cusp.ai

Continuous flows for SU(N) Exploring general flow architectures for pure gauge theory

Pim de Haan

Collaborators

Mathis Gerdes

Roberto Bondesan Miranda Cheng

Wilson action

Group element at each edge $U_e \in SU(N)$

Wilson action

Group element at each edge $U_e \in \mathrm{SU}(\mathrm{N})$

Wilson loop trace

$$W = \operatorname{tr}(U_1 U_2 U_3^{\dagger} U_4^{\dagger})$$

Wilson action

Group element at each edge $U_e \in \mathrm{SU}(\mathrm{N})$

Wilson loop trace

$$W = \operatorname{tr}(U_1 U_2 U_3^{\dagger} U_4^{\dagger})$$

Wilson action
$$S = -\frac{\beta}{N} \sum_{x} \text{Re} \left[W(x) \right]$$

Wilson action

Group element at each edge $U_e \in \mathrm{SU}(\mathrm{N})$

Wilson loop trace

$$W = \operatorname{tr}(U_1 U_2 U_3^{\dagger} U_4^{\dagger})$$

Wilson action
$$S = -\frac{\beta}{N} \sum_{x} \text{Re} \left[W(x) \right]$$

Want to sample U-configurations $p(U) \propto e^{-S[U]}$

Transforming probability densities

Transforming probability densities

sample space

$$q(y) = q(f^{-1}(y)) \cdot \left| \det \frac{\partial f}{\partial x} \right|^{-1}$$

Transforming probability densities

sample space

$$q(y) = q\left(f^{-1}(y)\right) \cdot \left| \det \frac{\partial f}{\partial x} \right|^{-1}$$
Source point

Transforming probability densities

sample space

Change of density

$$q(y) = q\left(f^{-1}(y)\right) \cdot \left| \det \frac{\partial f}{\partial x} \right|^{-1}$$
Source point

Transforming probability densities

sample space

Change of density

$$q(y) = q\left(f^{-1}(y)\right) \cdot \left| \det \frac{\partial f}{\partial x} \right|^{-1}$$
Source point

$$\mathbb{E}_{y \sim q}[\log q(y) - \log p(y)] = \mathbb{E}_{y \sim q}[S(y) + \log p(y)] + \text{const}$$

Learning f

We want to **learn** a trivializing map f.

Learning f

We want to **learn** a trivializing map f.

To compute model probability:

Learning f

We want to **learn** a trivializing map f.

To compute model probability:

• f must be bijective.

Learning f

We want to **learn** a trivializing map f.

To compute model probability:

ullet f must be bijective.

$$p(y) = p(f^{-1}(y)) \cdot \left| \det \frac{\partial f}{\partial x} \right|^{-1}$$

Computing the det-Jacobian must be tractable.

Sample
$$\phi^0 \sim \mathcal{N}$$

Final proposal $\phi^{t=1}$

Solve
$$\frac{d}{dt}\phi = g_{\theta}(\phi, t)$$

Sample
$$\phi^0 \sim \mathcal{N}$$

Final proposal
$$\phi^{t=1}$$

Solve
$$\frac{d}{dt}\phi = g_{\theta}(\phi, t)$$

Sample
$$\phi^0 \sim \mathcal{N}$$

Final proposal $\phi^{t=1}$

Solve
$$\frac{d}{dt}\phi = g_{\theta}(\phi, t)$$

• ODE always invertible, architecture of $g_{ heta}$ unconstrained!

Sample $\phi^0 \sim \mathcal{N}$

Final proposal $\phi^{t=1}$

Solve
$$\frac{d}{dt}\phi = g_{\theta}(\phi, t)$$

- ODE always invertible, architecture of $g_{ heta}$ unconstrained!
- ODE for $p(\phi^t)$ given by divergence: $\frac{d}{dt} \log p(\phi) = -\nabla \cdot \dot{\phi}$

Sample $\phi^0 \sim \mathcal{N}$

Final proposal $\phi^{t=1}$

Solve
$$\frac{d}{dt}\phi = g_{\theta}(\phi, t)$$

- ODE always invertible, architecture of $g_{ heta}$ unconstrained!
- ODE for $p(\phi^t)$ given by divergence: $\frac{d}{dt} \log p(\phi) = -\nabla \cdot \dot{\phi}$
 - Needs to be tractable

Continuous flows for ϕ^4

SciPost Phys. 15, 238 (2023)

Learning lattice quantum field theories with equivariant continuous flows

Mathis Gerdes¹*°, Pim de Haan^{2,3}†°, Corrado Rainone³, Roberto Bondesan³ and Miranda C. N. Cheng^{1,4,5}

How objects transform

$$U_{\mu}(x) \mapsto \Omega(x) U_{\mu}(x) \Omega(x + \hat{\mu})^{\dagger}$$

Wilson loop

$$P_{12} = U_1(x)U_2(x+\hat{1})U_1(x+\hat{2})^{\dagger}U_2(x)^{\dagger}$$

How objects transform

$$U_{\mu}(x) \mapsto \Omega(x) U_{\mu}(x) \Omega(x + \hat{\mu})^{\dagger}$$

Wilson loop

$$P_{12}=U_1(x)U_2(x+\hat{1})U_1(x+\hat{2})^\dagger U_2(x)^\dagger$$
 are equivariant $P_{12}\mapsto\Omega(x)P_{12}\Omega(x)^\dagger.$

How objects transform

$$U_{\mu}(x) \mapsto \Omega(x) U_{\mu}(x) \Omega(x + \hat{\mu})^{\dagger}$$

Wilson loop

$$P_{12} = U_1(x)U_2(x+\hat{1})U_1(x+\hat{2})^\dagger U_2(x)^\dagger$$
 are equivariant $P_{12} \mapsto \Omega(x)P_{12}\Omega(x)^\dagger.$

Trace of Wilson loops

 $W = \operatorname{tr} P_{12}$ are invariant.

How objects transform

$$U_{\mu}(x) \mapsto \Omega(x) \; U_{\mu}(x) \; \Omega(x+\hat{\mu})^{\dagger}$$

Wilson loop

$$P_{12}=U_1(x)U_2(x+\hat{1})U_1(x+\hat{2})^\dagger U_2(x)^\dagger$$
 are equivariant
$$P_{12}\mapsto\Omega(x)P_{12}\Omega(x)^\dagger.$$

Trace of Wilson loops

 $W = \operatorname{tr} P_{12}$ are invariant.

<u>Gradients of invariants</u>

e.g. $V = \nabla_U W$ are equivariant $V \mapsto \Omega(x) V \Omega(x)^\dagger$

Discrete normalizing flows

How to define gauge equivariant flows

Map $P_{\mu\nu}\mapsto P'_{\mu\nu}=f(P_{\mu\nu})$ to update edge in $P_{\mu\nu}$ conditioned on unmodified invariant quantities.

Get an equivariant flow, if map transform under conjugation:

$$f(\Omega P \Omega^{\dagger}) = \Omega f(P) \Omega^{\dagger}$$

v:2008.05456

Sampling using SU(N) gauge equivariant flows

Denis Boyda,^{1,*} Gurtej Kanwar,^{1,†} Sébastien Racanière,^{2,‡} Danilo Jimenez Rezende,^{2,§} Michael S. Albergo,³ Kyle Cranmer,³ Daniel C. Hackett,¹ and Phiala E. Shanahan¹

Normalizing flows for lattice gauge theory in arbitrary space-time dimension

Ryan Abbott,^{1,2} Michael S. Albergo,³ Aleksandar Botev,⁴ Denis Boyda,^{1,2} Kyle Cranmer,⁵ Daniel C. Hackett,^{1,2} Gurtej Kanwar,^{6,1,2} Alexander G.D.G. Matthews,⁴ Sébastien Racanière,⁴ Ali Razavi,⁴ Danilo J. Rezende,⁴ Fernando Romero-López,^{1,2} Phiala E. Shanahan,^{1,2} and Julian M. Urban^{1,4}

arxiv:2305.02402

Continuous flows for gauge theories

Lie groups

A brief reminder

We can parametrize the vector space at $oldsymbol{U}$ via the Lie algebra:

$$V \in T_U G \qquad A := V U^\dagger \in \mathfrak{g} = T_e G$$

$$V = AU$$

Transporting A to vector space at \boldsymbol{U}

Lie groups

A brief reminder

We can parametrize the vector space at \boldsymbol{U} via the Lie algebra:

$$V \in T_U G \qquad A := V U^\dagger \in \mathfrak{g} = T_e G$$

$$V = AU$$

Transporting A to vector space at U

Lie algebra is spanned by generators T^a In components, $V = A^a T^a U$

Defining an ODE

In coordinates A^a , general vector at U is: $V = (T^a A^a)U$.

Defining an ODE

In coordinates A^a , general vector at U is: $V = (T^a A^a)U$.

Path derivative
$$\partial^a f(U) = \frac{d}{ds} \bigg|_{s=0} f(e^{sT^a}U) = Df(T^aU).$$

Then, the gradient is $\nabla f(U) = \partial^a f(U) T^a U$.

Defining an ODE

In coordinates A^a , general vector at U is: $V = (T^a A^a)U$.

Path derivative
$$\partial^a f(U) = \frac{d}{ds} \bigg|_{s=0} f(e^{sT^a}U) = Df(T^aU).$$

Then, the gradient is $\nabla f(U) = \partial^a f(U) T^a U$.

To define our flow, the network should output an algebra element:

$$\frac{d}{dt}U = A^{a}(U) T^{a}U$$

Defining an ODE

In coordinates A^a , general vector at U is: $V = (T^a A^a)U$.

Path derivative
$$\partial^a f(U) = \frac{d}{ds} \bigg|_{s=0} f(e^{sT^a}U) = Df(T^aU).$$

Then, the gradient is $\nabla f(U) = \partial^a f(U) T^a U$.

To define our flow, the network should output an algebra element:

$$\frac{d}{dt}U = A^{a}(U)T^{a}U$$

Continuous flows for SU(N) lattices

Gradient flows

Define $A^a = \partial^a S$ as the gradient of some potential, given as sums and products of Wilson loops.

Can extend/do better by learning coefficients by gradient descent

Trivializing maps, the Wilson flow and the HMC algorithm

Martin Lüscher

Learning Trivializing Gradient Flows for Lattice Gauge Theories

Simone Bacchio,¹ Pan Kessel,^{2,3} Stefan Schaefer,⁴ and Lorenz Vaitl²

General ML architecture?

Single edge

Conjugation-equivariant flow on SU(3)

$$S^{(i)}(U) = -\frac{\beta}{N} \operatorname{Re} \operatorname{tr} \left(c_n^{(i)} U^n \right)$$

Single edge

Conjugation-equivariant flow on SU(3)

$$\dot{U} = \nabla P_{\theta}(t, U)$$

$$S^{(i)}(U) = -\frac{\beta}{N} \operatorname{Re} \operatorname{tr} \left(c_n^{(i)} U^n \right)$$

Single edge

Conjugation-equivariant flow on SU(3)

MLP based on traces of U^n

Single edge

β

Conjugation-equivariant flow on SU(3)

Equivariant vector field

$$A_e^a(U) =$$

Equivariant vector field

"Basis" vectors:
Built to be gauge
equivariant

$$A_e^a(U) = \sum_{k,x} \partial_{U_e}^a W_x^{(k)}$$

Equivariant vector field

"Basis" vectors:
Built to be gauge
equivariant

Superposition function: Built out of <u>invariant</u> quantities

$$A_e^a(U) = \sum_{k,x}$$

$$\partial_{U_e}^a W_x^{(k)}$$

$$\Lambda_{x}^{k}(W^{(1)},W^{(2)},\ldots)$$

Equivariant vector field

"Basis" vectors:
Built to be gauge
equivariant

Superposition function: Built out of <u>invariant</u> quantities

$$A_e^a(U) = \sum_{k,x} \partial_{U_e}^a W_x^{(k)} \cdot \Lambda_x^k(W^{(1)}, W^{(2)}, ...)$$

Divergence must not be too expensive.

$$A_e^a(U) = \sum_{k,x} \partial_{U_e}^a W_x^{(k)} \cdot \Lambda_x^k(W^{(1)}, W^{(2)}, ...)$$

$$\Lambda_x^k = \sum_{y} C_{x,y}^{k,l} NN_y^l(\{W_y^{(m)}\})$$

$$A_e^a(U) = \sum_{k,x}$$

$$\partial_{U_e}^a W_x^{(k)}$$

$$\Lambda_x^k(W^{(1)}, W^{(2)}, \ldots)$$

$$\Lambda_x^k = \sum_{y} C_{x,y}^{k,l} NN_y^l(\{W_y^{(m)}\})$$

$$A_e^a(U) = \sum_{k,x}$$

$$\partial_{U_e}^a W_x^{(k)}$$

$$\Lambda_x^k(W^{(1)}, W^{(2)}, \ldots)$$

$$\Lambda_x^k = \sum_{y} C_{x,y}^{k,l} NN_y^l(\{W_y^{(m)}\})$$

Arbitrary (nonlinear) "local" neural network

Local "stack" of Wilson loops

$$A_e^a(U) = \sum_{k,x}$$

$$\partial_{U_e}^a W_x^{(k)}$$

$$\Lambda_x^k(W^{(1)}, W^{(2)}, \ldots)$$

$$W_{\chi}^{(k)}$$

$$\Lambda_x^k = \sum_{y} C_{x,y}^{k,l} NN_y^l(\{W_y^{(m)}\})$$

Arbitrary (nonlinear) "local" — Convolution neural network

Local "stack" of Wilson loops

We have a loss function $L:M\to\mathbb{R}$, so $dL_z\in T_z^*M$

We have a loss function $L:M\to\mathbb{R}$, so $dL_z\in T_z^*M$

Adjoint state: $a(t) = \psi_{T,t}^* dL_{z(T)}$.

We have a loss function $L:M\to\mathbb{R}$, so $dL_z\in T_z^*M$

Adjoint state:
$$a(t) = \psi_{T,t}^* \, dL_{\mathbf{Z}(T)}$$
 . "Compute gradients by back-integrating"

$$\frac{da(t)}{dt} = -a(t)\frac{\partial f_{\theta}(z,t)}{\partial z} \qquad \frac{dL}{d\theta} = -\int_{T}^{0} a(t)\frac{\partial f(z,t)}{\partial \theta} dt$$

We have a loss function $L:M\to\mathbb{R}$, so $dL_z\in T_z^*M$

Adjoint state:
$$a(t) = \psi_{T,t}^* \, dL_{{\it Z}(T)}$$
 . "Compute gradients by back-integrating"

$$\frac{da(t)}{dt} = -a(t)\frac{\partial f_{\theta}(z,t)}{\partial z} \qquad \frac{dL}{d\theta} = -\int_{T}^{0} a(t)\frac{\partial f(z,t)}{\partial \theta} dt$$

$$\dot{U}(t) = Z_{\theta}(U, t)U(t) \qquad \dot{A} = [Z, A] + \nabla(\nabla \cdot \dot{U})U^{-1} - \sum_{a} A_{a}(\nabla Z^{a})U^{-1}$$

Results

16 × 16

	SU(2)		SU(3)		
ESS [%]	$\beta = 2.2$	$\beta = 2.7$	$\beta = 5$	$\beta = 6$	$\beta = 8$
Continuous flow	87	68	86	76	23
Bacchio et al [13]	_	_	88	70	_
Boyda et al [8]	80	56	75	48	_

Results

16 × 16

	SU	(2)	SU(3)		
ESS [%]	$\beta = 2.2$	$\beta = 2.7$	$\beta = 5$	$\beta = 6$	$\beta = 8$
Continuous flow	87	68	86	76	23
Bacchio et al [13]	_	_	88	70	_
Boyda et al [8]	80	56	75	48	_

 8×8

ESS [%]	SU(3)	$\beta = 8$	$\beta = 12$
Continuous flow		64	27
Multiscale + flow [23]		35	13
Haar + flow [23]		25	3

• More general architecture improves sample quality

- More general architecture improves sample quality
- Tractable divergence constraint still limits architecture, complicates implementation

- More general architecture improves sample quality
- Tractable divergence constraint still limits architecture, complicates implementation
- Incorporating spatial rotation/mirror symmetries not yet implemented

- More general architecture improves sample quality
- Tractable divergence constraint still limits architecture, complicates implementation
- Incorporating spatial rotation/mirror symmetries not yet implemented
- General framework for normalising flows in JAX

Continuous normalizing flows for lattice gauge theories

Mathis Gerdes*

Institute of Physics, University of Amsterdam

 $\begin{array}{c} \text{Pim de Haan} \\ \text{\it CuspAI} \end{array}$

Roberto Bondesan

Department of Computing, Imperial College London

Miranda C. N. Cheng[†]

Institute of Physics, University of Amsterdam

Institute for Mathematics, Academia Sinica, Taiwan and

Korteweg-de Vries Institute for Mathematics, University of Amsterdam

