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What is NeuLat?

software framework for machine-learning-based lattice field theory

e.g., ϕ4-theory, U(1) gauge theory, up to 3 + 1D

unifies existing tools into one framework

core team with expertise in LFT, machine learning, software development

previous contributions in LFT

asymptotically unbiased estimators (Nicoli et al. (2020))
thermodynamic observables (Nicoli et al. (2021))
mode-dropping estimators (Nicoli et al. (2023))
path gradients (Vaitl et al. (2022))
trivializing maps with flows (Bacchio et al. (2023))
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Benefits of Research Software Packages

faster development of new ideas

higher reproducibility

easier access into the field

no need to re-invent the wheel every time

software hub to share research

Existing examples:

SchNetPack - Deep Neural Networks for Atomistic Systems

BGFlow - Boltzmann Generators (BG) and other sampling methods
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Why NeuLat?

There are already great tools available!

Introduction to Normalizing Flows for Lattice Field Theory (Albergo et al., 2021)

Hamiltonian Monte Carlo

fthmc: Field Transformation HMC (Sam Foreman et al.)
l2hmc-qcd (Sam Foreman et al.)

Normalizing Flows

nflows
GomalizingFlow (Akio Tomiya et al.)

Flows/HMC

NeuMC (Piotr Bialas et al.)
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Introduction to Normalizing Flows for Lattice Field Theory (Albergo et al., 2021)

Hamiltonian Monte Carlo

fthmc: Field Transformation HMC (Sam Foreman et al.)
l2hmc-qcd (Sam Foreman et al.)

Normalizing Flows

nflows
GomalizingFlow (Akio Tomiya et al.)

Flows/HMC

NeuMC (Piotr Bialas et al.)

But: We want to create a highly customizable reference implementation.
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Core Features of NeuLat: Based on PyTorch

Density Estimator: Learn approximations of targeted Boltzmann distributions

Sampling:

various MCMC implementations (HMC, Cluster algorithms, etc.)
Normalizing Flow framework

Neural Importance Sampling
Neural HMC

Estimation:

Asymptotically unbiased estimators for physical observables (Nicoli et al. (2020)).
Direct estimation of thermodynamic observables with flows and HMC (Nicoli et al.
(2021)).
Sampling in the presence of mode-collapse (Nicoli et al. (2023)).

Tutorials and Documentation:

Step-by-step tutorials
Extensive reference

Modularity and Customizability: Swiftly incorporate new
actions/theories/models/techniques
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NeuLat Overview

Action

ϕ4 U(1)

Sampler
Markov Chain
Monte Carlo

Normalizing Flow

Estimator
Correlated
Estimator

i.i.d. Estimator

ObservableStatistics

Actions S [U] define physical theories p(U) ∝ e−S[U]
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Normalizing Flow
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Correlated
Estimator

i.i.d. Estimator

ObservableStatistics

Actions are, e.g., ϕ4 and U(1)
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NeuLat Overview

Actionϕ4 U(1)

Sampler
Markov Chain
Monte Carlo

Normalizing Flow

Estimator

Correlated
Estimator

i.i.d. Estimator

ObservableStatistics

Estimators are used to estimate observables
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NeuLat Overview

Actionϕ4 U(1)
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Markov Chain
Monte Carlo

Normalizing Flow

Estimator
Correlated
Estimator

i.i.d. Estimator

ObservableStatistics

Estimators are, e.g., i.i.d or correlated, based on the samples
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NeuLat Overview

Actionϕ4 U(1)

Sampler
Markov Chain
Monte Carlo

Normalizing Flow

Estimator
Correlated
Estimator

i.i.d. Estimator

Observable

Statistics

Observables, such as Magnetization in ϕ4, are used by the Estimator
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NeuLat Overview

Actionϕ4 U(1)

Sampler
Markov Chain
Monte Carlo

Normalizing Flow

Estimator
Correlated
Estimator

i.i.d. Estimator

ObservableStatistics

Resulting Statistics are estimations for the Observables
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Actions

Actions are objects and need to be instantiated.

1 import torch

2 from neulat.action.phi4 import Phi4Action

3

4 # ndim_features is the number of dimensions in the lattice

5 action = Phi4Action(kappa=0.3, lamb=0.022, ndim_features=2)

Action objects can be called to compute action values for configurations.

1 config = torch.randn(8, 8)

2 unnormalized_prob = torch.exp(-action(config))
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Defining Actions

Actions are very simple to implement, for instance ϕ4:

1 from neulat.action.base import Action

2

3 class Phi4Action(Action):

4 name = 'phi4_action'

5 def __init__(self, kappa, lambd, ndim_feature=2):

6 ...

7 def forward(self, config):

8 dims = tuple(range(-1, -self.ndim_feature, -1))

9 kinetic = (-2 * self.kappa) * config * sum(

10 torch.roll(config, 1, dim) for dim in dims)

11 mass_inter = (1 - 2 * self.lambd) * config ** 2

12 inter = self.lambd * config ** 4

13 return (kinetic + mass + inter).sum(dim=dims)
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Samplers

At the core of NeuLat are Samplers, which is anything from which can be sampled.

For instance, the normal distribution is a Sampler in Neulat:

1 from neulat.sampler.distribution import Normal

2

3 normal = Normal(loc=0., scale=1., feature_shape=(8, 8))
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At the core of NeuLat are Samplers, which is anything from which can be sampled.

For instance, the normal distribution is a Sampler in Neulat:
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Sampling

Samplers can be sampled from, and may or may not support probability values.

1 samples = normal.sample(sample_shape=8)

2 logprobs = normal.logprob(samples)

3

4 samples2, logprobs2 = normal.sample_with_logprob((2, 2))

In NeuLat, we assume configurations of shape (*sample shape, *feature shape).

feature shape is the shape of the lattice

sample shape is the number of samples, supporting arbitrary shapes
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Hamiltonian Monte Carlo

A more involved Sampler is the HMC:

1 from neulat.sampler.mc.hmc import HMCMarkovChain

2

3 hmc = HMCMarkovChain(

4 action, # action

5 feature_shape=(8, 8), # lattice shape

6 burn_in=5000, # equilibration steps

7 skip_interval=1, # skipped samples in chain

8 overrelax_interval=50, # steps between sign flips

9 eps=0.05, # step size along trajectory

10 traj_steps=20, # number of steps in trajectory

11 bias=0.0, # bias in initialization

12 )
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HMC Sampling

The HMC can be sampled from, as any sampler

1 configs = hmc.sample(sample_shape=13)

However, HMC does not implement logprob and by extension
sample with logprog, as no normalized probabilities are available

1 # both cause exceptions:

2 # logprobs = hmc.logprob(sample_shape=13)

3 # configs2, logprobs2 = hmc.sample_with_logprob(13)
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HMC Sampling 2

One can also iterate over HMCs to sample

1 configs = []

2 for n, config in zip(range(25), hmc):

3 configs.append(config)

4 print(f'Sampled config number {n}.')

5

6 # this gives a list of configs, combine them:

7 configs = torch.cat(configs)

But be careful, HMCs are infinite iterators.
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Normalizing Flows

Normalizing flows require a base distribution, and a transform.

1 from neulat.sampler.flow import Flow, SequentialTransform

2

3 flow = Flow(

4 base_distribution=Normal(feature_shape=(8, 8)),

5 transform=SequentialTransform([]) # identity for demo

6 )

Normalizing flows are (i.i.d.) Samplers supporting logprobs.

1 configs, logprobs = flow.sample_with_logprob(8)
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Normalizing Flows: Base Distributions

The base distribution can be any sampler that supports logprobs.

Commonly, simple distributions such as N (0, 1) are used.

1 flow = Flow(

2 base_distribution=Normal(feature_shape=(8, 8)),

3 transform=SequentialTransform([]) # identity for demo

4 )

Flows themselves support logprobs, and can thus be base distributions.

1 flow2 = Flow(

2 base_distribution=flow,

3 transform=SequentialTransform([]) # identity for demo

4 )
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Normalizing Flows: Transforms

Transforms are invertible PyTorch modules, and require a forward and a inverse.

E.g., implementation for transform f (x) = −x, f −1(x) = −x

1 from sampler.flow.base import Transform, withlogdet

2

3 class FlipSign(Transform):

4 @withlogdet

5 def forward(self, input):

6 return -input, 1.

7 @withlogdet

8 def inverse(self, input):

9 return -input, 1.
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The second return value is the log absolute jacobian determinant of the transform.



17/31

Normalizing Flows: Transforms

Transforms are invertible PyTorch modules, and require a forward and a inverse.

E.g., implementation for transform f (x) = −x, f −1(x) = −x

1 from sampler.flow.base import Transform, withlogdet

2

3 class FlipSign(Transform):

4 @withlogdet

5 def forward(self, input):

6 return -input, 1.

7 @withlogdet

8 def inverse(self, input):

9 return -input, 1.

The decorator @withlogdet makes sure the logdet is accumulated between
transforms.
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Normalizing Flows: Transforms 2

A useful transform is the SequentialTransform, which is used to apply transforms
sequentially:

1 from sampler.flow.base import SequentialTransform

2

3 flip_a_bunch = SequentialTransform([

4 FlipSign(),

5 FlipSign(),

6 FlipSign(),

7 ])

For common Coupling Flows, there is however a more convenient way.
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Coupling Flows

Coupling flows like NICE consist of two parts, a partitioner, and a net factory

1 from neulat.sampler.flow.coupling import NICE

2

3 coupling = NICE(

4 partitioner=partitioner,

5 net_factory=net_factory

6 )

The partitioner partitions (or masks) the input into active and passive components.

The net factory is a function that constructs the conditioner, e.g., a neural network
that acts on the partitioned input.
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Coupling Flows: Partitioners

A very simple partitioner is the AltFlatPartitioner, which stands for alternating
flattened partitioner

1 partitioner = AltFlatPartitioner(feature_shape=(2, 2)),

2 input = torch.tensor([[1., 2.],[3., 4.]])

3 active, passive = partitioner(input)

4 active += 10

5 output = partitioner(active, passive)

This will generate an output of

(
11 2
13 4

)
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Coupling Flows: Flipping Partitioners

Partitioners usually flip the active and pasive elements.

Such a partitioner can be created by calling .flip():

1 flipped = partitioner.flip()

2 input = torch.tensor([[1., 2.],[3., 4.]])

3 active, passive = flipped(input)

4 active += 1

5 output = flipped(active, passive)

This will generate an output of

(
1 12
3 14

)
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Coupling Flows: Net Factory (Conditioner)

The net factory define the conditioner Θ that transforms the passive input:

xl+1
active = h(xlactive,Θ(xlpassive) (1)

1 from functools import partial

2 from neulat.sampler.flow.coupling.affine import NICE, MLP

3

4 net_factory = partial(

5 MLP,

6 n_blocks=3,

7 latent_size=1024,

8 activation=torch.nn.Tanh,

9 bias=False,

10 )
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Coupling Flows: Defining Couplings

The coupling Transform itself is mostly only concerned with implementing the
coupling function h. E.g. in NICE: h(a, b) = a+ b

1 class NICE(Coupling):

2 @withlogdet

3 @partitioned

4 def forward(self, active, passive):

5 return active + self.net(passive), 1.

6

7 @withlogdet

8 @partitioned

9 def inverse(self, active, passive):

10 return active - self.net(passive), 1.
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Recall: @withlogdet makes sure the log abs jacobian det is propagated.
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Coupling Flows: Defining Couplings

The coupling Transform itself is mostly only concerned with implementing the
coupling function h. E.g. in NICE: h(a, b) = a+ b

1 class NICE(Coupling):

2 @withlogdet

3 @partitioned

4 def forward(self, active, passive):

5 return active + self.net(passive), 1.

6

7 @withlogdet

8 @partitioned

9 def inverse(self, active, passive):

10 return active - self.net(passive), 1.

New: @partitioned automates the partitioning/masking in subsequent couplings!
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Coupling Flows: Completing the Flow

Putting all the previous parts together, we can create a flow in the following way:

1 flow = Flow(

2 base_distribution=Normal(0.0, 1.0, feature_shape=(8, 8)),

3 transform=6 * NICE(

4 partitioner=AltFlatPartitioner(feature_shape=(8, 8)),

5 net_factory=partial(MLP, n_blocks=3, latent_size=1024,

6 activation=torch.nn.Tanh, bias=False)

7 )

Notice the transform=6 * NICE. This creates a sequential transform of 6 Couplings,
with alternating masking/partitioning!
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Coupling Flows: Traning

Training of the flow with ReverseKL is straight forward:

1 from neulat.loss import ReverseKLLoss

2

3 optim = torch.optim.Adam(flow.transform.parameters(), lr=5e-4)

4 loss_fn = ReverseKLLoss()

5 for _ in range(1000):

6 configs, log_probs = flow.sample_with_logprob(10)

7 loss = loss_fn(action(configs), log_probs) # loss contains `mean` and `std`

8 optim.zero_grad()

9 loss.mean.backward() # we train only using the loss `mean`

10 optim.step()
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Estimating Observables from i.i.d. Samples

Observables themselves are classes in NeuLat. In order to estimate them, we
additionally need an Estimator, and configurations. For instance:

1 from neulat.observable.base import AbsMagnetization, Magnetization

2 from neulat.estimator.base import IidEstimator

3

4 observables = [AbsMagnetization(), Magnetization(), action]

5 iid_estimator = IidEstimator(observables)

6 configs = flow.sample(1000)

7 flow_statistics = iid_estimator.named_evaluate(configs)

The dict flow statistics will contain one entry per observable, e.g.:

{’absmag’: Statistics(mean=0.6408, std=0.0473), ’mag’: ...}
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Estimating Observables from Correlated Samples

Estimation of Observables from correlated samples (e.g., from HMC) requires the use
of the appropriate estimator:

1 from neulat.estimator.base import CorrelatedEstimator

2

3 correlated_estimator = CorrelatedEstimator(observables)

4 configs = hmc.sample(1000)

5 hmc_statistics = correlated_estimator.named_evaluate(configs)

The dict hmc statistics will instead contain correlated statistics objects,

{’absmag’: CorrelatedStatistics(mean=32.82628, std=1.4674,

tau int=0.5909, tau int err=0.3162), ...}
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Neural Importance Sampling

To obtain an unbiased estimator, Nicoli et. al proposed to use Importance Sampling.
This additionally requires the logprobs of the flow, as well as the specific action:

1 from neulat.estimator.base import ImportanceSamplingEstimator

2

3 flow_configs, flow_logprobs = flow.sample_with_logprob(1000)

4 iw_estimator = ImportanceSamplingEstimator(observables, action)

5 flow_iw_stats = iw_estimator.evaluate(flow_configs, flow_logprobs)

The dict flow iw statistics will contain the same Statistics object the IidEstimator
returned:

{’absmag’: Statistics(mean=2.6021, std=0.4674, ...}
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Planned Features

With the help of the community, we plan to extend NeuLat into many directions,
including following features

Stochastic normalizing flows (Caselle et al., 2022)

Conditional normalizing flows (Gerdes et al., 2022)

Path gradients (Vaitl et al., 2022)

Continuous normalizing flows

YOUR FEATURE HERE!
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Planned Features

With the help of the community, we plan to extend NeuLat into many directions,
including following features

Stochastic normalizing flows (Caselle et al., 2022)

Conditional normalizing flows (Gerdes et al., 2022)

Path gradients (Vaitl et al., 2022)

Continuous normalizing flows

YOUR FEATURE HERE!

We want NeuLat to be a community effort! Please reach out to us!
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Conclusion I leave

NeuLat is a software framework for flow-based sampling of LFT.

Its primary goal is to be highly customizable and easily accessible.

It serves as a reference implementation, accelerating reserach.

NeuLat is meant to be a community-effort.
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Before I leave

NeuLat will be available soon at

https://github.com/neulat/neulat

Thank you for your attention!

https://github.com/neulat/neulat
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