cusp.ai

Continuous flows for SU(N) Exploring general flow architectures for pure gauge theory

Pim de Haan

ML4PhysChem 2024.10.24

Collaborators

Mathis Gerdes

Roberto Bondesan Miranda Cheng

Wilson action

Group element at each edge $U_e \in SU(N)$

Wilson action

Group element at each edge $U_e \in SU(N)$

 $W = \text{tr}(U_1 U_2 U_3^{\dagger} U_4^{\dagger})$ Wilson loop trace

Wilson action

Group element at each edge $U_e \in SU(N)$

 $W = \text{tr}(U_1 U_2 U_3^{\dagger} U_4^{\dagger})$ Wilson loop trace

Wilson action
$$
S = -\frac{\beta}{N} \sum_{x} Re[W(x)]
$$

Wilson action

Group element at each edge $U_e \in SU(N)$

 $W = \text{tr}(U_1 U_2 U_3^{\dagger} U_4^{\dagger})$ Wilson loop trace

Wilson action
$$
S = -\frac{\beta}{N} \sum_{x} Re[W(x)]
$$

Want to sample U-configurations $p(U) \propto e^{-S[U]}$

Transforming probability densities

sample space

Transforming probability densities

sample space

$$
q(y) = q(f^{-1}(y)) \cdot \left| \det \frac{\partial f}{\partial x} \right|^{-1}
$$

Transforming probability densities

$$
q(y) = q(f^{-1}(y)) \cdot \left| \det \frac{\partial f}{\partial x} \right|^{-1}
$$

Source point

Transforming probability densities

Transforming probability densities

^y∼*q*[log *q*(*y*) − log *p*(*y*)] = *^y*∼*q*[*S*(*y*) + log *p*(*y*)] + const

Learning *f*

 $\mathscr N$

bijection *f*

"Normalizing flow"

trivial theory interacting theory

e−*S*[*ϕ*]

We want to *learn* a *trivializing map f* .

Learning *f*

bijection *f*

"Normalizing flow"

trivial theory interacting theory

e−*S*[*ϕ*]

We want to *learn* a *trivializing map f* .

To compute model probability:

Learning *f*

bijection *f*

"Normalizing flow"

trivial theory interacting theory

e−*S*[*ϕ*]

We want to *learn* a *trivializing map f* .

To compute model probability:

• *f* must be bijective.

Learning *f*

 $\mathscr N$

We want to *learn* a *trivializing map f* .

To compute model probability:

• *f* must be bijective.

$$
p(y) = p(f^{-1}(y)) \cdot \left| \det \frac{\partial f}{\partial x} \right|^{-1}
$$

• Computing the det-Jacobian must be tractable.

Sample
$$
\phi^0 \sim \mathcal{A}
$$

Final proposal $\phi^{t=1}$

Solve
$$
\frac{d}{dt}\phi = g_{\theta}(\phi, t)
$$

Sample $\phi^0 \sim \mathcal{N}$

Final proposal $\phi^{t=1}$

Solve
$$
\frac{d}{dt}\phi = g_{\theta}(\phi, t)
$$

Sample
$$
\phi^0 \sim \mathcal{N}
$$

Final proposal $\phi^{t=1}$

Solve
$$
\frac{d}{dt}\phi = g_{\theta}(\phi, t)
$$

• ODE always invertible, architecture of g_{θ} unconstrained!

$$
\text{Sample } \phi^0 \sim \mathcal{N}
$$

Final proposal *ϕt*=1

Solve
$$
\frac{d}{dt}\phi = g_{\theta}(\phi, t)
$$

- ODE always invertible, architecture of g_{θ} unconstrained!
- ODE for $p(\boldsymbol{\phi}^t)$ given by divergence:

$$
\frac{d}{dt}\log p(\phi) = -\nabla \cdot \dot{\phi}
$$

$$
\text{Sample } \phi^0 \sim \mathcal{N}
$$

Final proposal *ϕt*=1

Solve
$$
\frac{d}{dt}\phi = g_{\theta}(\phi, t)
$$

- ODE always invertible, architecture of g_{θ} unconstrained!
- ODE for $p(\boldsymbol{\phi}^t)$ given by divergence:

$$
\frac{d}{dt}\log p(\phi) = -\nabla \cdot \dot{\phi}
$$

• Needs to be tractable

Continuous flows for ϕ^4

SciPost Phys. 15, 238 (2023)

Learning lattice quantum field theories with equivariant continuous flows

Mathis Gerdes^{1*}°, Pim de Haan^{2,3†}°, Corrado Rainone³, Roberto Bondesan³ and Miranda C. N. Cheng^{1,4,5}

How objects transform

$$
U_{\mu}(x) \mapsto \Omega(x) U_{\mu}(x) \Omega(x + \hat{\mu})^{\dagger}
$$

† Wilson loop $P_{12} = U_1(x)U_2(x + \hat{1})U_1(x + \hat{2})^{\dagger}U_2(x)^{\dagger}$

How objects transform

$$
U_{\mu}(x) \mapsto \Omega(x) U_{\mu}(x) \Omega(x + \hat{\mu})^{\dagger}
$$

† Wilson loop $P_{12} = U_1(x)U_2(x + \hat{1})U_1(x + \hat{2})^{\dagger}U_2(x)^{\dagger}$ are **equivariant** $P_{12} \mapsto \Omega(x)P_{12}\Omega(x)^{\dagger}$.

How objects transform

$$
U_{\mu}(x) \mapsto \Omega(x) U_{\mu}(x) \Omega(x + \hat{\mu})^{\dagger}
$$

† Wilson loop $P_{12} = U_1(x)U_2(x + \hat{1})U_1(x + \hat{2})^{\dagger}U_2(x)^{\dagger}$ are **equivariant** $P_{12} \mapsto \Omega(x)P_{12}\Omega(x)^{\dagger}$.

Trace of Wilson loops $W = \text{tr } P_{12}$ are **invariant**.

How objects transform

$$
U_{\mu}(x) \mapsto \Omega(x) U_{\mu}(x) \Omega(x + \hat{\mu})^{\dagger}
$$

<u>Wilson loop</u> $P_{12} = U_1(x)U_2(x + \hat{1})U_1(x + \hat{2})^{\dagger}U_2(x)^{\dagger}$ are **equivariant** $P_{12} \mapsto \Omega(x)P_{12}\Omega(x)^{\dagger}$.

Trace of Wilson loops $W = \text{tr } P_{12}$ are **invariant**.

Gradients of invariants e.g. $V = \nabla_U W$ are **equivariant** $V \mapsto \Omega(x)V\Omega(x)^{\dagger}$

Discrete normalizing flows

How to define gauge equivariant flows

 $\mathcal{P}_{\mu\nu} \mapsto P'_{\mu\nu} = f(P_{\mu\nu})$ to update edge in $P_{\mu\nu}$ conditioned on unmodified invariant quantities.

Get an equivariant flow, if map transform under conjugation: $f(\Omega P \Omega^{\dagger}) = \Omega f(P) \Omega^{\dagger}$

> v:2008.05456 arxiv:2008.05456

Sampling using $SU(N)$ gauge equivariant flows

Denis Boyda,^{1,*} Gurtej Kanwar,^{1,†} Sébastien Racanière,^{2,‡} Danilo Jimenez Rezende,^{2,§} Michael S. Albergo,³ Kyle Cranmer,³ Daniel C. Hackett,¹ and Phiala E. Shanahan¹

arxiv:2305.02402 arxiv:2305.02402

Normalizing flows for lattice gauge theory in arbitrary space-time dimension

Ryan Abbott,^{1,2} Michael S. Albergo,³ Aleksandar Botev,⁴ Denis Boyda,^{1,2} Kyle Cranmer,⁵ Daniel C. Hackett,^{1,2} Gurtej Kanwar,^{6,1,2} Alexander G.D.G. Matthews,⁴ Sébastien Racanière,⁴ Ali Razavi,⁴ Danilo J. Rezende,⁴ Fernando Romero-López,^{1,2} Phiala E. Shanahan,^{1,2} and Julian M. Urban^{1,}

Continuous flows for gauge theories

A brief reminder Lie groups

We can parametrize the vector space at *U* via the Lie algebra:

$$
V \in T_U G \qquad A := VU^{\dagger} \in \mathfrak{g} = T_e G
$$

$$
V = AU
$$

Transporting A to vector space at *U*

A brief reminder Lie groups

We can parametrize the vector space at *U* via the Lie algebra:

$$
V \in T_U G \qquad A := VU^{\dagger} \in \mathfrak{g} = T_e G
$$

$$
V = AU
$$

Transporting A to vector space at *U*

Lie algebra is spanned by generators *Ta* In components, $V = A^a T^a U$

In coordinates A^a , general vector at U is: $V = (T^a A^a) U$.

In coordinates A^a , general vector at U is: $V = (T^a A^a) U$.

Path derivative
$$
\partial^a f(U) = \frac{d}{ds}\Big|_{s=0} f(e^{sT^a}U) = Df(T^aU).
$$

Then, the gradient is $\nabla f(U) = \partial^a f(U) T^a U$.

In coordinates A^a , general vector at U is: $V = (T^a A^a) U$.

Path derivative
$$
\partial^a f(U) = \frac{d}{ds}\Big|_{s=0} f(e^{sT^a}U) = Df(T^aU).
$$

Then, the gradient is $\nabla f(U) = \partial^d f(U) T^d U$.

To define our flow, the network should output an algebra element:

$$
\frac{d}{dt}U = A^a(U)T^aU
$$

In coordinates A^a , general vector at U is: $V = (T^a A^a) U$.

Path derivative
$$
\partial^a f(U) = \frac{d}{ds}\Big|_{s=0} f(e^{sT^a}U) = Df(T^aU).
$$

Then, the gradient is $\nabla f(U) = \partial^d f(U) T^d U$.

To define our flow, the network should output an algebra element:

$$
\frac{d}{dt}U = A^a(U)T^aU
$$

Continuous flows for SU(N) lattices Gradient flows

Define $A^a = \partial^a S$ as the gradient of some potential, given as sums and products of Wilson loops.

Learning Trivializing Gradient Flows for Lattice Gauge Theories

Simone Bacchio,¹ Pan Kessel,^{2,3} Stefan Schaefer,⁴ and Lorenz Vaitl²

General ML architecture?

Conjugation-equivariant flow on SU(3)

$$
S^{(i)}(U) = -\frac{\beta}{N} \operatorname{Re} \operatorname{tr} \left(c_n^{(i)} U^n \right)
$$

Conjugation-equivariant flow on SU(3)

$$
\dot U = \nabla P_\theta(t,U)
$$

$$
S^{(i)}(U)=-\frac{\beta}{N}\operatorname{Re}\operatorname{tr}\left(c_n^{(i)}U^n\right)
$$

Conjugation-equivariant flow on SU(3)

MLP based on traces of U^n

$$
S^{(i)}(U)=-\frac{\beta}{N}\operatorname{Re}\operatorname{tr}\left(c_n^{(i)}U^n\right)
$$

Conjugation-equivariant flow on SU(3)

"Basis" vectors: Built to be gauge equivariant

∂*a* U_e $W_x^{(k)}$ $A_e^a(U) = \sum$ *k*,*x*

"Basis" vectors: Built to be gauge equivariant

Superposition function: Built out of invariant quantities

$$
A_e^a(U) = \sum_{k,x} \partial_{U_e}^a W_x^{(k)} \cdot \Lambda_x^k(W^{(1)}, W^{(2)}, \ldots)
$$

"Basis" vectors: Built to be gauge equivariant

Superposition function: Built out of invariant quantities

$$
A_e^a(U) = \sum_{k,x} \partial_{U_e}^a W_x^{(k)} \cdot \Lambda_x^k(W^{(1)}, W^{(2)}, \ldots)
$$

• Divergence must not be too expensive.

Network
\n
$$
A_e^a(U) = \sum_{k,x} \partial_{U_e}^a W_x^{(k)} \cdot \Lambda_x^k(W^{(1)}, W^{(2)}, \ldots)
$$

 $\Lambda_x^k = \sum C_{x,y}^{k,l} NN_y^l({W_y^{(m)}})$ \mathcal{Y}

 Λ_x^k $= \sum C_{x,y}^{k,l} NN_{y}^{l}(\{W_{y}^{(m)}\})$ *y*

Local "stack" of Wilson loops

 Λ_x^k $= \sum C_{x,y}^{k,l} NN_{y}^{l}(\{W_{y}^{(m)}\})$ *y*

Arbitrary (nonlinear) "local" neural network

Local "stack" of Wilson loops

x

 Λ_x^k $= \sum C_{x,y}^{k,l} NN_{y}^{l}(\{W_{y}^{(m)}\})$ *y*

Arbitrary (nonlinear) "local" neural network Convolution

Local "stack" of Wilson loops

Continuous flow

ODE $\dot{z} = f_{\theta}(z, t)$

We have a loss function $L: M \to \mathbb{R}$, so $dL_{\tau} \in T_{\tau}^*M$

Continuous flow $ODE \dot{z} = f_{\theta}(z, t)$

We have a loss function $L: M \to \mathbb{R}$, so $dL_z \in T_z^*M$

Adjoint state:
$$
a(t) = \psi_{T,t}^* dL_{z(T)}
$$
.

We have a loss function $L: M \to \mathbb{R}$, so $dL_z \in T_z^*M$

Adjoint state: $a(t) = \psi_{T,t}^* dL_{z(T)}$.

"Compute gradients by backintegrating"

$$
\frac{da(t)}{dt} = -a(t)\frac{\partial f_{\theta}(z,t)}{\partial z} \qquad \frac{dL}{d\theta} = -\int_{T}^{0} a(t)\frac{\partial f(z,t)}{\partial \theta} dt
$$

We have a loss function $L: M \to \mathbb{R}$, so $dL_z \in T_z^*M$

Adjoint state: $a(t) = \psi_{T,t}^* dL_{z(T)}$.

"Compute gradients by backintegrating"

$$
\frac{da(t)}{dt} = -a(t)\frac{\partial f_{\theta}(z,t)}{\partial z} \qquad \frac{dL}{d\theta} = -\int_{T}^{0} a(t)\frac{\partial f(z,t)}{\partial \theta} dt
$$

 $\dot{A}=[Z,A]+\nabla(\nabla\cdot\dot{U})U^{-1}-\sum A_a(\nabla Z^a)U^{-1}$ $U(t) = Z_{\theta}(U, t)U(t)$

Results

	SU(2)		SU(3)		
ESS [%]		$\beta = 2.2 \quad \beta = 2.7$		$\beta = 5$ $\beta = 6$ $\beta = 8$	
Continuous flow	87	68	86	76	23
Bacchio et al [13]			88	70	
Boyda et al [8]	80	56	75	48	

 16×16

Results

	SU(2)		SU(3)		
$ESS \; [\%]$		$\beta = 2.2 \quad \beta = 2.7$		$\beta = 5$ $\beta = 6$ $\beta = 8$	
Continuous flow	87	68	86	76	23
Bacchio et al [13]			88	70	
Boyda et al [8]	80	56	75	48	

 16×16

 8×8

ESS [%]	SU(3)	$\beta=8$	$\beta=12$
Continuous flow		64	$\bf 27$
Multiscale $+$ flow [23]		35	13
$Haar + flow$ [23]		25	२

Takeaways

· More general architecture improves sample quality

- More general architecture improves sample quality
- · Tractable divergence constraint still limits architecture, complicates implementation

Takeaways

- More general architecture improves sample quality
- Tractable divergence constraint still limits architecture, complicates implementation
- Incorporating spatial rotation/mirror symmetries not yet implemented

Takeaways

- More general architecture improves sample quality
- Tractable divergence constraint still limits architecture, complicates implementation
- Incorporating spatial rotation/mirror symmetries not yet implemented
- General framework for normalising flows in JAX

Continuous normalizing flows for lattice gauge theories

Mathis Gerdes* Institute of Physics, University of Amsterdam

> Pim de Haan $CuspAI$

Roberto Bondesan Department of Computing, Imperial College London

Miranda C. N. Cheng[†] Institute of Physics, University of Amsterdam Institute for Mathematics, Academia Sinica, Taiwan and Korteweg-de Vries Institute for Mathematics, University of Amsterdam

Weusp.ci