝑥 𝑡 + 𝜏 𝑥 𝑡𝑧~𝑁(0, 𝐼)

𝑥(𝑡)

𝑓𝜃

prior output

conditioning
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Conditional flow architecture

• Augmented 

RealNVP

• All-atom 

representation

• Cartesian 

coordinates

• Permutation 

equivariant 

transformer
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• Two stages: likelihood training and acceptance training.

• Likelihood training: 𝐿lik 𝜃 =
1

𝐾
σ𝑘=1

𝐾 log 𝑝𝜃 𝑥𝑘 𝑡 + 𝜏 𝑥𝑘 𝑡 .

• Acceptance training maximises acceptance probability:

 𝑟𝜃(𝑥, ෤𝑥) =
𝜇 ෤𝑥 𝑝𝜃 𝑥 ෤𝑥
𝜇 𝑥 𝑝𝜃 ෤𝑥 𝑥

, 𝐿acc 𝜃 =
1

𝐾
σ𝑘=1

𝐾 log 𝑟𝜃(𝑥𝑘 𝑡 , ෤𝑥𝑘 𝑡 + 𝜏 ).

• Weighted with an entropy term to encourage exploration: 

𝐿ent 𝜃 = −
1

𝐾
σ𝑘=1

𝐾 log 𝑝𝜃 ෤𝑥𝑘 𝑡 + 𝜏 𝑥𝑘 𝑡

Training objective



Timewarp MCMC

• Sample with Metropolis-Hastings 

correction

• Asymptotically unbiased

Sampling

𝑥1,2

𝑥3

𝑥4

𝑥5,6



1. Sample ෤𝑥𝑖~ 𝑝𝜃 ∙ 𝑥  in parallel.

2. Compute acceptance ratios

𝛼 𝑥, ෤𝑥𝑖 = min 1,
𝜇 ෤𝑥𝑖 𝑝𝜃 𝑥 ෤𝑥𝑖

𝜇 𝑥 𝑝𝜃 ෤𝑥𝑖 𝑥

3. Accept ෤𝑥𝑖 with probability 𝛼 𝑥, ෤𝑥𝑖 .

4. Add 𝑥 for each rejected sample to Markov Chain

5. Add the first accepted ෤𝑥𝑖 to the Markov Chain

Timewarp MCMC algorithm

~ 𝑝𝜃 ∙ 𝑥  

෤𝑥2

෤𝑥1

෤𝑥3

෤𝑥4

෤𝑥5

෤𝑥3𝑥 𝑥𝑥Markov Chain



• Timewarp MCMC

• Sample with Metropolis-Hastings 

correction

• Asymptotically unbiased

• Timewarp exploration

• Every proposal is accepted

• Potentially biased samples

• Faster exploration

Sampling

𝑥1

𝑥2

𝑥3

𝑥4



Experiments



• Dipeptides (2 amino acids)
• Number of peptides: 400

• Train set: 200 dipeptides

• Time step 𝜏 = 1𝑛𝑠 = 106 MD steps

• Tetrapeptides (4 amino acids)
• Number of peptides: 204

• Train set: 1500 tetrapeptides ~ 1%

• Time step 𝜏 = 100𝑝𝑠 = 105 MD steps

Datasets



Training trajectories

• Short training 

trajectories of 50𝑛𝑠

• Training trajectories 

miss some metastable 

states

TICA projections:

• Extract slowest processes

• Shows meta-stable states 



Conditional distribution 𝜇 𝑥 𝑡 + 𝜏 𝑥 𝑡



Targeting the Boltzmann distribution - dipeptides



Targeting the Boltzmann distribution - dipeptides

MD Timewarp MCMC



Targeting the Boltzmann distribution - tetrapeptides



Wall-clock time speed-up – Timewarp MCMC

• Compare effective samples per second



Exploration with the Timewarp model



Exploration with the Timewarp model - CTSA

MD Timewarp explorationTimewarp MCMC



Exploration with the Timewarp model - CTSA

Timewarp explorationTimewarp MCMCMD



Wall-clock time speed-up – Timewarp exploration

• Compare effective samples per second



Timewarp – Summary 

• Transferable model that predicts future states of unseen peptides

• Two sampling algorithms

1. Timewarp MCMC

 Speed-up for dipeptides

 Speed-up for minority of tetrapeptides

2. Timewarp exploration

 Speed-up for dipeptides and tetrapeptides

 No longer asymptotically unbiased

 Discovers metastable states that MD misses initially

𝑥(𝑡) 𝑥(𝑡 + 𝜏)



Thanks for listening!





Validation of new metastable states



Validation of new metastable states



• Many MD applications boil down to sampling the Boltzmann 

distribution.

• Equilibrium distribution at a temperature 𝑇.

𝜇 𝑥 ∝ exp −
𝑈 𝑥

𝑘𝐵𝑇
.

• 𝑈(𝑥) is the potential energy function, 𝑘𝐵 is Boltzmann’s constant. 

• Sampling i.i.d. is intractable.

• Long MD trajectories provide samples from 𝜇(𝑥) asymptotically.

Boltzmann distribution



Conditional flow architecture



RealNVP

• RealNVP: affine transformation of some 

dimensions based on others.

• Transform 𝑧𝑝 based on 𝑧𝑣 and vice versa.

• Each transformation uses an atom 

transformer.

• Stack many transformations.

• Flow predicts the change, 𝑥𝑝 𝑡 + 𝜏 − 𝑥𝑝(𝑡).



Atom transformer



Atom transformer

• Concatenate latent variables 𝑧, 

conditioning state 𝑥(𝑡) and atom 

feature embedding ℎ.

• Pass through multiple transformer 

blocks.

• Use kernel self-attention.

• Output scale/translation factor of 

RealNVP.



Kernel self-attention



Kernel self-attention

• Gaussian RBF on interatomic distance 

to compute attention weights.

• Inductive bias: nearby atoms should 

have greater effect.

• Multihead version: each head uses a 

different RBF lengthscale.



Timewarp + MCMC

→ Sample proposals in parallel



Training times



Metropolis Hastings proposal:

1. Sample ෤𝑥 ~ 𝑝𝜃 ∙ 𝑥 .

2. Compute acceptance ratio:

𝛼 𝑥, ෤𝑥 = min 1,
𝜇 ෤𝑥 𝑝𝜃 𝑥 ෤𝑥

𝜇 𝑥 𝑝𝜃 ෤𝑥 𝑥

3. Accept ෤𝑥 with probability 𝛼 𝑥, ෤𝑥 .

Timewarp MCMC algorithm

𝜇aug

𝑥1,2

𝑥3

𝑥4

𝑥5,6



• Timewarp MCMC can sometimes have very 

low acceptance.

• We also try exploration mode, where we 

accept all proposals.

• Biased samples, but can explore metastable 

states faster.

Timewarp exploration algorithm

𝜇aug

𝑥1

𝑥2

𝑥3

𝑥4



• In practice we only care about positions of atoms, not velocities.

• Replace velocities with auxiliary variables 𝑥𝑣~𝑁(0, 𝐼).

• Joint augmented Boltzmann distribution:

𝜇aug ∝ exp −
𝑈 𝑥𝑝

𝑘𝐵𝑇
𝑁 𝑥𝑣; 0, 𝐼 . 

• Target 𝜇aug with MCMC, then discard 𝑥𝑣.

• Why augment?
• Allows more expressive distribution for 𝑥𝑝.

• Easier to incorporate permutation symmetry.

Augmented MCMC



1. Sample ෤𝑥~ 𝑝𝜃 ∙ 𝑥𝑚
𝑝

 

2. Compute acceptance ratios

𝛼 𝑥𝑚, ෤𝑥 = min 1,
𝜇aug ෤𝑥 𝑝𝜃 𝑥𝑚 ෤𝑥𝑝

𝜇aug 𝑥𝑚 𝑝𝜃 ෤𝑥 𝑥𝑚
𝑝

3. With probability 𝛼 𝑥𝑚, ෤𝑥 set 𝑥𝑚+1 = ෤𝑥 else 𝑥𝑚+1 = 𝑥𝑚.

4. Resample 𝑥𝑚+1
𝑣 ~𝑁 0, 𝐼  (Gibbs update)

Timewarp MCMC algorithm

𝑥𝑚 = (𝑥𝑚
𝑝

, 𝑥𝑚
𝑣 )



Batching the Timewarp MCMC algorithm

~ 𝑝𝜃 ∙ 𝑥𝑚
𝑝

 

෤𝑥2

෤𝑥1

෤𝑥3

෤𝑥4

෤𝑥𝐵

෤𝑥3𝑥𝑚 𝑥𝑚𝑥𝑚Markov Chain



• Timewarp MCMC can sometimes have very low acceptance.

• We also try exploration mode, where we accept all proposals.

• Biased samples, but can explore metastable states faster.

Timewarp exploration algorithm



• Implicit Transfer Operator Learning: Multiple Time-Resolution 

Surrogates for Molecular Dynamics. Schreiner et al. NeurIPS2023

• Different time resolutions possible

• Accurate prediction of dynamic observables

• Not transferable yet

Related work



• Different flow architecture to scale to larger systems

• SE(3) equivariant augmented coupling flows. Midgley et al. 

NeurIPS 2023

• Allow to include rotational symmetry

Future work
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