
Continuous flows for SU(N)
Exploring general flow architectures for pure gauge theory

Pim de Haan

ML4PhysChem 2024.10.24

Collaborators

Mathis Gerdes Roberto Bondesan Miranda Cheng

Wilson action

Lattice gauge theory

Group element at each edge Ue ∈ SU(N)

Wilson action

Lattice gauge theory

W = tr(U1U2U†
3 U†

4)

Wilson loop trace

Group element at each edge Ue ∈ SU(N)

Wilson action

Lattice gauge theory

W = tr(U1U2U†
3 U†

4)

Wilson loop trace
Wilson action S = −

β
N ∑

x

Re [W(x)]

Group element at each edge Ue ∈ SU(N)

Wilson action

Lattice gauge theory

W = tr(U1U2U†
3 U†

4)

Wilson loop trace
Wilson action S = −

β
N ∑

x

Re [W(x)]

Want to sample U-configurations
p(U) ∝ e−S[U]

Group element at each edge Ue ∈ SU(N)

Transforming probability densities

Change of variables

distribution space

sample space

f
x y

Transforming probability densities

Change of variables

distribution space

sample space

f
x y

q(y) = q (f −1(y)) ⋅ det
∂f
∂x

−1

Transforming probability densities

Change of variables

distribution space

sample space

f
x y

q(y) = q (f −1(y)) ⋅ det
∂f
∂x

−1

Source point

Transforming probability densities

Change of variables

distribution space

sample space

f
x y

q(y) = q (f −1(y)) ⋅ det
∂f
∂x

−1

Source point

Change of density

Transforming probability densities

Change of variables

distribution space

sample space

f
x y

q(y) = q (f −1(y)) ⋅ det
∂f
∂x

−1

Source point

Change of density

𝔼y∼q[log q(y) − log p(y)] = 𝔼y∼q[S(y) + log p(y)] + const

Learning f

Normalizing flows

bijection f

𝒩 e−S[ϕ]

“Normalizing flow”

trivial theory interacting theory

We want to learn a trivializing map . f

Learning f

Normalizing flows

bijection f

𝒩 e−S[ϕ]

“Normalizing flow”

trivial theory interacting theory

We want to learn a trivializing map . f

To compute model probability:

Learning f

Normalizing flows

bijection f

𝒩 e−S[ϕ]

“Normalizing flow”

trivial theory interacting theory

We want to learn a trivializing map . f

To compute model probability:

• must be bijective.f

Learning f

Normalizing flows

bijection f

𝒩 e−S[ϕ]

“Normalizing flow”

trivial theory interacting theory

We want to learn a trivializing map . f

To compute model probability:

• must be bijective.f

• Computing the det-Jacobian must be tractable.

p(y) = p (f −1(y)) ⋅ det
∂f
∂x

−1

Continuous normalizing flows

Sample ϕ0 ∼ 𝒩

Solve
d
dt

ϕ = gθ(ϕ, t)

Final proposal ϕt=1

Continuous normalizing flows

Sample ϕ0 ∼ 𝒩

Solve
d
dt

ϕ = gθ(ϕ, t)

Final proposal ϕt=1

Continuous normalizing flows

• ODE always invertible, architecture of unconstrained!gθ

Sample ϕ0 ∼ 𝒩

Solve
d
dt

ϕ = gθ(ϕ, t)

Final proposal ϕt=1

Continuous normalizing flows

• ODE always invertible, architecture of unconstrained!gθ

• ODE for given by divergence:p(ϕt)

Sample ϕ0 ∼ 𝒩

Solve
d
dt

ϕ = gθ(ϕ, t)

Final proposal ϕt=1

d
dt

log p(ϕ) = − ∇ ⋅ ·ϕ

Continuous normalizing flows

• ODE always invertible, architecture of unconstrained!gθ

• ODE for given by divergence:p(ϕt)

• Needs to be tractable

Sample ϕ0 ∼ 𝒩

Solve
d
dt

ϕ = gθ(ϕ, t)

Final proposal ϕt=1

d
dt

log p(ϕ) = − ∇ ⋅ ·ϕ

Continuous flows for ϕ4

Gauge symmetry

Uμ(x) ↦ Ω(x) Uμ(x) Ω(x + ̂μ)† Wilson loop 
 P12 = U1(x)U2(x + 1̂)U1(x + 2̂)†U2(x)†

How objects transform

Gauge symmetry

Uμ(x) ↦ Ω(x) Uμ(x) Ω(x + ̂μ)† Wilson loop 
 P12 = U1(x)U2(x + 1̂)U1(x + 2̂)†U2(x)†

are equivariant .P12 ↦ Ω(x)P12Ω(x)†

How objects transform

Gauge symmetry

Uμ(x) ↦ Ω(x) Uμ(x) Ω(x + ̂μ)† Wilson loop 
 P12 = U1(x)U2(x + 1̂)U1(x + 2̂)†U2(x)†

Trace of Wilson loops 
 are invariant.W = tr P12

are equivariant .P12 ↦ Ω(x)P12Ω(x)†

How objects transform

Gauge symmetry

Uμ(x) ↦ Ω(x) Uμ(x) Ω(x + ̂μ)† Wilson loop 
 P12 = U1(x)U2(x + 1̂)U1(x + 2̂)†U2(x)†

Trace of Wilson loops 
 are invariant.W = tr P12

Gradients of invariants 
e.g. are equivariant V = ∇UW
V ↦ Ω(x)VΩ(x)†

are equivariant .P12 ↦ Ω(x)P12Ω(x)†

How objects transform

ar
xi

v:
20

0
8.

0
54

56
How to define gauge equivariant flows

Discrete normalizing flows

Map to update edge in conditioned
on unmodified invariant quantities.

Get an equivariant flow, if map transform under conjugation:

Pμν ↦ P′￼μν = f(Pμν) Pμν

f(ΩPΩ†) = Ωf(P)Ω†

ar
xi

v:
23

0
5.

0
24

0
2

Continuous flows for
gauge theories

A brief reminder

Lie groups

V ∈ TUG

We can parametrize the vector space 
at via the Lie algebra:U

A := VU† ∈ 𝔤 = TeG

V = AU

Transporting to 

vector space at

A
U

A brief reminder

Lie groups

V ∈ TUG

We can parametrize the vector space 
at via the Lie algebra:U

A := VU† ∈ 𝔤 = TeG

V = AU

Transporting to 

vector space at

A
U

Lie algebra is spanned by generators  
In components,

Ta

V = AaTaU

Defining an ODE

Continuous flows for SU(N)

In coordinates , general vector at is: .Aa U V = (TaAa)U

Defining an ODE

Continuous flows for SU(N)

In coordinates , general vector at is: .Aa U V = (TaAa)U

Path derivative .∂af(U) =
d
ds s=0

f(esTaU) = Df(TaU)

Then, the gradient is .∇f(U) = ∂af(U) TaU

To define our flow, the network should output an algebra element:

d
dt

U = Aa(U) TaU

Defining an ODE

Continuous flows for SU(N)

In coordinates , general vector at is: .Aa U V = (TaAa)U

Path derivative .∂af(U) =
d
ds s=0

f(esTaU) = Df(TaU)

Then, the gradient is .∇f(U) = ∂af(U) TaU

To define our flow, the network should output an algebra element:

d
dt

U = Aa(U) TaU

Defining an ODE

Continuous flows for SU(N)

In coordinates , general vector at is: .Aa U V = (TaAa)U

Path derivative .∂af(U) =
d
ds s=0

f(esTaU) = Df(TaU)

Then, the gradient is .∇f(U) = ∂af(U) TaU

Gradient flows

Continuous flows for SU(N) lattices

Define as the gradient of some potential,  
given as sums and products of Wilson loops.

Aa = ∂aS

Can extend/do better by learning 
coefficients by gradient descent

General ML architecture?

Conjugation-equivariant flow on SU(3)

Single edge

Conjugation-equivariant flow on SU(3)

Single edge

Conjugation-equivariant flow on SU(3)

Single edge

MLP based on traces of Un

Conjugation-equivariant flow on SU(3)

Single edge

MLP based on traces of Un

Network

Aa
e (U) =

Equivariant
vector field

Network

∂a
Ue

W(k)
x

“Basis” vectors: 
Built to be gauge
equivariant

Aa
e (U) = ∑

k,x

Equivariant
vector field

Network

∂a
Ue

W(k)
x Λk

x(W(1), W(2), …)

“Basis” vectors: 
Built to be gauge
equivariant

Aa
e (U) =

Superposition function: 
Built out of invariant
quantities

∑
k,x

⋅

Equivariant
vector field

Network

∂a
Ue

W(k)
x Λk

x(W(1), W(2), …)

“Basis” vectors: 
Built to be gauge
equivariant

Aa
e (U) =

Superposition function: 
Built out of invariant
quantities

∑
k,x

⋅

• Divergence must not be too expensive.

Equivariant
vector field

Network

∂a
Ue

W(k)
x Λk

x(W(1), W(2), …)Aa
e (U) = ∑

k,x

⋅

Λk
x = ∑

y

Ck,l
x,y NNl

y({W(m)
y })

Network

∂a
Ue

W(k)
x Λk

x(W(1), W(2), …)Aa
e (U) = ∑

k,x

⋅

Λk
x = ∑

y

Ck,l
x,y NNl

y({W(m)
y })

W(k)
x

Local “stack” of
Wilson loops

Network

∂a
Ue

W(k)
x Λk

x(W(1), W(2), …)Aa
e (U) = ∑

k,x

⋅

Λk
x = ∑

y

Ck,l
x,y NNl

y({W(m)
y })

W(k)
x

Local “stack” of
Wilson loops

Arbitrary (non-
linear) “local”
neural network

Network

∂a
Ue

W(k)
x Λk

x(W(1), W(2), …)Aa
e (U) = ∑

k,x

⋅

Λk
x = ∑

y

Ck,l
x,y NNl

y({W(m)
y })

W(k)
x

Local “stack” of
Wilson loops

Arbitrary (non-
linear) “local”
neural network

Convolution

Adjoint sensitivity method

Continuous flow
ODE ·z = fθ(z, t)

Adjoint sensitivity method

Continuous flow
ODE ·z = fθ(z, t)

We have a loss function , so L : M → ℝ dLz ∈ T*z M

Adjoint sensitivity method

Continuous flow
ODE ·z = fθ(z, t)

We have a loss function , so L : M → ℝ dLz ∈ T*z M

Adjoint state: .a(t) = ψ*T,t dLz(T)

Adjoint sensitivity method

Continuous flow
ODE ·z = fθ(z, t)

We have a loss function , so L : M → ℝ dLz ∈ T*z M

Adjoint state: .a(t) = ψ*T,t dLz(T)

da(t)
dt

= − a(t)
∂fθ(z, t)

∂z
dL
dθ

= − ∫
0

T
a(t)

∂f(z, t)
∂θ

dt

“Compute gradients by back-
integrating”

Adjoint sensitivity method

Continuous flow
ODE ·z = fθ(z, t)

We have a loss function , so L : M → ℝ dLz ∈ T*z M

Adjoint state: .a(t) = ψ*T,t dLz(T)

da(t)
dt

= − a(t)
∂fθ(z, t)

∂z
dL
dθ

= − ∫
0

T
a(t)

∂f(z, t)
∂θ

dt

“Compute gradients by back-
integrating”

Results

16 × 16

Results

16 × 16

8 × 8

Takeaways

Takeaways

• More general architecture improves sample quality

Takeaways

• More general architecture improves sample quality

• Tractable divergence constraint still limits architecture,
complicates implementation

Takeaways

• More general architecture improves sample quality

• Tractable divergence constraint still limits architecture,
complicates implementation

• Incorporating spatial rotation/mirror symmetries not yet
implemented

Takeaways

• More general architecture improves sample quality

• Tractable divergence constraint still limits architecture,
complicates implementation

• Incorporating spatial rotation/mirror symmetries not yet
implemented

• General framework for normalising flows in JAX

ar
xi

v:
24

10
.13

16
1

