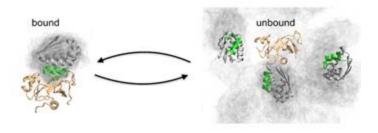
Generative models for molecules in equilibrium

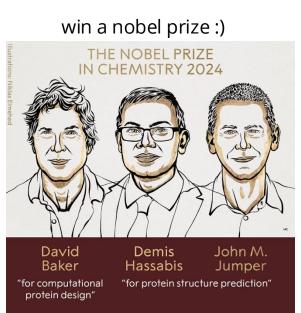
Jonas Köhler

Why generative modeling for molecules?

find candidates for drugs and materials (inverse design)

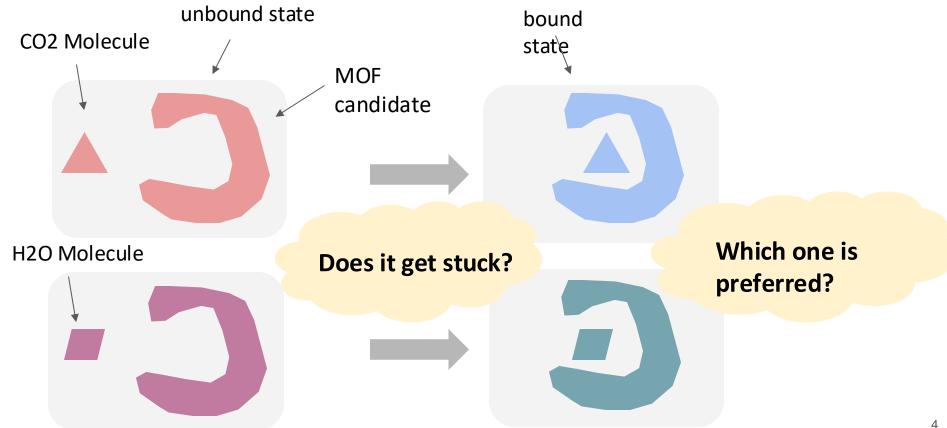
understand molecular origin of diseases



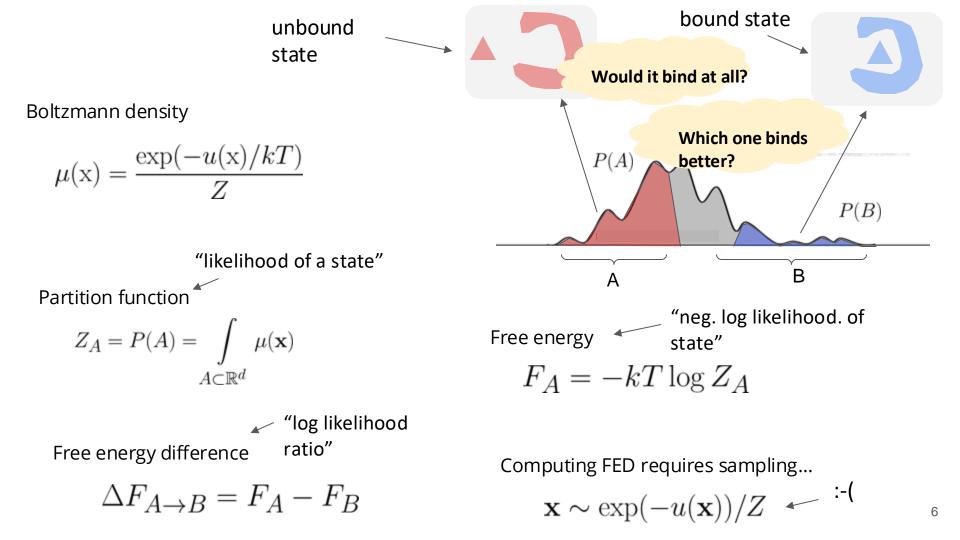


Merc mgflip.com https://en.wikipedia.org/wiki/MOE-5 ÌĽ

Some Motivation: uptake affinity prediction



Molecules are not static... Potential energy $u(\mathbf{x})$ state = "whole structure = "single event" ensemble" 00 D E Shaw Research Boltzmann density $\mu(\mathbf{x}) = \frac{\exp(-u(\mathbf{x})/kT)}{}$



Answers requires sampling...

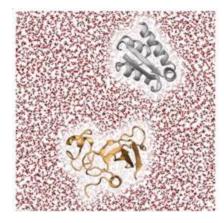
-:-(

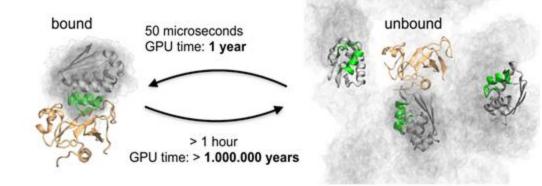
 $\mathbf{x} \sim \exp(-u(\mathbf{x}))/Z$

Classic workhorse: Molecular / Langevin dynamics simulations

 $\mathbf{x} \leftarrow \mathbf{x} - \nabla_{\mathbf{x}} u(\mathbf{x}) dt + \sqrt{2dt} \ \eta, \quad \eta \sim \mathcal{N}(0, I)$

easy to make mistakes...





Numerical precision: step size 1-4 fs

Relevant biological scales: $1 \text{ ms} \rightarrow \text{hours...}$

Computing FED requires sampling... Classic workhorse: Molecular / Langevin dynamics simulations

2ms of molecular dynamics

- = ~1 Ph.D.
- = ~ 500 GJ

Nu Source: Frank Noé

Boltzmann Generators

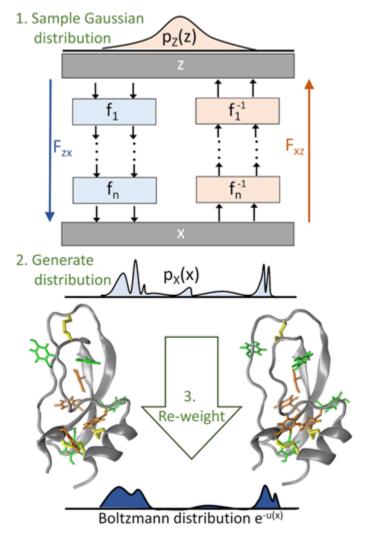
9

Frank Noé

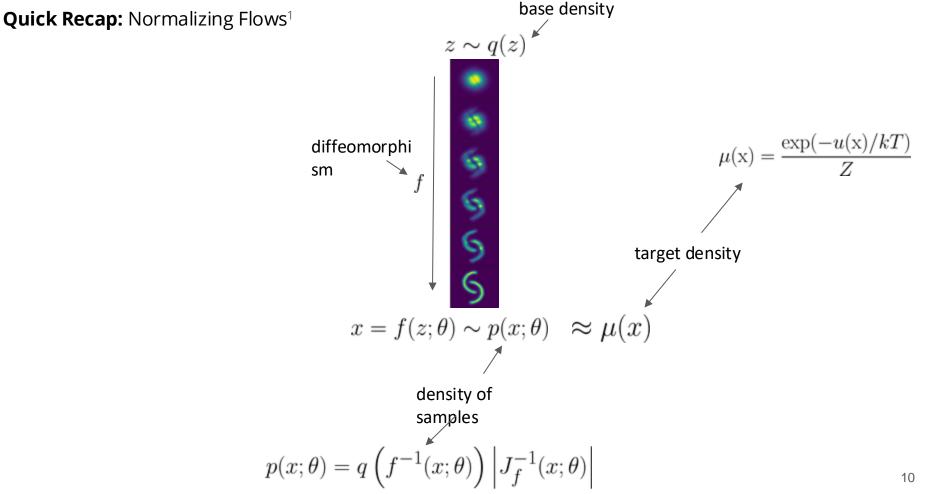
Simon Olsson

Hao Wu

- 1. Sample noise from base distribution
- 2. Transform via a trainable diffeomorphism (Normalizing Flow)
- 3. Reweigh against the target

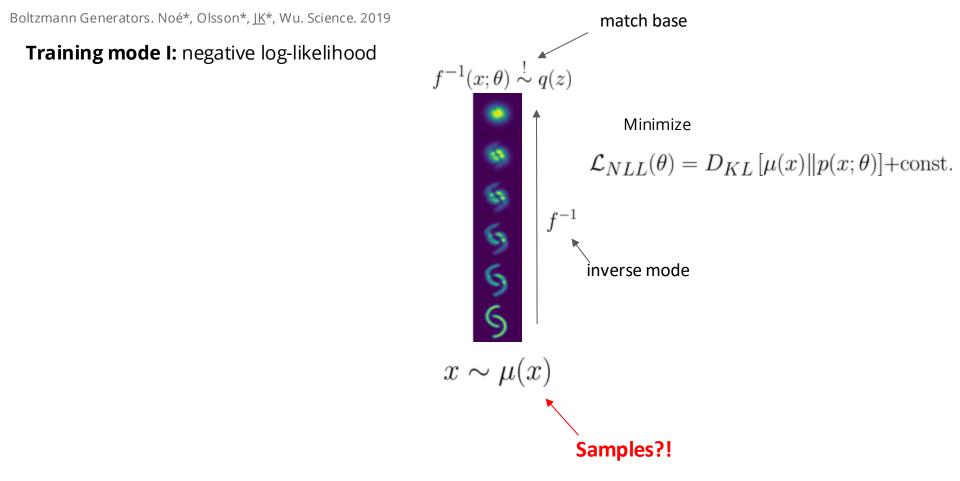


Boltzmann Generators. Noé*, Olsson*, JK*, Wu. Science. 2019



1: Variational inference with normalizing flows. Rezende & Mohammed. ICML. 2015

Figure: Neural ODEs, Chen et al. NeurIPS. 2018



11

Boltzmann Generators. Noé*, Olsson*, JK*, Wu. Science. 2019

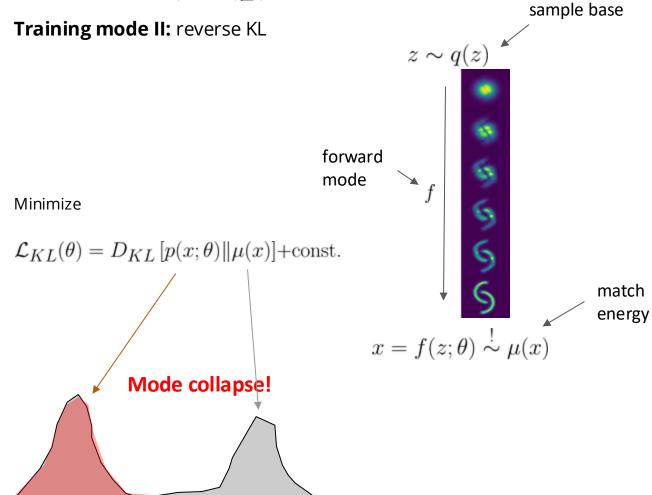


Figure: Neural ODEs, Chen et al. NeurIPS. 2018

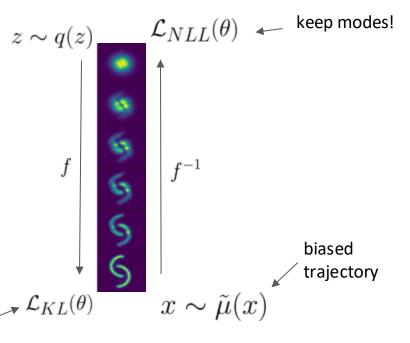
Boltzmann Generators. Noé*, Olsson*, JK*, Wu. Science. 2019

Our setup

1. NLL on biased samples (e.g. non-converged MD trajectory)

- 2. combine with KL training
- 3. correct with importance sampling

$$\mathbb{E}_{\mu}[O(x)] = \mathbb{E}_{x \sim p} \left[\frac{\mu(x)}{p(x)} O(x) \right]$$



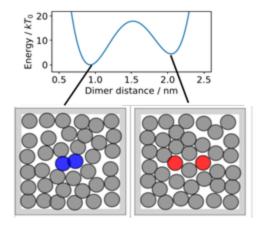
better fit

Joint loss:

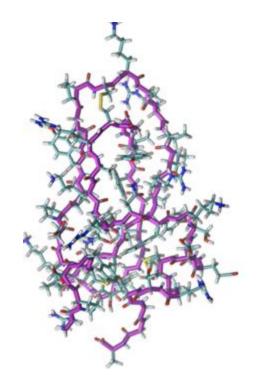
$$\mathcal{L}(\theta) = \alpha \cdot \mathcal{L}_{KL}(\theta) + \beta \cdot \mathcal{L}_{NLL}(\theta)$$

Figure: Neural ODEs, Chen et al. NeurIPS. 2018

Test systems



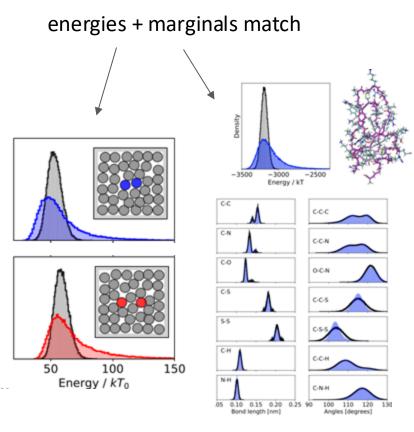
dimer in particle box

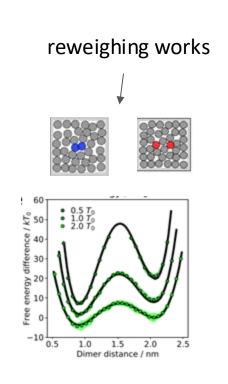


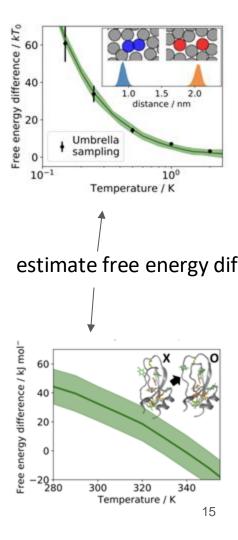
protein (BPTI) in implicit solvent

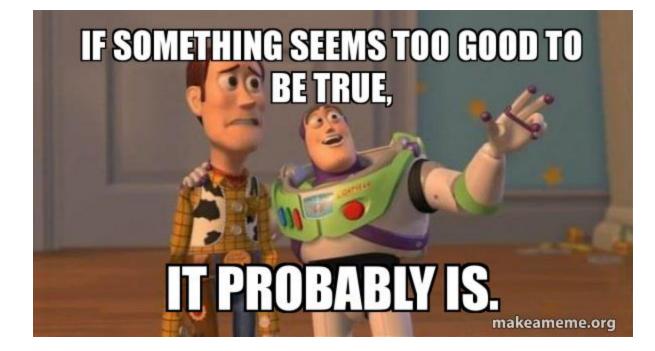
Boltzmann Generators. Noé*, Olsson*, JK*, Wu. Science. 2019

Results



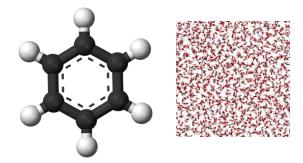




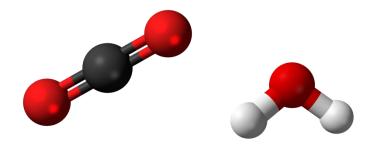


What are possible problems?

Symmetries



Rigid molecules



Smoothness, topology, scaling, ...

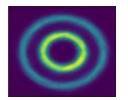
Equivariant Flows

TL/DR: normalizing flows with group symmetries

Equivariant Flows. Köhler*, Klein*, Noé. ICML. 2020

Symmetries H) С $z \sim q(z)$ R $x = f(z; \theta) \sim p(x; \theta)$

$$\forall R \in \rho(G) \colon u(Rx) = u(x)$$



Arbitrary flow maps

$$p(Rx; \theta) \neq p(x; \theta)$$
 Bad for reweighing
Handles data
inefficiently!

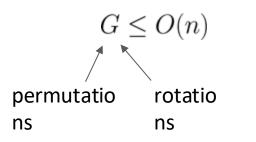
20

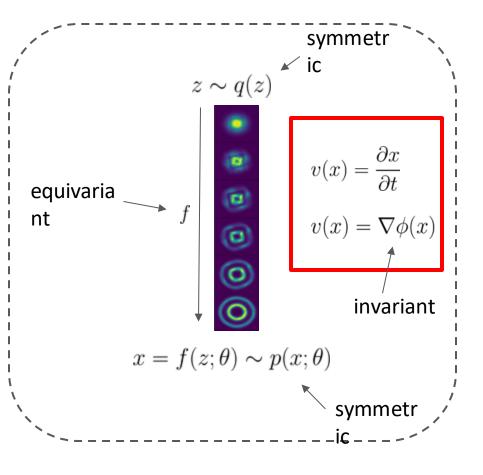
Equivariant Flows

Constraint on group representations

 $\mu(\rho(g)x) = \mu(x)$ \Downarrow $|\det \rho(g)| = 1.$

Important for molecules:





Follow-up work

Equivariant flow matching

Transferable Boltzmann Generators

Leon Klein Freie Universität Berlin leon.klein@fu-berlin.de Andreas Krämer Freie Universität Berlin andreas.kraemer@fu-berlin.de

Frank Noé Microsoft Research AI4Science Freie Universität Berlin Rice University franknoe@microsoft.com

/ no energy training needed! Leon Klein Freie Universität Berlin leon.klein@fu-berlin.de Frank Noé Microsoft Research Al4Science Freie Universitä Berlin Rice University franknoe@microsoft.com

zero-shot for unseen molecules!

Rigid body flows for molecular crystals

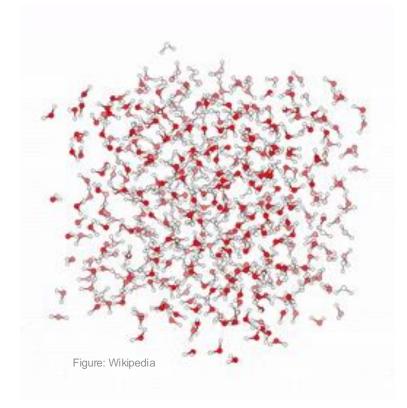
Pim de

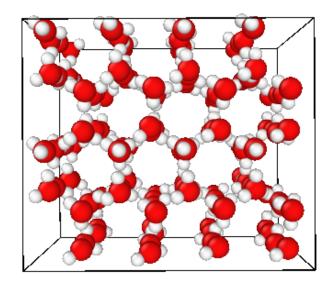
Haan

Michele Invernizzi Frank Noé

TL/DR: smooth and equivariant flows on SE(3)

Motivation: solvent systems and crystals





Cut manifold open into charts and apply flow to chart

- Easy to implement
- Fast

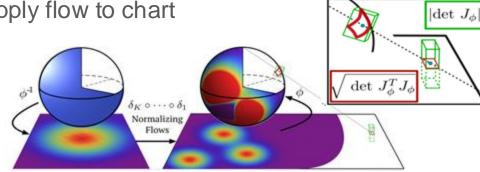


Figure: Gemici (2015)

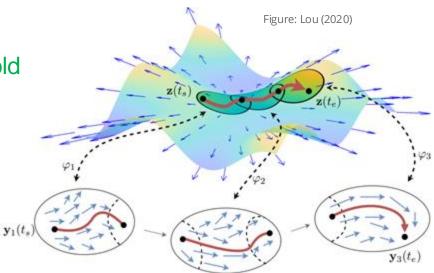
• Non-smooth solutions!

Figure: Wikipedia

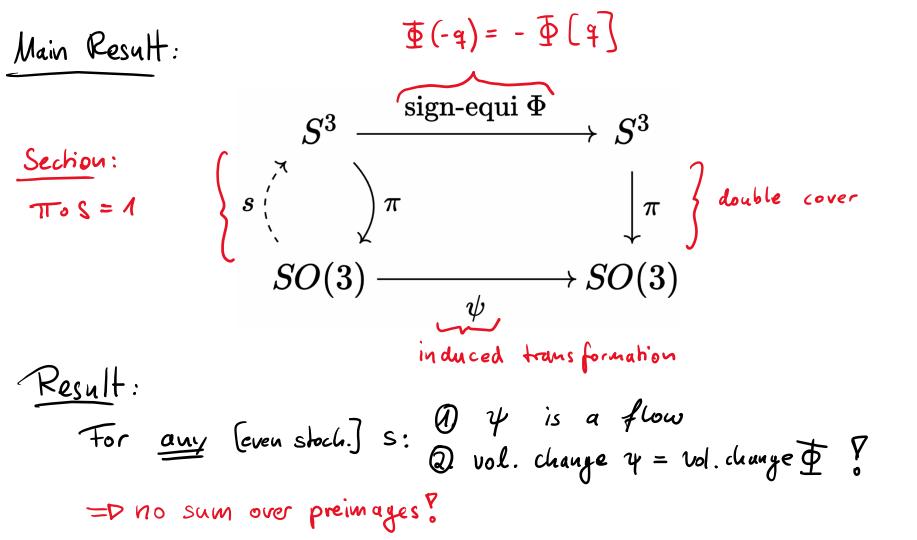
Continuous flows on manifolds

Integrate NN dynamics on manifold

- Works on every Riemannian manifold
- Smooth
- Difficult to train
 - Likelihood easy with flow-matching...
 - Rev. KL: adjoint method
- Slow integration
- Not scalable to high dimensions



Covering_flows $\pi: \mathbb{R} \to S^{1}, x \mapsto exp(i \cdot x)$ p(x) V-2 V-1 VA V, R Π $\pi^{-1}(u) \cong \mathcal{U} \times \mathbb{Z}$ $\widetilde{\rho}(r) = \sum_{k \in \mathbb{Z}} \rho(x+k)$ Π 0 21



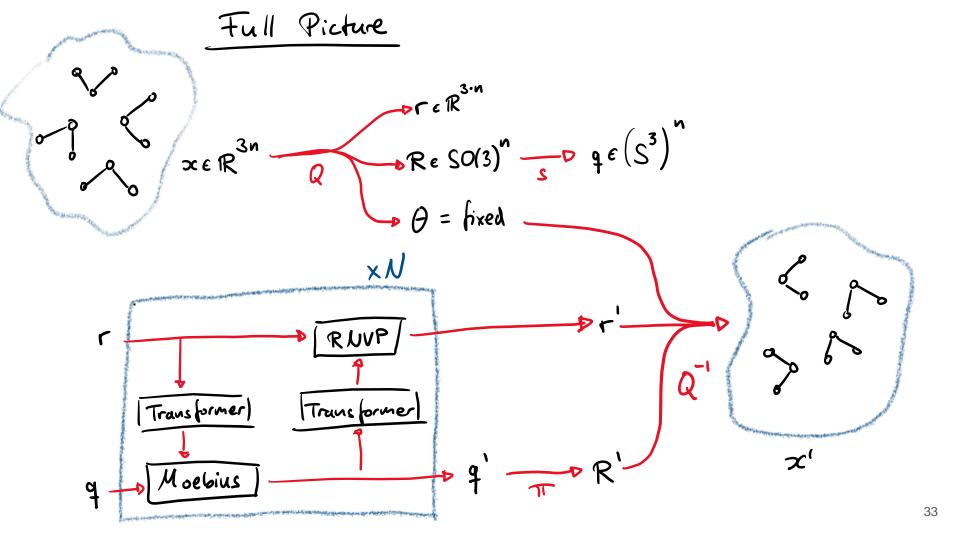
Return of the gradient flows

Strictly convex
$$\phi \colon \mathbb{R}^4 \to \mathbb{R}$$

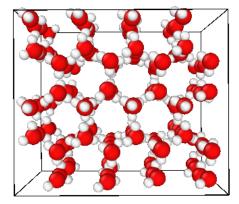
$$\Phi_{CG}(\boldsymbol{x}) = \frac{\nabla_{\boldsymbol{x}} \phi(\boldsymbol{x})}{\|\nabla_{\boldsymbol{x}} \phi(\boldsymbol{x})\|}$$

Boltzmann Generators:(earned Tree Enorgy Pertuduation
ny Pertuduation
, easy" system
exp(-U_o(x))high temp.
high temp.Simple prior
$$N(0, I)$$
,, easy" system
flowexp(-U_o(x))high temp.
high temp.flow $\overline{\Psi}$ =>flow $\overline{\Psi}$ bow temp.
to temp.targetexp(-u(x))target $exp(-u_a(x))$ bow temp. $\Delta \mp [u_{o}; u_{a}] \leq UL [P_{flow} || P_{target}]$

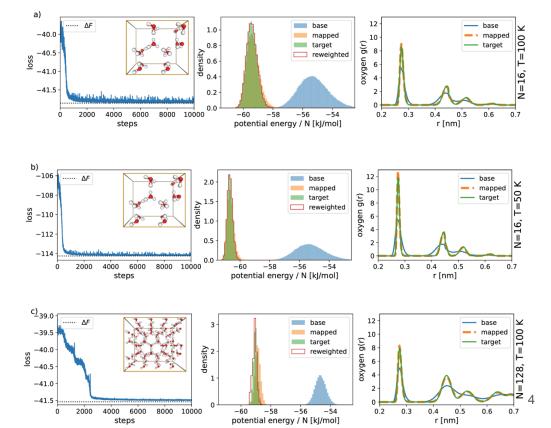
Targeted free energy estimation via learned mappings, Wirnsberger et. al., JCP 2020



Results: Ice in different thermodynamic states



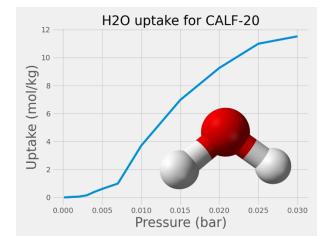
TARGET	MBAR	LFEP
N=16, T=100 K N=16, T=50 K	-41.857 ± 0.007 -114.251 ± 0.007	-41.859 ± 0.002 -114.252 ± 0.005
N=128, T=100 K	-41.535 ± 0.002	-41.534 ± 0.003

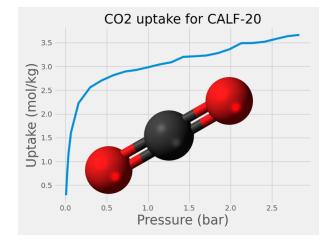


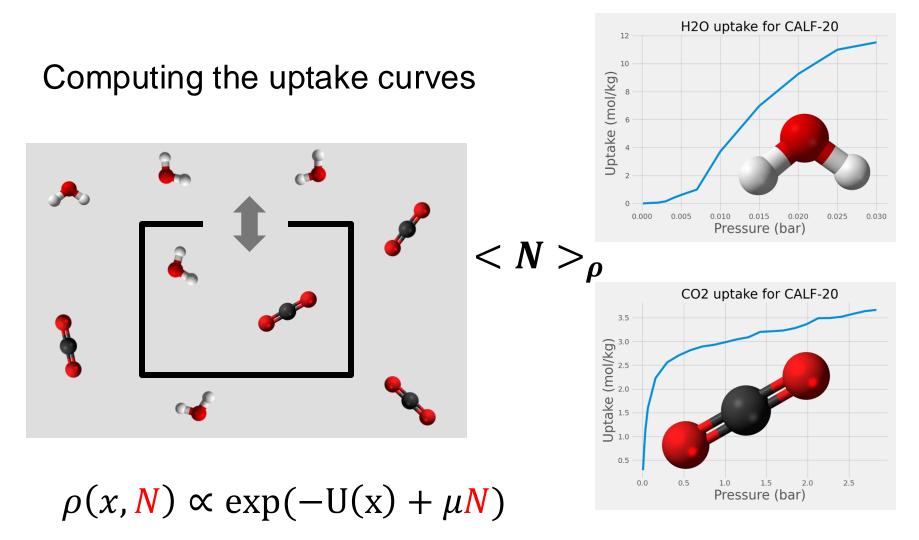
How to save the world now?

- 1. Generate *illions of MOF candidates
- 2. Understand which of them are stable
- 3. Understand which of them are good for the task
- 4. Synthesize them in a lab
- 5. Success?

Water or CO2?

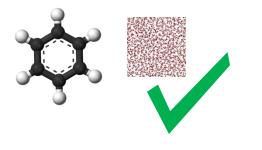




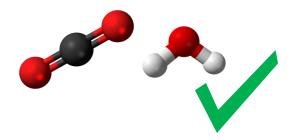


Boltzmann Generators for the problem?

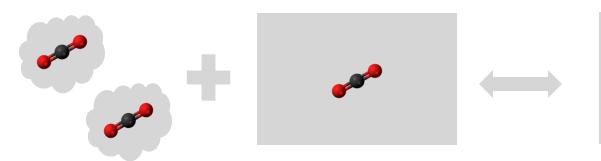
Symmetries

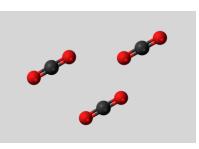


Rigid molecules



Varying N?





Thanks!

 \mathcal{D}

