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Lattice gauge theory

W = tr(U1U2U†
3 U†

4 )

Wilson loop trace
Wilson action S = −

β
N ∑

x

Re [W(x)]

Want to sample U-configurations 
p(U) ∝ e−S[U]

Group element at each edge Ue ∈ SU(N)



Transforming probability densities

Change of variables

distribution space

sample space

f
x y



Transforming probability densities

Change of variables

distribution space

sample space

f
x y

q(y) = q (f −1(y)) ⋅ det
∂f
∂x

−1



Transforming probability densities

Change of variables

distribution space

sample space

f
x y

q(y) = q (f −1(y)) ⋅ det
∂f
∂x

−1

Source point



Transforming probability densities

Change of variables

distribution space

sample space

f
x y

q(y) = q (f −1(y)) ⋅ det
∂f
∂x

−1

Source point

Change of density



Transforming probability densities

Change of variables

distribution space

sample space

f
x y

q(y) = q (f −1(y)) ⋅ det
∂f
∂x

−1

Source point

Change of density

𝔼y∼q[log q(y) − log p(y)] = 𝔼y∼q[S(y) + log p(y)] + const



Learning   f

Normalizing flows

bijection f

𝒩 e−S[ϕ]

“Normalizing flow”

trivial theory interacting theory

We want to learn a trivializing map  . f



Learning   f

Normalizing flows

bijection f

𝒩 e−S[ϕ]

“Normalizing flow”

trivial theory interacting theory

We want to learn a trivializing map  . f

To compute model probability:



Learning   f

Normalizing flows

bijection f

𝒩 e−S[ϕ]

“Normalizing flow”

trivial theory interacting theory

We want to learn a trivializing map  . f

To compute model probability:

•    must be bijective.f



Learning   f

Normalizing flows

bijection f

𝒩 e−S[ϕ]

“Normalizing flow”

trivial theory interacting theory

We want to learn a trivializing map  . f

To compute model probability:

•    must be bijective.f

•  Computing the det-Jacobian must be tractable.

p(y) = p (f −1(y)) ⋅ det
∂f
∂x

−1
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Continuous normalizing flows

• ODE always invertible, architecture of  unconstrained!gθ

• ODE for  given by divergence:p(ϕt)

• Needs to be tractable

Sample ϕ0 ∼ 𝒩

Solve  
d
dt

ϕ = gθ(ϕ, t)

Final proposal ϕt=1

d
dt

log p(ϕ) = − ∇ ⋅ ·ϕ



Continuous flows for  ϕ4
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Gauge symmetry

Uμ(x) ↦ Ω(x) Uμ(x) Ω(x + ̂μ)† Wilson loop 
 P12 = U1(x)U2(x + 1̂)U1(x + 2̂)†U2(x)†

Trace of Wilson loops 
 are invariant.W = tr P12

Gradients of invariants 
e.g.  are equivariant V = ∇UW
V ↦ Ω(x)VΩ(x)†

are equivariant  .P12 ↦ Ω(x)P12Ω(x)†

How objects transform
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How to define gauge equivariant flows

Discrete normalizing flows

Map  to update edge in  conditioned 
on unmodified invariant quantities.


Get an equivariant flow, if map transform under conjugation:

Pμν ↦ P′￼μν = f(Pμν) Pμν

f(ΩPΩ†) = Ωf(P)Ω†
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A brief reminder

Lie groups

V ∈ TUG

We can parametrize the vector space 
at  via the Lie algebra:U

A := VU† ∈ 𝔤 = TeG

V = AU

Transporting  to 

vector space at 

A
U

Lie algebra is spanned by generators  
In components, 

Ta

V = AaTaU



Defining an ODE

Continuous flows for SU(N)

In coordinates , general vector at  is: .Aa U V = (TaAa)U



Defining an ODE

Continuous flows for SU(N)

In coordinates , general vector at  is: .Aa U V = (TaAa)U

Path derivative  .∂af(U) =
d
ds s=0

f(esTaU) = Df(TaU)

Then, the gradient is .∇f(U) = ∂af(U) TaU



To define our flow, the network should output an algebra element:

d
dt

U = Aa(U) TaU

Defining an ODE

Continuous flows for SU(N)

In coordinates , general vector at  is: .Aa U V = (TaAa)U

Path derivative  .∂af(U) =
d
ds s=0

f(esTaU) = Df(TaU)

Then, the gradient is .∇f(U) = ∂af(U) TaU



To define our flow, the network should output an algebra element:
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Continuous flows for SU(N)

In coordinates , general vector at  is: .Aa U V = (TaAa)U

Path derivative  .∂af(U) =
d
ds s=0

f(esTaU) = Df(TaU)

Then, the gradient is .∇f(U) = ∂af(U) TaU



Gradient flows

Continuous flows for SU(N) lattices

Define  as the gradient of some potential,  
given as sums  and products of Wilson loops.

Aa = ∂aS

Can extend/do better by learning 
coefficients by gradient descent



General ML architecture?
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x Λk
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“Basis” vectors: 
Built to be gauge 
equivariant

Aa
e (U) =

Superposition function: 
Built out of invariant 
quantities

∑
k,x

⋅

• Divergence must not be too expensive.

Equivariant 
vector field
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x(W(1), W(2), …)Aa
e (U) = ∑

k,x

⋅

Λk
x = ∑

y

Ck,l
x,y NNl

y({W(m)
y })

W(k)
x

Local “stack” of 
Wilson loops

Arbitrary (non-
linear) “local” 
neural network

Convolution
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Adjoint sensitivity method

Continuous flow 
ODE ·z = fθ(z, t)

We have a loss function , so L : M → ℝ dLz ∈ T*z M

Adjoint state:  .a(t) = ψ*T,t dLz(T)

da(t)
dt

= − a(t)
∂fθ(z, t)

∂z
dL
dθ

= − ∫
0

T
a(t)

∂f(z, t)
∂θ

dt

“Compute gradients by back-
integrating”
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Takeaways

• More general architecture improves sample quality

• Tractable divergence constraint still limits architecture, 
complicates implementation

• Incorporating spatial rotation/mirror symmetries not yet 
implemented

• General framework for normalising flows in JAX
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