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State of generative modeling 
and the sciences

According to me I guess!
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I’m supposed to give you an overview of generative models…

•Of course this will be biased by my opinions!
•I will caveat any claims by this fact :) hopefully spurs some discussion 
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Why we’re here today! 

Pedagogical

Feel the AGI

Self-explanatory
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Problem Motivation: Complexity all around

The social and natural worlds are replete with complex 
structure that often has a probabilistic interpretation

Sora (2024): “A flower growing 
out on the windowsill” Forecasting

Quantum Theory

Molecular 
conformation
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Framing the dual probabilistic problems
Goal: estimate the unknown probability density function  either through:


1. sample data   (Generative modeling) 
2. query access to the unnormalized log likelihood (Sampling)

ρ1 ∈ 𝒟(Ω)
{xi}n

i=1
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Autoregressive learning*

4 perspectives that dominate contemporary GM
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Agenda
Goal: estimate the unknown probability density function  either through:


1. sample data   (Generative modeling) 
2. query access to the unnormalized log likelihood (Sampling)

ρ1 ∈ 𝒟(Ω)
{xi}n

i=1

Measure transport

Adversarial learning
Variational learning

Historical development

Autoregressive learning*

A quick introduction to each of these topics
• a retrospective on the pros/cons of each, and what we’ve 

learned from these various perspectives
• how aspects of each of these tools are used today, in form or another!

My claim: ultimately, we evaluate these methods on measure theoretic 
quantities, and we should therefore being building tools from the measure 

transport perspective. There’s a lot of evidence of this now!
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Generative Adversarial Learning (2014)
Implicit Generative Model

Picture this: It’s 2014 and standard approaches to optimizing your generative 
models (maximum likelihood estimation) are hard! 

Two player game idea: what if I instead have two neural networks train each other?  

learn to sample  with 
generator 

ρ1
Ĝ(z) = ̂x1 ∼ ̂ρ1

Gz ∈ ℝn →

G : ℝn → ℝd

→ ̂x1 ∼ ̂ρ1 D

learn to discriminate real 
samples from fake D̂(x or  ̂x)

D : ℝd → [0,1]

̂x1 or x1 → → [0,1]

Real/fake
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Generative Adversarial Learning (2014)
Implicit Generative Model

Learning: 

L[Ĝ, D̂] = min
Ĝ

max
D̂

𝔼ρ1
[log D̂(x1)] + 𝔼 ̂ρ1

[log(1 − D( ̂x1))]

Discriminator maximizes: 
wants  and D̂(x1) = 1

D̂( ̂x1) = 0

Generator minimizes: 
wants  (tricks 

discriminator)
D̂( ̂x1) = 1

A theoretically motivated minimax game:

• If  can represent any function, then finding  amounts to 
minimizing a Jensen-Shannon divergence (like symmetrized KL)

D̂ G*

• Lots of research into changing the “ ” functions to minimize 
other divergences!

log

• Allows scale for probabilistic modeling “without likelihoods”
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Benefits and Challenges in GAN learning

Minimax optimization Learning can be unstable because of 
sensitivity of equilibria in two-player game

Lots of follow-up research into this!

No explicit likelihood

Fast, expressive sampling One step, unstructured maps

Interpretable latent space Not diffeomorphisms, so latent space 
meaningfully lower dimensional

Likelihoods are preferable for science!
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GAN Outlook

Nonetheless, can still be remarkably powerful when tuned carefully
https://mingukkang.github.io/GigaGAN/ (2023)

Images generated in 0.13 seconds!

https://mingukkang.github.io/GigaGAN/
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Variational Learning

Generative modelingRepresentation Learning

Variational Autoencoders: Making auto-encoding probabilistic!

Autoencoding framework: encode images to a lower dim representation z

DecodeEncode zx ∈ ℝd →

z ∈ ℝn

E(x) : ℝd → ℝn D(x) : ℝn → ℝd

x ∈ ℝd →

Useful for representation learning! How to make it probabilistic?
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Variational Learning

Generative modelingRepresentation Learning

Variational Autoencoders: Making auto-encoding probabilistic!

Variational framework: encode a posterior distribution  for each 
input x

q(z |x)

DecodeEncode z

x → q(z |x)

μ

Σ

z ∼ 𝖭(μ, Σ)

z → q(x |z)

New 7

Reconstruct original input, but regularize latent space to be Gaussian so 
you can sample a space with structure!
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Variational Learning

Generative modelingRepresentation Learning

Variational Autoencoders: Making auto-encoding probabilistic!

Reconstruct original input, but regularize latent space to be Gaussian so 
you can sample a space with structure!

min 𝔼q(z|x)[ |x − D(z) |2 ] + DKL(q(z |x) | |p(z |x))

DecodeEncode z

x → q(z |x)

μ

Σ

z ∼ 𝖭(μ, Σ)

z → q(x |z)

New 7
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Benefits and challenges 

Rich latent representations

Generative modeling in latent 
space an essential ingredient 

for large scale methods

Sora: Origami sea creatures
Sora: Victoria-crowned pigeon

tons of research into improving 
latent representations

Subpar generative models on their own

trade-offs between image 
reconstruction (expressivity) 
and latent space structure
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Likelihood under  given by:   ρ(1) ρ1(x1) = ρ0(T−1(x)) det[∇T−1(x)]

26

Flows and Diffusions: Problem Setup

The transport framework
• Take a simple base density  (e.g. Gaussian) and;  

• Build a (reversible) map  such that the pushforward of  by  is :     

ρ0

T : Ω → Ω ρ0 T ρ1 T♯ρ0 = ρ1

 

A direct maximum likelihood approach?
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Likelihood:   ρ1(x) = ρ0(T−1(x)) det[∇T−1(x)]
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Problem Setup

The transport framework
• Build a (reversible) map  such that the pushforward of  by  is :     T : Ω → Ω ρ(0) T ρ(1) T♯ρ(0) = ρ(1)

•   to be tractable 

•  maximally unconstrained

det[∇ ̂T−1(x)]

̂T(x)

For parametric  to be useful̂T(x)

Tradeoff!
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Problem Setup

The transport framework
• Build a (reversible) map  such that the pushforward of  by  is :     T : Ω → Ω ρ(0) T ρ(1) T♯ρ(0) = ρ(1)

 

Generative modeling Domain Adaptation

Ex. Image generation 
Ex. Statistical physics Ex. Translation

Forecasting

Ex. Climate/weather 
Ex. Dynamical systems

How do we harness measure transport for these 
various tasks in probabilistic modeling? How do we 

learn these maps?
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Brief history on transport realizations

Series of discrete transforms

Chen & Gopinath, NeurIPS 13 (2000); 
Tabak & V.-E., Commun. Math. Sci. 8: 217-233 (2010); 
Tabak & Turner, Comm. Pure App. Math LXVI, 145-164 
(2013).

 learned sequentiallyTk

 structured invertible NNsTk
NICE: Dinh et al. arXiv:1410.8516 (2014); 
Real NVP: Dinh et al. arXiv:1605.08803 (2016) 
Rezende et al., arXiv:1505.05770 (2015); 
Papamakarios et al. arXiv:1912.02762 (2019); … 

 tractable, but too constrained?det[∇T−1(x)]
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 learned sequentiallyTk

 structured invertible NNsTk
NICE: Dinh et al. arXiv:1410.8516 (2014); 
Real NVP: Dinh et al. arXiv:1605.08803 (2016) 
Rezende et al., arXiv:1505.05770 (2015); 
Papamakarios et al. arXiv:1912.02762 (2019); … 

 tractable, but too constrained?det[∇T−1(x)]

 solution of 
continuous time flow

T

k → ∞

FFJORD: Grathwohl et al. arXiv:1810.01367 (2018)

• det[∇T−1(x)] → Tr[
∂bt

∂x(t)
]

• estimable via Skilling-Hutchinsion O(D)
• integrable with Neural ODEs 
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May 28, 2023

space

tim
e

t = 0

t = 1

X0(x) = x

Xt(x)

Xt=1 = T

30

The continuous time picture

Xt=0(x) = x ∈ ℝd

·Xt(x) = b(t, Xt(x))

 flow map given by velocity field  Xt b(t, x)
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The continuous time picture

 flow map given by velocity field  Xt b(t, x)

∂tρ(t, x) + ∇ ⋅ (b(t, x)ρ(t, x)) = 0, ρ(t = 0, ⋅) = ρ0
Transport 
equation

If  solves TE, then ρ(t) ρ(t = 1, ⋅) = ρ1

Xt=0(x) = x ∈ ℝd

·Xt(x) = b(t, Xt(x))

At the level of the of the distribution, how does  evolve?ρ(t, x)
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The continuous time picture

At the level of the of the distribution, how does  evolve?ρ(t, x)

Benamou-Brenier theory says that 
 exists (assuming Lipschitz)                                    b(t, x)

How to find a sufficient 
 to map ?b(t, x) ρ0 to ρ1

Xt=0(x) = x ∈ ℝd

·Xt(x) = b(t, Xt(x))

Transport 
equation

 flow map given by velocity field  Xt b(t, x)

∂tρ(t, x) + ∇ ⋅ (b(t, x)ρ(t, x)) = 0, ρ(t = 0, ⋅) = ρ0

If  solves TE, then ρ(t) ρ(t = 1, ⋅) = ρ1
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Direct maximum likelihood

One approach: find  via 
maximum likelihood

b(t, x) ρ(1,X1(x)) = ρ0(x)exp( − ∫
1

0
∇ ⋅ b(t, Xt(x))dt)

FFJORD: Grathwohl et al. arXiv:1810.01367 (2018)

 
min

b
KL(ρ1 | |ρ(1)) = min 𝔼ρ1[log

ρ1(x)
ρ(1, x) ]

= min − 𝔼ρ1[log ρ(1, x)] + C

•  parametrized as neural networkb(t, x)
• adjoint method (Neural ODE) allows for gradient wrt parameters of b
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Solving for  solves the transportb(t, x)

Is there a simple paradigm for learning ?b(t, x)

Dream scenario: figure out a way to perform regression on the velocity field

min
b̂ ∫

t=1

t=0
|b(t, x) − b̂(t, x) |2 ρ(t, x)dxdt

Problems:

• Don’t have a fixed  to regress on


• Don’t have a  to sample from!

b(t, x)
ρ(t, x)

How can we work exactly on  with arbitrary  and ,  
build a connection between them, and get the velocity  directly?

t ∈ [0,1] ρ0 ρ1
b(t, x)
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Inspiration: Score-based diffusion

“A brain riding a rocket ship headed toward 
the moon.” Imagen, Saharia et al 2205.11487

Song et al. arXiv:2011.13456 (2021);  
Sohl-Dickstein et al arXiv:1503.03585 (2021); 
Hyvärinen JMLR 6 (2005);  
Vincent, Neural Comp. 23, 1661 (2011)

Map  to Gaussian  via 
Ornstein-Uhlenbeck (OU) process

x1 ∼ ρ1 ρ0

dXt = − X dt + 2 dWt, X0 = x1

dXB
t = − Xt dt + ∇log ρ(t, Xt) dt + 2 dWt, X0 = x0

Access to the score  allows one to 
simulate the reverse process as a generative model

s(t, x) = ∇log ρ(t, x)

SDE

ODE b(t, x) = x − ∇log ρ(t, x)
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Inspiration: Score-based diffusion

“A brain riding a rocket ship headed toward 
the moon.” Imagen, Saharia et al 2205.11487

Song et al. arXiv:2011.13456 (2021);  
Sohl-Dickstein et al arXiv:1503.03585 (2021); 
Hyvärinen JMLR 6 (2005);  
Vincent, Neural Comp. 23, 1661 (2011)

Map  to Gaussian  via 
Ornstein-Uhlenbeck (OU) process

x1 ∼ ρ1 ρ0

dXt = − X dt + 2 dWt, X0 = x1

dXB
t = − Xt dt + ∇log ρ(t, Xt) dt + 2 dWt, X0 = x0

We can regress using the Ornstein-Uhlenbeck path. But this path 
emerges from a carefully chosen SDE. Can we do something simpler?

SDE

ODE b(t, x) = x − ∇log ρ(t, x)
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• A function of , , and time  with b.c.’s:  and x0 x1 t It=0 = x0 It=1 = x1

37

Stochastic Interpolants
Interpolant Function I(t, x0, x1)

• Example: I(t, x0, x1) = (1 − t)x0 + tx1

If ,  drawn from some , 
then  is a stochastic 

process which samples 

x0 x1 ρ(x0, x1)
I(t, x0, x1)

It ∼ ρ(t, x)

ρ(t, x) = 𝔼ρ(x0,x1) [δ(x − I(t, x0, x1))]

Interpolant Density What fixes  ρ(t, x)?
1. Choice of coupling: how to sample x0, x1

simple example: ρ(x0, x1) = ρ0(x0)ρ1(x1)
2. Choice of interpolant :I(t, x0, x1)

MSA & Vanden-Eijnden  arXiv:2209.15571 (2022); 
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Stochastic Interpolants
Interpolant Function I(t, x0, x1)

Interpolant Density Can sample ρ(t, x)!
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b̂ ∫

t=1

t=0
|b(t, x) − b̂(t, x) |2 ρ(t, x)dxdt
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Stochastic Interpolants: what is ?b(t, x)
Interpolant Function I(t, x0, x1)
• Example: I(t, x0, x1) = (1 − t)x0 + tx1

We have samples  via the interpolant, but what is It ∼ ρ(t, x) b(t, x)?

min
b̂ ∫

t=1

t=0
|b(t, x) − b̂(t, x) |2 ρ(t, x)dxdt

Definition

• when ,  x0, x1 ∼ ρ(x0, x1) It ∼ ρ(t)

The  of  satisfies a transport equationρ(t, ⋅ ) xt

b(t, x) = 𝔼[∂tI(t) | I(t) = x]

and  is given as the conditional expectationb(t, x)
∂tρ + ∇ ⋅ (b(t, x)ρ) = 0, ρ(t = 0, ⋅) = ρ0

prove with characteristic function, sketch in backup slides.
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Stochastic Interpolants: Simple Objective

min
b̂ ∫

t=1

t=0
| b̂(t, x) − b(t, x) |2 ρ(t, x)dxdt

min
b̂ ∫

t=1

t=0 ∫ℝd

|𝔼[∂tI(t) | I(t) = x] − b̂(t, x) |2 ρ(t, x)dxdt

plug in definition of 
b(t, x)

Note: definition of 
conditional expectation∫ℝd

𝔼[∂tI(t) | I(t) = x]ρ(t, x) = 𝔼ρ(x0,x1)[∂tI(t)]

Prop.
 is the minimizer of b(t, x)

L[b̂] = ∫
1

0
𝔼ρ(x0,x1) [ | b̂(t, x(t)) − ∂tI(t) |2 ] dt

using shorthand I(t) = I(t, x0, x1)
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Stochastic Interpolants: Generative Model

Prop.

• Loss is directly estimable over 


• Generative model connects any two densities


• Likelihood and sampling available via fast ODE integrators 


• Loss bounds Wasserstein-2 between  and  (Gronwall)

ρ0, ρ1

ρ(1, x) ρ1

Generative model ·Xt(x) = b(t, Xt(x))

MSA & Vanden-Eijnden  arXiv:2209.15571 (2022); 
Liu et al. arXiv:2209.03003 (2022); 
Lipman et al. arXiv:2210.02747 (2022)

 is the minimizer of b(t, x)

L[b̂] = ∫
1

0
𝔼ρ(x0,x1) [ | b̂(t, x(t)) − ∂tI(t) |2 ] dt

using shorthand I(t) = I(t, x0, x1)

“Flow matching”



October 24, 2024 42

Correspondence between deterministic and stochastic maps

Why go through this derivation? To stress that the mathematics of 
learning flows and diffusions by regression is the same, and learning one 

often defines learning the other

Deterministic

Both processes have the same distribution in law, how are they 
different?
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Why go through this derivation? To stress that the mathematics of 
learning flows and diffusions by regression is the same, and learning one 

often defines learning the other
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Both processes have the same distribution in law, how are they 
different?
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Unifying flow-based and diffusion-based generative models
MSA & Vanden-Eijnden  (ICLR 2023) 2209.15571  

MSA & Boffi, Vanden-Eijnden  (JMLR 2024) 2303.08797 
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Unifying flow-based and diffusion-based generative models
MSA & Vanden-Eijnden  (ICLR 2023) 2209.15571  

MSA & Boffi, Vanden-Eijnden  (JMLR 2024) 2303.08797 

Transport equation

ODE

∂tρ + ∇ ⋅ (bρ) = 0

d
dt

Xt = b (t, Xt)

Learn b̂
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Unifying flow-based and diffusion-based generative models
MSA & Vanden-Eijnden  (ICLR 2023) 2209.15571  

MSA & Boffi, Vanden-Eijnden  (JMLR 2024) 2303.08797 

Transport equation

ODE

∂tρ + ∇ ⋅ (bρ) = 0

d
dt

Xt = b (t, Xt)

Learn b̂

Fokker-Planck Equations

SDE

∂tρ + ∇ ⋅ (bF/Bρ) = ϵΔρ
where bF/B = b ± ϵs

Learn b̂F/B

dXF/B
t = bF/B (t, XF

t ) dt + 2ϵdWF/B
t
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Bounding the KL between  and ρ ̂ρ
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Bounding the KL between  and ρ ̂ρ

If  the density pushed by estimated 
deterministic dynamics , then

̂ρ
b̂

KL(ρ(1)∥ ̂ρ(1)) = ∫
1

0 ∫ℝd

(∇log ̂ρ − ∇log ρ) ⋅ (b̂ − b)ρ dx dt
matching ’s does not 

bound KL, Fisher is 
uncontrolled by small error 

in 

b

b̂ − b

∂t ̂ρ + ∇ ⋅ (b̂ ̂ρ) = 0
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Bounding the KL between  and ρ ̂ρ

If  the density pushed by estimated 
deterministic dynamics , then

̂ρ
b̂

KL(ρ(1)∥ ̂ρ(1)) = ∫
1

0 ∫ℝd

(∇log ̂ρ − ∇log ρ) ⋅ (b̂ − b)ρ dx dt
matching ’s does not 

bound KL, Fisher is 
uncontrolled by small error 

in 

b

b̂ − b

∂t ̂ρ + ∇ ⋅ (b̂ ̂ρ) = 0

If  the density pushed by estimated 
stochastic dynamics , 
then

̂ρ
b̂F = b̂ + ϵs

KL(ρ(1)∥ ̂ρ(1)) ≤
1
4ϵ ∫

1

0 ∫ℝd

b̂F − bF

2
ρ dxdt

 does control KL 
divergence

b̂F − bF

∂t ̂ρ + ∇ ⋅ (bF ̂ρ) = ϵΔ ̂ρ
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Benefits and Challenges of dynamical measure transport

Access to likelihoods Essential for many 
scientific applications

Regression objectives Contemporary losses are 
functionally convex!

Iterative sampling can be slow One to few sampling would 
be ideal

Formulation for discrete data? Many proposals, no final 
picture
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Map matching a discrete diffusion

Directly learning the 1 to few step flow map

Can be done with a two-time flow map Xs,t(xs) = xt

“consistency models”
“map matching”

Discrete diffusion: 

What’s the best way to parameterize a discrete 
time markov process?

Graph? Masking? 

Iterative denoising? Gat et al arXiv:2407.15595 



October 24, 2024 46

Map matching a discrete diffusion

Directly learning the 1 to few step flow map

Can be done with a two-time flow map Xs,t(xs) = xt

“consistency models”
“map matching”

Discrete diffusion: 

What’s the best way to parameterize a discrete 
time markov process?

Graph? Masking? 

Iterative denoising? Gat et al arXiv:2407.15595 



October 24, 2024 47

Thank you!



Backup slides

48
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Interpolant applications backup slides
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Summary of Context and Applications

Generative modeling Domain Adaptation

Ex. Image generation 
Ex. Statistical physics 

Ex. Translation 
Ex. Superresolution

Forecasting

Ex. Climate/weather 
Ex. Dynamical systems

We will use the design flexibility of the interpolant and the 
coupling between  to approach various problemsx0, x1
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Example: Interpolants for image generation
MSA & EVE  (ICLR 2023) 2209.15571; 

NM, MG, MSA, NB, EVE, SX (ECCV 2024) 2401.08740 

Systematic improvements to 
methods underlying, e.g. 

Sora (OpenAI, 2024)

Frechet Inception Distance

200k 600kEpochs

1x

2x

Freedom to choose  in: α, β
x(t) = α(t)x0 + β(t)x1

Freedom to choose  in: ϵ(t)
dXF

t = bF dt + 2ϵ(t)dWF
t

to reduce transport cost:

C[b] = ∫
1

0
𝔼[ |b(t, x) |2 ]dt

to tighten bounds on:

DKL( ̂ρ1 | |ρ1)
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Example: Data-dependent coupling

What if one  is coupled to another ?x0 x1

In-painting Super-resolution
 a masked imagex0

ρ(x0, x1) = ρ1(x1)ρ0(x0 |x1)

 a low-res imagex0

 invariant in unmasked areasb(t, x)  now proximal to its targetx0

MSA, MG, NB, RR, EVE (ICML 2024 Spotlight) 2310.03725  
MSA, NB, ML, EVE (ICLR 2024) 2310.03695

Frechet Inception Distance

More efficient and better performance across tasks
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Example: Probabilistic forecasting

Interpolants for ensembles of future events
ρ(x0, x1) = ρ0(x0)ρ1(x1 |x0)

YC, MG, MH, MSA, NB, EVE arXiv:2402. (2024)

Navier Stokes

Map  to distribution  ωt ρ(ωt+τ |ωt)

Video completion

Map  to distribution  xt ρ(xt+1 |xt−τ:t)

Roll out subsequent frames

Ensemble of ωt+2
ωt Enstrophy

k

Evolution of the vorticity ω

Choose NS w/ random forcing 
that has invariant measure

Real Prediction Prediction
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Example: Probabilistic forecasting

Interpolants for ensembles of future events
ρ(x0, x1) = ρ0(x0)ρ1(x1 |x0)

YC, MG, MH, MSA, NB, EVE arXiv:2402. (2024)

Navier Stokes

Map  to distribution  ωt ρ(ωt+τ |ωt)

Video completion

Map  to distribution  xt ρ(xt+1 |xt−τ:t)

Roll out subsequent frames

Ensemble of ωt+2
ωt Enstrophy

k

Evolution of the vorticity ω

Choose NS w/ random forcing 
that has invariant measure

Real Prediction Prediction
Introduces a new family of interpolant Follmer processes — least 
cost stochastic transport with respect to a reference measure.

Gives tighter control on KL-divergence
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Map Matching Backup slides
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space

tim
e

t = 0

t = 1

X0,0(x) = x

Xs,t(xs)

X0,s(x)

56

Making sense of the flow map

The two-time flow map Xs,t

Given an ordinary differential equation of the form

·xt = bt (xt), xt=0 = x0 ∼ ρ0

The two-time flow map is an arbitrary integrator from  to s t

Xs,t(xs) = xt
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Properties of the flow map

Semi-group property Xt,τ(Xs,t(x)) = Xs,τ(x) composable

Xt,s(Xs,t(x)) = x invertible

Xs,s(x) = x stationarity
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What dynamical equations does the flow map satisfy?

Lagrangian Equation ( )∂
∂t

∂tXs,t(xs) = ·xt = bt(Xs,t(x)) ∂tXs,t(x) = bt(Xs,t(x))

 is the unique 
solution of

Xs,t(x)

Eulerian Equation ( )∂
∂s

∂sXs,t(x) + ∇Xs,t(x) ⋅ bt(x) = 0
d
ds

Xs,t((Xt,s(x)) = 0

= ∂sXs,t(Xt,s(x))
+bt(Xs,t(Xt,s(x)) ⋅ ∇Xs,t(Xt,s(x))

Xs,s(x) = x

Xt,t(x) = x

Can we use these equation to design objectives for learning ? Xs,t
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Map Matching

Can we use these equation to design objectives for learning ? Xs,t

Learning the flow map
Direct learningDist

illa
tio

n

Learn from existing bt(x) Learn from data x1 ∼ ρ1

Lagrangian Map Distillation (LMD)
Eulerian Map Distillation (EMD)

Flow Map Matching (FMM)

x1bt(x)

Boffi, MSA, Vanden-Eijnden arXiv:2406.07507
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Lagrangian Map Distillation (LMD)

Prop.
The flow map  is the global minimizer of Xs,t

LLMD(X̂) = ∫[0,T]2 ∫ℝd

∂tX̂s,t(x) − bt (X̂s,t(x))
2

ρs(x)dx ds dt

subject to .Xs,s(x) = x

• PINN loss - minimized only when integrand is zero
•  any known drift, for example previous trained flow modelbt(x)

Ansatz
X̂s,t(x) = (1 − (t − s))x + (t − s)f θ

s,t(x)

Tutorial!

https://tinyurl.com/lagrangian-map

https://tinyurl.com/lagrangian-map
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Eulerian Map Distillation (EMD)

Prop.
The flow map  is the global minimizer of Xs,t

LEMD(X̂) = ∫[0,T]2 ∫ℝd

∂sX̂s,t(x) + bs(x) ⋅ ∇X̂s,t(x)
2

ρs(x) dx ds dt

subject to .Xs,s(x) = x

• PINN loss - minimized only when integrand is zero
•  any known drift, for example previous trained flow modelbt(x)

Ansatz
X̂s,t(x) = (1 − (t − s))x + (t − s)f θ

s,t(x)

Tutorial!

Coming soon….
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Flow map matching (FMM)

Prop.
The flow map  is the global minimizer of Xs,t

where  is an interpolant with . It Law(It) = ρt

• Depends solely on  and interpolant X̂s,t It

Ansatz
X̂s,t(x) = (1 − (t − s))x + (t − s)f θ

s,t(x)

Tutorial!

https://tinyurl.com/map-match

LFMM[X̂] = ∫[0,1]2

𝔼 [ ∂tX̂s,t (X̂t,s (It)) − ·It

2

] + 𝔼 [ X̂s,t (X̂t,s (It)) − It

2

] dsdt

• First term ensures Lagrangian equation, second term semigroup.

https://tinyurl.com/map-match
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How do they compare?

2D checkerboard distribution

One to few step map matching and 
Lagrangian distillation on par with 

80-step interpolant
Eulerian Map Distillation struggles
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How do they compare?

103 105

Training Step

101

102

103

Lo
ss

LMD, ImageNet-32x32
EMD, ImageNet-32x32

LMD, CIFAR10
EMD, CIFAR10

100000 200000
Training Step

20

40

60

80

100

1-
st

ep
FI

D

May 21, 2024

SI

LMD

EMD

PFMM

<latexit sha1_base64="xs8X4xjj7oqQObuVxG/Wx1o9QpY="></latexit>

N = 16
<latexit sha1_base64="myhtRxCyBr8dQkz0MwtvAIWLjO4=">AAAD1XichZLNbtNAEMe3CR8lfDSFIxeLCAkhE9lJU8IBqQIkuAAFkaZSHEXr9cRZZe21dtclxvINceUBuMKV9+FtGKeuRGIEK63118xvZscz4yeCa+M4v3YazUuXr1zdvda6fuPmrb32/u0TLVPFYMSkkOrUpxoEj2FkuBFwmiigkS9g7C+fl/7xGSjNZfzBZAlMIxrGfM4ZNWiatfc8Ayvjz/M31lOr3ytm7Y7TddbHqgu3Eh1SnePZfuOnF0iWRhAbJqjWE9dJzDSnynAmoGh5qYaEsiUNYRKc8UTHNAI9zVfr4gvrPvoDay4V3thYa+ufQTmNtM4iH8mImoXe9pXGv/p8RZdgNgrIGY0ZiOJ/3CQ18+E053GSGojZeZHzVFhGWmUXrYArYEZkKChTHH/VYguqKDPY680KRSgRWESbjxq+/FS3POoHiZBVLaVBcKxOZXkATKr1yHQ3omrJ41AX2+8kGlIchQyw6y3vBeA4FLzGvrxNAIOleph7VIURXRU4ntCzS/UvkMcXICpMGcAc12w9oZymfqrQr0K/yJ3uQd/GNem55dctNtEo80UKRf7+5TNEbffwid3r16EMhJAfK6w3QHA4sN1BjQsVQFxhwzLdEG8dUxBc5OpjHsexhwi1Wrjh7vY+18VJr+sedgfvDjpHvWrXd8ldco88IC55TI7IK3JMRoSRlHwj38mP5rhZND83v5yjjZ0q5g7ZOM2vvwG180MI</latexit>

N = 32
<latexit sha1_base64="LWeqg0tLZGGn8MHntWPM6i+wCfs="></latexit>

N = 64

FMM

Lagrangian distillation converges 
faster than Eulerian

Produce samples in much fewer steps 
than through solving the ODE (SI)

Does this make sense theoretically? What can we say about the loss 
functions
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Wasserstein Control on Distillation Losses

Lagrangian Bound Eulerian Bound

W2
2(ρb

1 , ̂ρ1) ⩽ e1+2 ∫1
0 Ct dtLLMD(X̂) W2

2(ρb
1 , ̂ρ1) ⩽ eLEMD(X̂)

Let  and . Then the squared Wasserstein 
distance  satisfies

ρb
1 = X0,1#ρ0 ̂ρ1 = X̂0,1#ρ0

W2
2(ρb

1 , ̂ρ1)

Eulerian bound much tighter!

• Bringing  and  to same value would imply better learning for EMDLLMD LEMD

• But empirically, optimization is harder! Bounds useful, but don’t tell whole story.


