State of generative modeling and the sciences According to me I guess!

Michael Albergo ML Sampling Workshop, Bonn October 24, 2024

How does one even begin to summarize this?

I'm supposed to give you an overview of generative models…

- *•Of course this will be biased by my opinions!*
- *•I will caveat any claims by this fact :) hopefully spurs some discussion*

How does one even begin to summarize this?

I'm supposed to give you an overview of generative models…

- *•Of course this will be biased by my opinions!*
- *•I will caveat any claims by this fact :) hopefully spurs some discussion*

The various factors influencing me how to do this

How does one even begin to summarize this?

I'm supposed to give you an overview of generative models…

- *•Of course this will be biased by my opinions!*
- *•I will caveat any claims by this fact :) hopefully spurs some discussion*

The various factors influencing me how to do this

The social and natural worlds are replete with complex structure that often has a probabilistic interpretation

Sora (2024): "A flower growing out on the windowsill" Forecasting

Social: abundance of data Natural: limited data, but theory

Quantum Theory

Molecular conformation

The social and natural worlds are replete with complex structure that often has a probabilistic interpretation

Sora (2024): "A flower growing out on the windowsill" Forecasting

Social: abundance of data Natural: limited data, but theory

Quantum Theory

Molecular conformation

The social and natural worlds are replete with complex structure that often has a probabilistic interpretation

Sora (2024): "A flower growing out on the windowsill"
 Forecasting

Social: abundance of data Natural: limited data, but theory

Quantum Theory

Molecular conformation

The social and natural worlds are replete with complex structure that often has a probabilistic interpretation

Social: abundance of data Natural: limited data, but theory

The social and natural worlds are replete with complex structure that often has a probabilistic interpretation

Social: abundance of data Natural: limited data, but theory

The social and natural worlds are replete with complex structure that often has a probabilistic interpretation

Social: abundance of data Natural: limited data, but theory

The social and natural worlds are replete with complex structure that often has a probabilistic interpretation

Social: abundance of data Natural: limited data, but theory

The social and natural worlds are replete with complex structure that often has a probabilistic interpretation

Social: abundance of data Natural: limited data, but theory

The social and natural worlds are replete with complex structure that often has a probabilistic interpretation

Social: abundance of data Natural: limited data, but theory

Goal: estimate the unknown *probability density function* $\rho_1 \in \mathscr{D}(\Omega)$ either through:

- 1. sample data $\{x_i\}_{i=1}^n$ (**Generative modeling)**
- 2. query access to the unnormalized log likelihood **(Sampling)**

Goal: estimate the unknown *probability density function* $\rho_1 \in \mathscr{D}(\Omega)$ either through:

- 1. sample data $\{x_i\}_{i=1}^n$ (**Generative modeling)**
- 2. query access to the unnormalized log likelihood **(Sampling)**

Goal: estimate the unknown *probability density function* $\rho_1 \in \mathscr{D}(\Omega)$ either through:

- 1. sample data $\{x_i\}_{i=1}^n$ (**Generative modeling)**
- 2. query access to the unnormalized log likelihood **(Sampling)**

Historical development DALL-E **Diffusion THE NOBEL PRIZE** IN PHYSICS 2024 **Glow RealNVP 2020 GANs, VAEs** John J. Hopfield **2 2 2016 CEO 2 2016 FO 2016 PT**
Tor foundational discoveries and inventions **2012 2022 Stoch.** that enable machine learning **interpolants/** with artificial neural networks" **2018 flow matching**THE ROYAL SWEDISH ACADEMY OF SCIENCES **2014 PixelRNN BigGAN/ Boltzmann VQ VAE Machines**

Goal: estimate the unknown *probability density function* $\rho_1 \in \mathscr{D}(\Omega)$ either through:

- 1. sample data $\{x_i\}_{i=1}^n$ (**Generative modeling)**
- 2. query access to the unnormalized log likelihood **(Sampling)**

Goal: estimate the unknown *probability density function* $\rho_1 \in \mathscr{D}(\Omega)$ either through:

- 1. sample data $\{x_i\}_{i=1}^n$ (**Generative modeling)**
- 2. query access to the unnormalized log likelihood **(Sampling)**

Goal: estimate the unknown *probability density function* $\rho_1 \in \mathscr{D}(\Omega)$ either through:

- 1. sample data $\{x_i\}_{i=1}^n$ (**Generative modeling)**
- 2. query access to the unnormalized log likelihood **(Sampling)**

DALL-E2

Historical development

Goal: estimate the unknown *probability density function* $\rho_1 \in \mathscr{D}(\Omega)$ either through:

- 1. sample data $\{x_i\}_{i=1}^n$ (**Generative modeling)**
- 2. query access to the unnormalized log likelihood **(Sampling)**

ALLE

Historical development

4 perspectives that dominate contemporary GM

Agenda

Goal: estimate the unknown *probability density function* $\rho_1 \in \mathscr{D}(\Omega)$ either through:

- 1. sample data $\{x_i\}_{i=1}^n$ (**Generative modeling)**
- 2. query access to the unnormalized log likelihood **(Sampling)**

Historical development

Agenda

Goal: estimate the unknown *probability density function* $\rho_1 \in \mathscr{D}(\Omega)$ either through:

- 1. sample data $\{x_i\}_{i=1}^n$ (**Generative modeling)**
- 2. query access to the unnormalized log likelihood **(Sampling)**

Historical development

A quick introduction to each of these topics

- a retrospective on the pros/cons of each, and what we've learned from these various perspectives
- how aspects of each of these tools are used today, in form or another!

My claim: ultimately, we evaluate these methods on measure theoretic quantities, and we should therefore being building tools from the measure transport perspective. There's a lot of evidence of this now!

Generative Adversarial Learning (2014)

Implicit Generative Model

Picture this: It's 2014 and standard approaches to optimizing your generative models (maximum likelihood estimation) are hard!

Two player game idea: what if I instead have two neural networks train each other?

learn to sample ρ_1 with **generator** $G(z) = \hat{x}_1 \sim \hat{\rho}_1$ **learn to discriminate real samples from fake** *D* (*x* **or** *x*)̂ ̂

Generative Adversarial Learning (2014)

Implicit Generative Model

Picture this: It's 2014 and standard approaches to optimizing your generative models (maximum likelihood estimation) are hard!

Two player game idea: what if I instead have two neural networks train each other?

learn to sample ρ_1 with **generator** $G(z) = \hat{x}_1 \sim \hat{\rho}_1$ **learn to discriminate real samples from fake** *D* (*x* **or** *x*)̂ ̂

Learning:

$$
L[\hat{G}, \hat{D}] = \min_{\hat{G}} \max_{\hat{D}} \mathbb{E}_{\rho_1}[\log \hat{D}(x_1)] + \mathbb{E}_{\hat{\rho}_1}[\log(1 - D(\hat{x}_1))]
$$

Discriminator maximizes: wants $D(x_1) = 1$ and ̂ $D(\hat{x}_1) = 0$ ̂

Generator minimizes: wants $D(\hat{x}_1) = 1$ (tricks *discriminator)* ̂

Generative Adversarial Learning (2014)

Learning:

Implicit Generative Model

$$
L[\hat{G}, \hat{D}] = \min_{\hat{G}} \max_{\hat{D}} \mathbb{E}_{\rho_1}[\log \hat{D}(x_1)] + \mathbb{E}_{\hat{\rho}_1}[\log(1 - D(\hat{x}_1))]
$$

Discriminator maximizes: wants $D(x_1) = 1$ *and* ̂ $D(\hat{x}_1) = 0$ ̂

Generator minimizes: wants $D(\hat{x}_1) = 1$ (tricks *discriminator)* ̂

A theoretically motivated minimax game:

- \cdot If D can represent any function, then finding G^* amounts to minimizing a Jensen-Shannon divergence (like symmetrized KL) ̂
- \cdot Lots of research into changing the " \log " functions to minimize other divergences!
- Allows scale for probabilistic modeling "**without likelihoods**"

Benefits and Challenges in GAN learning

Fast, expressive sampling Cone step, unstructured maps

Interpretable latent space Not diffeomorphisms, so latent space meaningfully lower dimensional

Minimax optimization
 Minimax optimization
 Consitivity of equilibria in type player gone sensitivity of equilibria in two-player game

Lots of follow-up research into this!

No explicit likelihood

Likelihoods are preferable for science!

GAN Outlook

Nonetheless, can still be remarkably powerful when tuned carefully

<https://mingukkang.github.io/GigaGAN/> (2023)

A photo of a ramen taken from an angle, with some background.

Images generated in 0.13 seconds!

Variational Learning

Variational Autoencoders: Making auto-encoding probabilistic!

Representation Learning Generative modeling

Autoencoding framework: encode images to a lower dim representation *z*

Useful for representation learning! *How to make it probabilistic?*

Variational Learning

Variational Autoencoders: Making auto-encoding probabilistic!

Representation Learning Generative modeling

Variational framework: encode a posterior distribution $q(z|x)$ **for each input x**

Reconstruct original input, but **regularize** latent space to be **Gaussian** so you can sample a space with structure!

Variational Learning

Variational Autoencoders: Making auto-encoding probabilistic!

Representation Learning Generative modeling

Reconstruct original input, but **regularize** latent space to be **Gaussian** so you can sample a space with structure!

Rich latent representations

Generative modeling in latent space an essential ingredient for large scale methods

tons of research into improving latent representations

Sora: Origami sea creatures

Sora: Victoria-crowned pigeon

Subpar generative models on their own

Rich latent representations

Generative modeling in latent space an essential ingredient for large scale methods

tons of research into improving latent representations

Sora: Origami sea creatures

Sora: Victoria-crowned pigeon

Subpar generative models on their own

Rich latent representations

Generative modeling in latent space an essential ingredient for large scale methods

tons of research into improving latent representations

Sora: Origami sea creatures

Sora: Victoria-crowned pigeon

Subpar generative models on their own

Rich latent representations

Generative modeling in latent space an essential ingredient for large scale methods

Sora: Origami sea creatures spaces is really different in these domains, and under explored! We should be thinking about when and how to best use latent generative modeling in science - structuring these latent

Subpar generative models on their own

Rich latent representations

Generative modeling in latent space an essential ingredient for large scale methods

Sora: Origami sea creatures spaces is really different in these domains, and under explored! We should be thinking about when and how to best use latent generative modeling in science - structuring these latent

Subpar generative models on their own

Rich latent representations

Generative modeling in latent space an essential ingredient for large scale methods

Sora: Origami sea creatures spaces is really different in these domains, and under explored! We should be thinking about when and how to best use latent generative modeling in science - structuring these latent

Subpar generative models on their own

Flows and Diffusions: Problem Setup

A direct maximum likelihood approach?

The transport framework

- Take a simple *base density* ρ_0 (e.g. Gaussian) and;
- Build a (reversible) map $T: \Omega \to \Omega$ such that the *pushforward of* ρ_0 *by* T *is* ρ_1 *:* $T\sharp\rho_0=\rho_1$

Likelihood under $\rho(1)$ given by: $\rho_1(x_1) = \rho_0(T^{-1}(x)) \det[\nabla T^{-1}(x)]$

Problem Setup

The transport framework

• Build a (reversible) map $T : \Omega \to \Omega$ such that the *pushforward of* $\rho(0)$ *by T is* $\rho(1)$: $T\sharp \rho(0) = \rho(1)$

Likelihood:
$$
\rho_1(x) = \rho_0(T^{-1}(x)) \det[\nabla T^{-1}(x)]
$$

For parametric $T(x)$ to be useful **ै**

- det[$\nabla \hat{T}^{-1}(x)$] to be **tractable** ̂
- \bullet $T(x)$ maximally unconstrained **ै**

Problem Setup

The transport framework

• Build a (reversible) map $T : \Omega \to \Omega$ such that the *pushforward of* $\rho(0)$ *by T is* $\rho(1)$ *:* $T\sharp \rho(0) = \rho(1)$

$\boldsymbol{\delta}$ is a probabilistic modeling? H *How do we harness measure transport for these various tasks in probabilistic modeling? How do we learn these maps?*

Ex. Dynamical systems

Series of discrete transforms

T_k learned sequentially

Chen & Gopinath, NeurIPS 13 (2000); Tabak & V.-E., Commun. Math. Sci. 8: 217-233 (2010); Tabak & Turner, Comm. Pure App. Math LXVI, 145-164 (2013).

T_k structured invertible NNs

NICE: Dinh *et al.* arXiv:1410.8516 (2014); Real NVP: Dinh *et al.* arXiv:1605.08803 (2016) Rezende *et al.*, arXiv:1505.05770 (2015); Papamakarios *et al.* arXiv:1912.02762 (2019); … $\det[\,\nabla\,T^{-1}(x)]$ tractable, but too constrained?

Series of discrete transforms

T_k learned sequentially

Chen & Gopinath, NeurIPS 13 (2000); Tabak & V.-E., Commun. Math. Sci. 8: 217-233 (2010); Tabak & Turner, Comm. Pure App. Math LXVI, 145-164 (2013).

T_k structured invertible NNs

NICE: Dinh *et al.* arXiv:1410.8516 (2014); Real NVP: Dinh *et al.* arXiv:1605.08803 (2016) Rezende *et al.*, arXiv:1505.05770 (2015); Papamakarios *et al.* arXiv:1912.02762 (2019); …

 $k \to \infty$

 T solution of *continuous time flow*

FFJORD: Grathwohl *et al.* arXiv:1810.01367 (2018)

 $\det[\,\nabla\,T^{-1}(x)]$ tractable, but too constrained?

• det[$\nabla T^{-1}(x)$] \rightarrow Tr[∂b_t ∂*x*(*t*)]

- estimable via Skilling-Hutchinsion *O*(*D*)
- integrable with Neural ODEs

The continuous time picture

 X_t flow map given by velocity field $b(t, x)$

 $X_{t=0}(x) = x \in \mathbb{R}^d$.
V $X_t(x) = b(t, X_t(x))$

October 24, 2024

The continuous time picture

 $X_{t=1} = T$ X_t flow map given by velocity field $b(t, x)$ $t = 1$ ρ_1 $X_{t=0}(x) = x \in \mathbb{R}^d$ *time* $X_t(x)$.
V $X_t(x) = b(t, X_t(x))$ $t = 0$ ϕ $X_0(x) = x$ ρ_0 *space*

At the level of the of the distribution, how does $\rho(t, x)$ evolve?

Transport
$$
\partial_t \rho(t, x) + \nabla \cdot (b(t, x) \rho(t, x)) = 0, \quad \rho(t = 0, \cdot) = \rho_0
$$

If $\rho(t)$ solves TE, then $\rho(t=1,\cdot) = \rho_1$

The continuous time picture

At the level of the of the distribution, how does $\rho(t, x)$ evolve?

Transport
$$
\partial_t \rho(t, x) + \nabla \cdot (b(t, x) \rho(t, x)) = 0, \quad \rho(t = 0, \cdot) = \rho_0
$$

If
$$
\rho(t)
$$
 solves TE, then $\rho(t = 1, \cdot) = \rho_1$

Benamou-Brenier theory says that $b(t, x)$ exists (assuming Lipschitz)

How to find a sufficient $b(t, x)$ to map ρ_0 to ρ_1 ?

Direct maximum likelihood

One approach: find $b(t, x)$ via $\rho(1, X_1(x)) = \rho_0(x) \exp(-\int$ maximum likelihood

$$
\rho(1,X_1(x)) = \rho_0(x) \exp\Big(-\int_0^1 \nabla \cdot b(t,X_t(x))dt\Big)
$$

FFJORD: Grathwohl *et al.* arXiv:1810.01367 (2018)

$$
\min_{b} KL(\rho_1 || \rho(1)) = \min_{\rho_1} \mathbb{E}_{\rho_1} \left[\log \frac{\rho_1(x)}{\rho(1, x)} \right]
$$

$$
= \min_{\rho_1} \mathbb{E}_{\rho_1} \left[\log \rho(1, x) \right] + C
$$

- \bullet $b(t, x)$ parametrized as neural network
- adjoint method (Neural ODE) allows for gradient wrt parameters of *b*

Direct maximum likelihood

One approach: find $b(t, x)$ via $\rho(1, X_1(x)) = \rho_0(x) \exp(-\int$ maximum likelihood

$$
\rho(1, X_1(x)) = \rho_0(x) \exp\left(-\int_0^1 \nabla \cdot b(t, X_t(x)) dt\right)
$$

FFJORD: Grathwohl *et al.* arXiv:1810.01367 (2018)

$$
\min_{b} KL(\rho_1 || \rho(1)) = \min_{\rho_1} \mathbb{E}_{\rho_1} \left[\log \frac{\rho_1(x)}{\rho(1, x)} \right]
$$

$$
= \min_{\rho_1} \mathbb{E}_{\rho_1} \left[\log \rho(1, x) \right] + C
$$

- \bullet $b(t, x)$ parametrized as neural network
- adjoint method (Neural ODE) allows for gradient wrt parameters of *b*

Direct maximum likelihood

One approach: find $b(t, x)$ via $\rho(1, X_1(x)) = \rho_0(x) \exp(-\int$ maximum likelihood

$$
\rho(1, X_1(x)) = \rho_0(x) \exp\left(-\int_0^1 \nabla \cdot b(t, X_t(x)) dt\right)
$$

FFJORD: Grathwohl *et al.* arXiv:1810.01367 (2018)

$$
\min_{b} KL(\rho_1 || \rho(1)) = \min_{\rho_1} \mathbb{E}_{\rho_1} \left[\log \frac{\rho_1(x)}{\rho(1, x)} \right]
$$

$$
= \min_{\rho_1} \mathbb{E}_{\rho_1} \left[\log \rho(1, x) \right] + C \qquad \blacktriangleleft
$$

- \bullet $b(t, x)$ parametrized as neural network
- adjoint method (Neural ODE) allows for gradient wrt parameters of *b*

Is there a simpler paradigm for learning $b(t, x)$?

Solving for *b*(*t*, *x*) solves the transport

Is there a simple paradigm for learning $b(t, x)$?

Dream scenario: figure out a way to perform regression on the velocity field

$$
\min_{\hat{b}} \int_{t=0}^{t=1} |b(t,x) - \hat{b}(t,x)|^2 \rho(t,x) dx dt
$$

Problems:

- Don't have a fixed $b(t, x)$ to regress on
- Don't have a $\rho(t, x)$ to sample from!

How can we work exactly on $t \in [0,1]$ *with arbitrary* ρ_0 *and* ρ_1 *, build a connection between them, and get the velocity* $b(t, x)$ *directly?*

Inspiration: Score-based diffusion

Song et al. arXiv:2011.13456 (2021); Sohl-Dickstein et al arXiv:1503.03585 (2021); Hyvärinen JMLR **6** (2005); Vincent, Neural Comp. **23**, 1661 (2011)

Map $x_1 \sim \rho_1$ to Gaussian ρ_0 via **Ornstein-Uhlenbeck (OU) process**

"A brain riding a rocket ship headed toward the moon." Imagen, Saharia et al 2205.11487

$$
dX_t = -X dt + \sqrt{2} dW_t, \quad X_0 = x_1
$$

$$
\text{SDE} \qquad dX_t^B = -X_t dt + \nabla \log \rho(t, X_t) dt + \sqrt{2} dW_t, \quad X_0 = x_0
$$

 ODE $b(t, x) = x - \nabla \log \rho(t, x)$

Access to the score $s(t, x) = \nabla \log \rho(t, x)$ *allows one to simulate the reverse process as a generative model*

Inspiration: Score-based diffusion

Song et al. arXiv:2011.13456 (2021); Sohl-Dickstein et al arXiv:1503.03585 (2021); Hyvärinen JMLR **6** (2005); Vincent, Neural Comp. **23**, 1661 (2011)

Map $x_1 \sim \rho_1$ to Gaussian ρ_0 via **Ornstein-Uhlenbeck (OU) process**

"A brain riding a rocket ship headed toward the moon." Imagen, Saharia et al 2205.11487

$$
dX_t = -X dt + \sqrt{2} dW_t, \quad X_0 = x_1
$$

$$
\text{SDE} \qquad dX_t^B = -X_t dt + \nabla \log \rho(t, X_t) dt + \sqrt{2} dW_t, \quad X_0 = x_0
$$

 ODE $b(t, x) = x - \nabla \log \rho(t, x)$

We can regress using the Ornstein-Uhlenbeck path. But this path emerges from a carefully chosen SDE. Can we do something simpler?

Interpolant Function $I(t, x_0, x_1)$

MSA & Vanden-Eijnden arXiv:2209.15571 (2022);

- A function of x_0 , x_1 , and time t with b.c.'s: $I_{t=0} = x_0$ and $I_{t=1} = x_1$
- Example: $I(t, x_0, x_1) = (1 t)x_0 + tx_1$

If x_0 , x_1 drawn from some $\rho(x_0, x_1)$, then $I(t, x_0, x_1)$ is a **stochastic process which samples** $I_t \sim \rho(t, x)$

Interpolant Density What fixes $\rho(t, x)$?

$$
\rho(t,x) = \mathbb{E}_{\rho(x_0,x_1)}\left[\delta\big(x - I(t,x_0,x_1)\big)\right]
$$

- 1. Choice of **coupling**: how to sample x_0, x_1
- simple example: $\rho(x_0, x_1) = \rho_0(x_0)\rho_1(x_1)$ 2. Choice of **interpolant** $I(t, x_0, x_1)$:

October 24, 2024

Interpolant Function $I(t, x_0, x_1)$

MSA & Vanden-Eijnden arXiv:2209.15571 (2022);

- A function of x_0 , x_1 , and time t with b.c.'s: $I_{t=0} = x_0$ and $I_{t=1} = x_1$
- Example: $I(t, x_0, x_1) = (1 t)x_0 + tx_1$

If x_0 , x_1 drawn from some $\rho(x_0, x_1)$, then $I(t, x_0, x_1)$ is a **stochastic process which samples** $I_t \sim \rho(t, x)$

Interpolant Density What fixes $\rho(t, x)$?

$$
\rho(t,x) = \mathbb{E}_{\rho(x_0,x_1)}\left[\delta\big(x - I(t,x_0,x_1)\big)\right]
$$

- 1. Choice of **coupling**: how to sample x_0, x_1
- simple example: $\rho(x_0, x_1) = \rho_0(x_0)\rho_1(x_1)$ 2. Choice of **interpolant** $I(t, x_0, x_1)$:

October 24, 2024

Interpolant Function $I(t, x_0, x_1)$

MSA & Vanden-Eijnden arXiv:2209.15571 (2022);

 $x_t \sim \rho_t$, $t = 0.0$

- A function of x_0 , x_1 , and time t with b.c.'s: $I_{t=0} = x_0$ and $I_{t=1} = x_1$
- **Example:** $I(t, x_0, x_1) = (1 t)x_0 + tx_1$

Interpolant Function $I(t, x_0, x_1)$

MSA & Vanden-Eijnden arXiv:2209.15571 (2022);

 $x_t \sim \rho_t$, $t = 0.0$

- A function of x_0 , x_1 , and time t with b.c.'s: $I_{t=0} = x_0$ and $I_{t=1} = x_1$
- **Example:** $I(t, x_0, x_1) = (1 t)x_0 + tx_1$

Stochastic Interpolants: what is *b*(*t*, *x*)**?**

Interpolant Function $I(t, x_0, x_1)$

• Example: $I(t, x_0, x_1) = (1 - t)x_0 + tx_1$

$$
\min_{\hat{b}} \int_{t=0}^{t=1} |b(t, x) - \hat{b}(t, x)|^2 \rho(t, x) dx dt
$$

• when $x_0, x_1 \sim \rho(x_0, x_1)$, $I_t \sim \rho(t)$

 $\bm{\mathsf{W}}$ e have samples $I_t \thicksim \rho(t,x)$ via the interpolant, but what is $b(t,x)?$

Definition

The $\rho(t, \cdot)$ of x_t satisfies a transport equation $b(t, x) = \mathbb{E}[\partial_t I(t) | I(t) = x]$ and $b(t, x)$ is given as the conditional expectation $\partial_t \rho + \nabla \cdot (b(t, x) \rho) = 0, \quad \rho(t = 0, \cdot) = \rho_0$

prove with characteristic function, sketch in backup slides.

Stochastic Interpolants: Simple Objective

$$
\min_{\hat{b}} \int_{t=0}^{t=1} |\hat{b}(t,x) - b(t,x)|^2 \rho(t,x) dx dt
$$

$$
\min_{\hat{b}} \int_{t=0}^{t-1} \int_{\mathbb{R}^d} |E[\partial_t I(t) | I(t) = x] - \hat{b}(t, x)|^2 \rho(t, x) dx dt
$$

plug in definition of $b(t, x)$

$$
\int_{\mathbb{R}^d} \mathbb{E}[\partial_t I(t) | I(t) = x] \rho(t, x) = \mathbb{E}_{\rho(x_0, x_1)}[\partial_t I(t)]
$$

**Note: definition of

Conditional expectation**

vel 181
1781

Prop.

 ϵ *t*=1 ϵ

$$
b(t, x) \text{ is the minimizer of}
$$
\n
$$
L[\hat{b}] = \int_0^1 \mathbb{E}_{\rho(x_0, x_1)} \left[\left| \hat{b}(t, x(t)) - \partial_t I(t) \right|^2 \right] dt
$$
\nusing shorthand $I(t) = I(t, x_0, x_1)$

Stochastic Interpolants: Generative Model

```
"Flow matching"
```
MSA & Vanden-Eijnden arXiv:2209.15571 (2022); Liu et al. arXiv:2209.03003 (2022); Lipman et al. arXiv:2210.02747 (2022)

Prop.

 $b(t, x)$ is the minimizer of $L[b] = \int$ 1 0 $\rho(x_0, x_1)$ $|\hat{b}(t, x(t)) - \partial_t I(t)|^2$ *dt* using shorthand $I(t) = I(t, x_0, x_1)$

- Loss is directly estimable over ρ_0, ρ_1
- Generative model connects *any* two densities
- Likelihood and sampling available via fast ODE integrators
- Loss bounds Wasserstein-2 between $\rho(1,x)$ and ρ_1 (Gronwall)

Generative model

$$
\dot{X}_t(x) = b(t, X_t(x))
$$

Correspondence between deterministic and stochastic maps

Why go through this derivation? To stress that the mathematics of learning flows and diffusions by regression is the same, and learning one *often defines learning the other*

Deterministic

Both processes have the same distribution in law, how are they different?

Correspondence between deterministic and stochastic maps

Why go through this derivation? To stress that the mathematics of learning flows and diffusions by regression is the same, and learning one often defines learning the other

Both processes have the same distribution in law, how are they different?

Unifying flow-based and diffusion-based generative models

MSA & Vanden-Eijnden (ICLR 2023) 2209.15571 MSA & Boffi, Vanden-Eijnden (JMLR 2024) 2303.08797

Unifying flow-based and diffusion-based generative models

MSA & Vanden-Eijnden (ICLR 2023) 2209.15571 MSA & Boffi, Vanden-Eijnden (JMLR 2024) 2303.08797

Transport equation

$$
\partial_t \rho + \nabla \cdot (b \rho) = 0
$$

ODE

$$
\frac{d}{dt}X_t = b\left(t, X_t\right)
$$

Learn *b*

Unifying flow-based and diffusion-based generative models

MSA & Vanden-Eijnden (ICLR 2023) 2209.15571 MSA & Boffi, Vanden-Eijnden (JMLR 2024) 2303.08797

Transport equation

$$
\partial_t \rho + \nabla \cdot (b\rho) = 0
$$

ODE

$$
\frac{d}{dt}X_t = b(t, X_t)
$$

Learn *b*

Fokker-Planck Equations

$$
\partial_t \rho + \nabla \cdot (b^{\text{F/B}} \rho) = \epsilon \Delta \rho
$$

where $b^{\text{F/B}} = b \pm \epsilon s$

SDE

$$
dX_t^{\text{F/B}} = b_{\text{F/B}}(t, X_t^{\text{F}}) dt + \sqrt{2\epsilon} dW_t^{\text{F/B}}
$$

Bounding the KL between *ρ* and *ρ*

Bounding the KL between *ρ* and *ρ*

If $\hat{\rho}$ the density pushed by *estimated* deterministic dynamics b , then $KL(\rho(1)\|\hat{\rho}(1)) =$ 1 0 $\int_{\mathbb{R}^d}$ $(\nabla \log \hat{\rho} - \nabla \log \rho) \cdot (b - b) \rho \, dx \, dt$ matching b 's does not bound KL, Fisher is uncontrolled by small error in $b - b$ $\partial_t \hat{\rho} + \nabla \cdot (b \hat{\rho}) = 0$

Bounding the KL between *ρ* and *ρ*

If $\hat{\rho}$ the density pushed by *estimated* deterministic dynamics b , then $KL(\rho(1)\|\hat{\rho}(1)) =$ 1 0 $\int_{\mathbb{R}^d}$ $(\nabla \log \hat{\rho} - \nabla \log \rho) \cdot (b - b) \rho \, dx \, dt$ matching b 's does not bound KL, Fisher is uncontrolled by small error in $b - b$ $\partial_t \hat{\rho} + \nabla \cdot (b \hat{\rho}) = 0$ **If** $\hat{\rho}$ **the density pushed by estimated** $\boldsymbol{b}_{\text{F}} = b + \epsilon s$, $\boldsymbol{b}_{\text{F}} = b + \epsilon s$ **then** ̂ $1 \int_1^1$ $\sqrt{2}$ $\partial_t \hat{\rho} + \nabla \cdot (b^{\text{F}} \hat{\rho}) = \epsilon \Delta \hat{\rho}$

$$
KL(\rho(1) || \hat{\rho}(1)) \le \frac{1}{4\epsilon} \int_0^{\epsilon} \int_{\mathbb{R}^d} \left| \hat{b}_{\mathcal{F}} - b_{\mathcal{F}} \right|^2 \rho \, dx dt
$$

$$
\hat{b}_{\mathcal{F}} - b_{\mathcal{F}} \text{ does control KL divergence}
$$

Benefits and Challenges of dynamical measure transport

Access to likelihoods **Essential for many** scientific applications

Regression objectives Contemporary losses are
 functionally convex!

Iterative sampling can be slow One to few sampling would be ideal

Formulation for discrete data? Many proposals, no final picture

Map matching a discrete diffusion

Directly learning the 1 to few step flow map

 $X_{s,t}(x_s) = x_t$

"consistency models" "map matching"

Discrete diffusion:

What's the best way to parameterize a discrete time markov process?

Graph? Masking?

Iterative denoising? *Gat et al arXiv:2407.15595*

def binary search (arr, x) : # If x is greater # If x is smaller else:

Map matching a discrete diffusion

Directly learning the 1 to few step flow map

 $X_{s,t}(x_s) = x_t$

"consistency models" "map matching"

Discrete diffusion:

What's the best way to parameterize a discrete time markov process?

Graph? Masking?

Iterative denoising? *Gat et al arXiv:2407.15595*

def binary search (arr, x) : # If x is greater # If x is smaller else:

Thank you!

Backup slides

Interpolant applications backup slides

Summary of Context and Applications

Ex. Statistical physics

Ex. Superresolution

Forecasting

Ex. Climate/weather Ex. Dynamical systems

We will use the design flexibility of the interpolant and the coupling between x_0 , x_1 to approach various problems
Example: Interpolants for image generation

Freedom to choose *α*, *β* **in:**

 $x(t) = \alpha(t)x_0 + \beta(t)x_1$

to reduce transport cost: $C[b] =$ $\Big\{$ 1 0 $[|b(t, x)|^2]dt$

Freedom to choose $\varepsilon(t)$ in:

 $dX_t^{\text{F}} = b_{\text{F}} dt + \sqrt{2\epsilon(t)} dW_t^{\text{F}}$

to tighten bounds on:

 $D_{KL}(\hat{\rho}_1 | \mid \rho_1)$

MSA & EVE (ICLR 2023) 2209.15571; NM, MG, MSA, NB, EVE, SX (ECCV 2024) 2401.08740

Systematic improvements to methods underlying, e.g. Sora (OpenAI, 2024)

October 24, 2024 51

Example: Data-dependent coupling

MSA, MG, NB, RR, EVE (ICML 2024 Spotlight) 2310.03725 MSA, NB, ML, EVE (ICLR 2024) 2310.03695

What if one x_0 is coupled to another x_1 ?

 $\rho(x_0, x_1) = \rho_1(x_1)\rho_0(x_0 | x_1)$

 $b(t, x)$ invariant in unmasked areas x_0 now *proximal* to its target

Frechet Inception Distance

In-painting Super-resolution

 x_0 a low-res image

More efficient and better performance across tasks

Example: Data-dependent coupling

MSA, MG, NB, RR, EVE (ICML 2024 Spotlight) 2310.03725 MSA, NB, ML, EVE (ICLR 2024) 2310.03695

What if one x_0 is coupled to another x_1 ?

 $\rho(x_0, x_1) = \rho_1(x_1)\rho_0(x_0 | x_1)$

 $b(t, x)$ invariant in unmasked areas x_0 now *proximal* to its target

Frechet Inception Distance

In-painting Super-resolution

 x_0 a low-res image

More efficient and better performance across tasks

YC, MG, MH, MSA, NB, EVE arXiv:2402. (2024)

Interpolants for ensembles of future events

 $\rho(x_0, x_1) = \rho_0(x_0)\rho_1(x_1 | x_0)$

Navier Stokes

- Evolution of the vorticity *ω*
- $\mathsf{Map}\;\omega_{t}$ to distribution $\rho(\omega_{t+\tau} \,|\, \omega_{t})$
- Choose NS w/ random forcing that has invariant measure

Video completion

Map x_t to distribution $\rho(x_{t+1} | x_{t-\tau:t})$

Roll out subsequent frames

YC, MG, MH, MSA, NB, EVE arXiv:2402. (2024)

Interpolants for ensembles of future events

 $\rho(x_0, x_1) = \rho_0(x_0)\rho_1(x_1 | x_0)$

Navier Stokes

- Evolution of the vorticity *ω*
- $\mathsf{Map}\;\omega_{t}$ to distribution $\rho(\omega_{t+\tau} \,|\, \omega_{t})$
- Choose NS w/ random forcing that has invariant measure

Video completion

Map x_t to distribution $\rho(x_{t+1} | x_{t-\tau:t})$

Roll out subsequent frames

YC, MG, MH, MSA, NB, EVE arXiv:2402. (2024)

Interpolants for ensembles of future events

 $\rho(x_0, x_1) = \rho_0(x_0)\rho_1(x_1 | x_0)$

Navier Stokes

Evolution of the vorticity *ω*

 $\mathsf{Map}\ \omega_t$ to distribution $\rho(\omega_{t+\tau} | \omega_t)$

Choose NS w/ random forcing that has invariant measure

Ensemble of ω_{t+2} *ω^t* Enstrophy

cost stochastic transport with respect to a reference measure. *Introduces a new family of interpolant Follmer processes — least*

Gives tighter control on KL-div Gives tighter control on KL-divergence

YC, MG, MH, MSA, NB, EVE arXiv:2402. (2024)

Interpolants for ensembles of future events

 $\rho(x_0, x_1) = \rho_0(x_0)\rho_1(x_1 | x_0)$

Navier Stokes

Evolution of the vorticity *ω*

 $\mathsf{Map}\ \omega_t$ to distribution $\rho(\omega_{t+\tau} | \omega_t)$

Choose NS w/ random forcing that has invariant measure

Ensemble of ω_{t+2} *ω^t* Enstrophy

cost stochastic transport with respect to a reference measure. *Introduces a new family of interpolant Follmer processes — least*

Gives tighter control on KL-div Gives tighter control on KL-divergence

Map Matching Backup slides

Making sense of the flow map

Given an ordinary differential equation of the form

$$
\dot{x}_t = b_t(x_t), \quad x_{t=0} = x_0 \sim \rho_0
$$

The two-time flow map is an *arbitrary integrator* **from** *s* **to** *t*

$$
X_{s,t}(x_s) = x_t
$$

Properties of the flow map

What dynamical equations does the flow map satisfy?

Lagrangian Equation
$$
\left(\frac{\partial}{\partial t}\right)
$$

\n $\partial_t X_{s,t}(x)$ is the unique solution of

\n $\partial_t X_{s,t}(x_s) = \dot{x}_t = b_t(X_{s,t}(x))$

\n $\partial_t X_{s,t}(x) = b_t(X_{s,t}(x))$

\n $X_{s,s}(x) = x$

\n**Eulerian Equation** $\left(\frac{\partial}{\partial s}\right)$

\n $\frac{d}{ds} X_{s,t}(X_{t,s}(x)) = 0$

\n $= \partial_s X_{s,t}(X_{t,s}(x))$

\n $+ b_t(X_{s,t}(X_{t,s}(x)) \cdot \nabla X_{s,t}(X_{t,s}(x))$

\n $X_{t,t}(x) = x$

Can we use these equation to design objectives for learning $X_{s,t}$ *?*

Map Matching

Boffi, MSA, Vanden-Eijnden arXiv:2406.07507

Learn from existing $b_t(x)$

Lagrangian Map Distillation (LMD) Eulerian Map Distillation (EMD)

Learn from data $x_1 \sim \rho_1$

Flow Map Matching (FMM)

Can we use these equation to design objectives for learning $X_{s,t}$ *?*

Map Matching

Boffi, MSA, Vanden-Eijnden arXiv:2406.07507

Learn from existing $b_t(x)$

Lagrangian Map Distillation (LMD) Eulerian Map Distillation (EMD)

Learn from data $x_1 \sim \rho_1$

Flow Map Matching (FMM)

Can we use these equation to design objectives for learning $X_{s,t}$ *?*

Lagrangian Map Distillation (LMD)

Prop.

The flow map $X_{s,t}$ is the global minimizer of

$$
L_{LMD}(\hat{X}) = \int_{[0,T]^2} \int_{\mathbb{R}^d} \left| \partial_t \hat{X}_{s,t}(x) - b_t \left(\hat{X}_{s,t}(x) \right) \right|^2 \rho_s(x) dx ds dt
$$

subject to $X_{s,s}(x) = x$.

- PINN loss minimized only when integrand is zero
- \cdot $b_t(x)$ any known drift, for example previous trained flow model

Tutorial! <https://tinyurl.com/lagrangian-map>

Eulerian Map Distillation (EMD)

Prop.

The flow map $X_{s,t}$ is the global minimizer of

$$
L_{EMD}(\hat{X}) = \int_{[0,T]^2} \int_{\mathbb{R}^d} \left| \partial_s \hat{X}_{s,t}(x) + b_s(x) \cdot \nabla \hat{X}_{s,t}(x) \right|^2 \rho_s(x) \, dx \, ds \, dt
$$

subject to $X_{s,s}(x) = x$.

- PINN loss minimized only when integrand is zero
- \cdot $b_t(x)$ any known drift, for example previous trained flow model

Flow map matching (FMM)

Prop.

The flow map $X_{s,t}$ is the global minimizer of

$$
L_{FMM}[\hat{X}] = \int_{[0,1]^2} \left(\mathbb{E}\left[\left| \partial_t \hat{X}_{s,t} \left(\hat{X}_{t,s} \left(I_t \right) \right) - \dot{I}_t \right|^2 \right] + \mathbb{E}\left[\left| \hat{X}_{s,t} \left(\hat{X}_{t,s} \left(I_t \right) \right) - I_t \right|^2 \right] \right) ds dt
$$

where I_t is an interpolant with $\textsf{Law}(I_t) = \rho_t$.

- Depends solely on $X_{s,t}$ and interpolant I_t ̂
- First term ensures Lagrangian equation, second term semigroup.

Tutorial! <https://tinyurl.com/map-match>

How do they compare?

2D checkerboard distribution

One to few step map matching and Lagrangian distillation on par with 80-step interpolant

Eulerian Map Distillation struggles

How do they compare?

Lagrangian distillation converges faster than Eulerian

21, 2024

Does this make sense theoretically? What can we say about the loss functions

Wasserstein Control on Distillation Losses

Let $\rho_1^b = X_{0,1}$ # ρ_0 and $\hat{\rho}_1 = \hat{X}_{0,1}$ # ρ_0 . Then the squared Wasserstein distance $W^2_2(\rho^b_1,\hat{\rho}_1)$ satisfies ̂

• Bringing L_{LMD} and L_{EMD} to same value would imply better learning for EMD

• But empirically, *optimization is harder!* Bounds useful, but don't tell whole story.