State of generative modeling
and the sciences

According to me | guess!

Michael Albergo ML Sampling Workshop, Bonn  October 24, 2024
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How does one even begin to summarize this?

I’'m supposed to give you an overview of generative models...

e Of course this will be biased by my opinions!

o | will caveat any claims by this fact :) hopefully spurs some discussion

The various factors influencing me how to do this
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Problem Motivation: Complexity all around

The social and natural worlds are replete with complex
structure that often has a probabilistic interpretation

Social: abundance of data

‘ (2024): “A flower growing
out on the windowsill”




Problem Motivation: Complexity all around

The social and natural worlds are replete with complex
structure that often has a probabilistic interpretation

Social: abundance of data

‘ (2024): “A flower growing
out on the windowsill”




Problem Motivation: Complexity all around

The social and natural worlds are replete with complex
structure that often has a probabilistic interpretation

Social: abundance of data

‘ (2024): “A flower growing
out on the windowsill”

Natural: limited data, but theory

Molecular
conformation

Forecasting



The social and natural worlds are replete with complex
structure that often has a probabilistic interpretation

Social: abundance of data

October 24, 2024

Natural: limited data, but theory

XN
0,0,‘
SN

Quantum Thgory

Molecular
conformation

Forecasting




The social and natural worlds are replete with complex
structure that often has a probabilistic interpretation

Social: abundance of data

October 24, 2024

Natural: limited data, but theory

XN
0,0,‘
SN

Quantum Thgory

Molecular
conformation

Forecasting




The social and natural worlds are replete with complex
structure that often has a probabilistic interpretation

Social: abundance of data

October 24, 2024

Natural: limited data, but theory

XN
0,0,‘
SN

Quantum Thgory

Molecular
conformation

Forecasting




The social and natural worlds are replete with complex
structure that often has a probabilistic interpretation

Social: abundance of data

October 24, 2024

Natural: limited data, but theory

XN
0,0,‘
SN

Quantum Thgory

Molecular
conformation

Forecasting




The social and natural worlds are replete with complex
structure that often has a probabilistic interpretation

Social: abundance of data

October 24, 2024

Natural: limited data, but theory

XN
0,0,‘
SN

Quantum Thgory

Molecular
conformation

Forecasting




The social and natural worlds are replete with complex
structure that often has a probabilistic interpretation

Social: abundance of data

October 24, 2024

Natural: limited data, but theory

XN
0,0,‘
SN

Quantum Thgory

Molecular
conformation

Forecasting




Goal: estimate the unknown probability density function p; € (L) either through:

1. sample data {x;}’_, (Generative modeling)
2. qQuery access to the unnormalized log likelihood (Sampling)
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Framing the dual probabilistic problems

Goal: estimate the unknown probability density function p; € D(L2) either through:

1. sample data {x;}’_, (Generative modeling)
2. qQuery access to the unnormalized log likelihood (Sampling)

Historical development

John J. Hopfield Geoffrey E. Hinton

“for foundational discoveries and inventions
that enable machine learning

with artificial neural networks”

THE ROYAL SWEDISH ACADEMY OF SCIENCES

vQ VAE
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Framing the dual probabilistic problems

Goal: estimate the unknown probability density function p; € D(L2) either through:

1. sample data {x;}’_, (Generative modeling)
2. qQuery access to the unnormalized log likelihood (Sampling)

Historical development

. . piffusion
Adversarial learning

Variational learning Autoregressive learning”

Measure transport

4 perspectives that dominate contemporary GM



Goal: estimate the unknown probability density function p; € (L) either through:
1. sample data {x;}’_, (Generative modeling)

2. qQuery access to the unnormalized log likelihood (Sampling)
Historical development
- Adversarial learning

Variational learning Autoregressive learning®

Measure transport
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Agenda

Goal: estimate the unknown probability density function p; € D(L2) either through:

1. sample data {x;}’_, (Generative modeling)
2. qQuery access to the unnormalized log likelihood (Sampling)

Historical development

Adversarial learning

Variational learning Autoregressive learning*

Measure transport

A quick introduction to each of these topics

- a retrospective on the pros/cons of each, and what we’ve
learned from these various perspectives

* how aspects of each of these tools are used today, in form or another!

My claim: ultimately, we evaluate these methods on measure theoretic
quantities, and we should therefore being building tools from the measure
transport perspective. There’s a lot of evidence of this now!



Generative Adversarial Learning (2014)

Implicit Generative Model

Picture this: It’'s 2014 and standard approaches to optimizing your generative
models (maximum likelihood estimation) are hard!

Two player game idea: what if | instead have two neural networks train each other?

learn to sample p; with learn to discriminate real
generator G(z) = X; ~ p, samples from fake D(x or X)

Real/fake

— [0,1]
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Generative Adversarial Learning (2014)

Implicit Generative Model

Learning:

L[G,D] = min max [k, [log D(x)] + E 5 log(l — D(x)))]

G D
Discrimingtor maximizes: Generator minimizes:
wants p(xl) = | and wants D(X,) = 1 (tricks
D)) =0 discriminator)

A theoretically motivated minimax game:

+1f D can represent any function, then finding G* amounts to
minimizing a Jensen-Shannon divergence (like symmetrized KL)

- Lots of research into changing the “log” functions to minimize
other divergences!

* Allows scale for probabilistic modeling “without likelihoods”



Benefits and Challenges in GAN learning

Fast, expressive sampling One step, unstructured maps

Not diffeomorphisms, so latent space

Interpretable latent space meaningfully lower dimensional

no mixing “crochet”

llfu r"
| | ’ " »
.l [ ‘ | / |
“a cube I , I I l
" ‘ ‘ <X , ( ‘
N -\\ 4

“denim” “brick”

LW  on tabletop o, g
VTS

.

“a ball
on tabletop”

Learning can be unstable because of
sensitivity of equilibria in two-player game
Lots of follow-up research into this!

No explicit likelihood Likelihoods are preferable for sciencel!

Minimax optimization



GAN Outlook

Nonetheless, can still be remarkably powerful when tuned carefully

https://mingukkang.github.io/GigaGAN/ (2023)

Upsampled by GigaGAN (4K)

A photo of a ramen taken from an angle, with some background.

Images generated in 0.13 seconds!


https://mingukkang.github.io/GigaGAN/

Variational Learning

Variational Autoencoders: Making auto-encoding probabilistic!

Representation Learning Generative modeling

Autoencoding framework: encode images to a lower dim representation 7

x € R4 - Encode Z Decode xe R

z € R”"

E(x) : R > R” D(x): R" > R4

Useful for representation learning! How to make it probabilistic?



Variational Learning

Variational Autoencoders: Making auto-encoding probabilistic!

Representation Learning Generative modeling

Variational framework: encode a posterior distribution g(z | x) for each

input x
New 7
U
Encode Z Decode
>
z ~ N(u, 2)
x = q(z]x) z = q(x|z2)

Reconstruct original input, but regularize latent space to be Gaussian so
you can sample a space with structure!



Variational Learning

Variational Autoencoders: Making auto-encoding probabilistic!

Representation Learning

minE_ [ |x — D()|°]

H
Encode .

Generative modeling

Dy (q(z|x) || p(z| x))

New 7

Z Decode

z~ N(u, 2)

x = q(z]| x)

z = q(x|2)

Reconstruct original input, but regularize latent space to be Gaussian so
you can sample a space with structure!



Rich latent representations

Generative modeling in latent
space an essential ingredient
for large scale methods

tons of research into improving
latent representations

Sora: Origami sea creatures

Subpar generative models on their own

trade-offs between image
reconstruction (expressivity)
and latent space structure
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A direct maximum likelihood approach?

The transport framework

e Take a simple base density p, (e.9. Gaussian) and;

e Build a (reversible) map T : Q — Q such that the pushforward of py by Tis p;:  Thpy = p;

’, id ~
, Ry . N
. N ’ Y
’ \ 4 \
] \ ! \
1 \ I' \
l 0o . 1
\ 3 3 ]
7 ’
\ Wy ¥ ’
. Y A ’
. ’ \\ ’

»~

Likelihood under p(1) given by: p(x;) = pO(T_l(x)) det[ VT~ '(x)]
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The transport framework
e Build a (reversible) map T : Q — Q such that the pushforward of p(0) by Tis p(1):  T#p(0) = p(1)

-, L4 ~
. \\ v ~
’ N 4 .
’ \ 4 \
1
1] \ \
1 \ I' \
I 0 y k 1 I
! 1 ) 1
‘\ 4 \ ,'
\ ,' A ’
. . S .
~

Seoo-"

Likelihood: p;(x) = po(T~1(x)) det[ VT 1(x)]

For parametric YA"(x) to be useful

o det| VYA’_l(x)] to be tractable
:> Tradeoff

e T(x) maximally unconstrained

October 24, 2024 57



Problem Setup

The transport framework

How do we harness measure transport for these
various tasks in probabilistic modeling? How do we
learn these maps?



Series of discrete transforms

I’ learned sequentially

Chen & Gopinath, NeurlPS 13 (2000);

Tabak & V.-E., Commun. Math. Sci. 8: 217-233 (2010);
Tabak & Turner, Comm. Pure App. Math LXVI, 145-164
(2013).

T, structured invertible NNs

NICE: Dinh et al. arXiv:1410.8516 (2014);

Real NVP: Dinh et al. arXiv:1605.08803 (2016)
Rezende et al., arXiv:1505.05770 (2015);
Papamakarios et al. arXiv:1912.02762 (2019); ...
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Series of discrete transforms

det[ VT~ (x)] tractable, but too constrained?

I’ learned sequentially

Chen & Gopinath, NeurlPS 13 (2000);

Tabak & V.-E., Commun. Math. Sci. 8: 217-233 (2010);
Tabak & Turner, Comm. Pure App. Math LXVI, 145-164
(2013).

T, structured invertible NNs

NICE: Dinh et al. arXiv:1410.8516 (2014);

Real NVP: Dinh et al. arXiv:1605.08803 (2016)
Rezende et al., arXiv:1505.05770 (2015);
Papamakarios et al. arXiv:1912.02762 (2019); ...

k = oo

T solution of

continuous time flow
FFJORD: Grathwohl et al. arXiv:1810.01367 (2018)

October 24, 2024

3 1
. ,/
h .

N .-

29

1% po i
. P1
T T}, “ Tiq1 Tk A
_1 abt
oedet[ VI ' (x)] —» Tr[ ]

ox(1)
e estimable via Skilling-Hutchinsion O(D)

e integrable with Neural ODEs

103
128



X, flow map given by velocity field b(%, x) //,,/f/// / //

///,// ///

// // //, // /
,i’//ﬁ//////;,i/// /
/ \ / ////// /
\ iy
;( E Rd AW ‘\\ ////?//4 / /’//// 74
X) = .x \\\\\\\\‘ /)
t:O( . \\\\\ \ y Z

Xt(x) = D(t, X,(x))

space

3t 50
October 24, 2024 30



X1 =

X, flow map given by velocity field b(%, x) p1

//////

X _o(x) =x € R?
X (x) = b(t, X (x))

space

At the level of the of the distribution, how does p(t, x) evolve?

Transport atp(t, x)+ V- (b(t, x)p(t, x)) =0, pt=0,-)= £o

equation

If p(¢) solves TE, then p(t = 1, ) = p,
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X, flow map given by velocity field b(%, x)

X _o(x) =x € R?
Xt(x) = b(t, X,(x))

space

At the level of the of the distribution, how does p(t, x) evolve?

Transport atp(t, x)+ V- (b(t, x)p(t, x)) =0, pt=0,-)= £o

equation

If p(¢) solves TE, then p(t = 1, ) = p,

Benamou-Brenier theory says that How to find a sufficient
b(t, x) exists (assuming Lipschitz) b(t, x) to map p, to p,?

October 24, 2024 32 ey



1

One approach: find b(¢, x) via 1Y (x)) = ex ( _J V. bt X dt)
maximum ||ke||h00d ,0( ’ 1( )) ,OO(X) P ) (a t(x))
FFJORD: Grathwohl et al. arXiv:1810.01367 (2018)

p1(x) ]
p(1, x)

= min— E, |log p(1, )| + C

min KL(p, | |p(1)) = min E, [log
b

e D(t,x) parametrized as neural network

e adjoint method (Neural ODE) allows for gradient wrt parameters of b
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p1(x) ]
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e adjoint method (Neural ODE) allows for gradient wrt parameters of b

x Loss involves integrating the ODE
x Many paths from p, to p,
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FFJORD: Grathwohl et al. arXiv:1810.01367 (2018)

p1(x) ]
p(1,x)

= min—E, [logp(1, 0| +C ¥

min KL(p, | |p(1)) = min E, [log
b

e D(t,x) parametrized as neural network

e adjoint method (Neural ODE) allows for gradient wrt parameters of b

x Loss involves integrating the ODE
x Many paths from p, to p,

Is there a simpler paradigm for learning b(¢, x)?
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Is there a simple paradigm for learning b(¢, x)?

Dream scenario: figure out a way to perform regression on the velocity field

=1
min [ | b(t, x) — b(t, x) | p(t, x)dxdt
b Ji=0

Problems:

- Don’t have a fixed b(¢, x) to regress on

- Don’t have a p(t, x) to sample from!

How can we work exactly on ¢ € [0,1] with arbitrary p, and p,,
build a connection between them, and get the velocity b(t, x) directly?

October 24, 2024 34 B



Song et al. arXiv:2011.13456 (2021);
Sohl-Dickstein et al arXiv:1503.03585 (2021);
Hyvarinen JMLR 6 (2005);

Vincent, Neural Comp. 23, 1661 (2011)

Map x; ~ p, to Gaussian p, via
. “A brain riding a rocket ship headed toward
Ornstein-Uhlenbeck (OU) Process the moon.” Imagen, Saharia et al 2205.11487

dX, = — Xdt++/2dW,, X,=x,

1~

SDE  dXP=—-Xdt+ Viogp(t,X)dt +1/2dW, X, =x,
ODE b(t,x) = x — Vlog p(t, x)

Access to the score s(t,x) = Vlog p(t, x) allows one to
simulate the reverse process as a generative model
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Song et al. arXiv:2011.13456 (2021);
Sohl-Dickstein et al arXiv:1503.03585 (2021);
Hyvarinen JMLR 6 (2005);

Vincent, Neural Comp. 23, 1661 (2011)

Map x; ~ p, to Gaussian p, via
. “A brain riding a rocket ship headed toward
Ornstein-Uhlenbeck (OU) Process the moon.” Imagen, Saharia et al 2205.11487

dX, = — Xdt++/2dW,, X,=x,

SDE dXB = — X, dt + Vlog p(t, X)) dt + /2 dW,, X, = x,

ODE b(t,x) = x — Vlog p(t, x)

We can regress using the Ornstein-Uhlenbeck path. But this path
emerges from a carefully chosen SDE. Can we do something simpler?
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. MSA & Vanden-Eijnden arXiv:2209.15571 (2022);
Interpolant Function I(#, xy, x;)
- A function of x,, x;, and time # with b.c.’s: [_y = xgand [,_; = x;

- Example: I(t, xy, x;) = (1 — D)xy + 1x,

SUtht,t: 0.0

If X, x; drawn from some p(x, X;),
then I(¢, xy, x;) is a stochastic
process which samples /, ~ p(¢, x)

t=0.0

Interpolant Density What fixes p(z, x) !

1. Choice of coupling: how to sample X, x;
p(l‘, X) = [E,D(Xo,x1) [5 (x — I(t, X0 Xl))] simple example: p(xg, x;) = po(xg)p1(x1)
2. Choice of interpolant (¢, xy, x;):

October 24, 2024 37 g
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. MSA & Vanden-Eijnden arXiv:2209.15571 (2022);
Interpolant Function I(#, xy, x;)
- A function of x;, x;, and time f with b.c.’s: I,_y = xpand [,_; = x;

- Example: (¢, xy, x;) = (1 — )xy + 1x;

SUtht,t: 0.0

If X, x; drawn from some p(x, X;),
then I(¢, xy, x;) is a stochastic
process which samples /, ~ p(¢, x)

‘ | | | | |
t=0.0
Interpolant Density Can sample p(?,x)!
=1 R
p(t,x) = (o)) [5 (x — 1(t, x,, xl))] mjnJ | b(t, x) — b(t, x) |2 p(t, x)dxdt
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Stochastic Interpolants: what is b(?, x)?

Interpolant Function I(z, x, x;) o=l . ,
min | b(t, x) — b(t, x) |~ p(t, x)dxdt
- Example: I(z, x4, x;) = (1 — D)xy + 1x, b J.—o

. when xy, x; ~ p(xg, X1), 1, ~ p(¥)
We have samples [, ~ p(1, x) via the interpolant, but what is b(#, x)?
Definition
The p(t, - ) of x, satisfies a transport equation

op+ V- (bt,x)p) =0, pt=0,-)=p,

and b(t, x) is given as the conditional expectation

b(t,x) = E[0,I(¥) | I(r) = x]

prove with characteristic function, sketch in backup slides.



Stochastic Interpolants: Simple Objective

=1
InAinJ | l;(t, x) — b(t, x) |2 p(t, x)dxdt

b Ji=0 plug in definition of
t=1 X b(t, x)
mjn[ J |E[0.1(2) | I(¥) = x] — b(¢, x) |2 p(t, x)dxdt
b Ji=0 JRd
El0.I(H | I(1) = t.x)=E 0.1(1 Note: definition of
JW OO 1) = xlp(t, 2) = ) [0 0)] conditional expectation

Prop.

b(t, x) is the minimizer of
1

L[b] = J E e 50 [|l§(t, x(1)) — 0,I(7) |2] dt
0

using shorthand I(¢) = I(z, xy, x;)



Stochastic Interpolants: Generative Model

MSA & Vanden-Eiinden arXiv:2209.15571 (2022);

“Flow matching 7 Liu et al. arXiv:2209.03003 (2022);
Lipman et al. arXiv.2210.02747 (2022)

Prop.

b(t, x) is the minimizer of
1

L[b] = [ E e 50 [|13(r, x(t)) — 0,I(t) |2] dt
0

using shorthand I(¢) = I(¢, xy, x;)

Loss is directly estimable over p,, p,

Generative model connects any two densities

Likelihood and sampling available via fast ODE integrators

Loss bounds Wasserstein-2 between p(1, x) and p; (Gronwall)

Generative model Xt(x) = b(t, Xt(x))



Correspondence between deterministic and stochastic maps

Why go through this derivation? To stress that the mathematics of
learning flows and diffusions by regression is the same, and learning one
often defines learning the other

ODE

L0

Time

Deterministic

Both processes have the same distribution in law, how are they
different?



Correspondence between deterministic and stochastic maps

Why go through this derivation? To stress that the mathematics of
learning flows and diffusions by regression is the same, and learning one
often defines learning the other

ODE SDE

po P0

Time
Time

Deterministic Stochastic

Both processes have the same distribution in law, how are they
different?



MSA & Vanden-Eijnden (ICLR 2023) 2209.15571
MSA & Boffi, Vanden-Eijnden (JMLR 2024) 2303.08797
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MSA & Vanden-Eijnden (ICLR 2023) 2209.15571
MSA & Boffi, Vanden-Eijnden (JMLR 2024) 2303.08797

Transport equation
dp+V-(bp)=0
ODE

d
EXt — b (t, Xt)

Learn IA9
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MSA & Vanden-Eijnden (ICLR 2023) 2209.1557'1
MSA & Boffi, Vanden-Eijjnden (JMLR 2024) 2303.08797

Transport equation Fokker-Planck Equations

0,p+ V- (b""p) = eAp

where bY'B = b + ¢5

dp+V-(bp)=0

ODE SDE
d
EXI =b (1, X,) dXF"® = by (1, XF) dt +/2edWF'P
5
Learn IA9 Learn ISF/B

October 24, 2024 43 ()
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If p the_dfen§|ty pushc_ed by estimated 0, s+ V- (bp) =0
deterministic dynamics b, then

1
KL = | | (Viogs = Viogp) - (b~ bypdra
0 JRd - ,
matching b’s does not
— bound KL, Fisher is
uncontrolled by small error

nb—>b
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If p the_dc_en_sﬂy pushc_ed by estimated 0, s+ V- (bp) =0
deterministic dynamics b, then

1
KL(p(1)[|p(1)) = J J (Vlogp — Viogp) - (b — bypdxds
0 JR matching b’s does not
~— bound KL, Fisher is

uncontrolled by small error

If p the density pushed by estimated nb—b
stochastic dynamics b = b + e€s, 0.p+V - (b¥p) = eAp
then
el . ,
KL(p(1)[[p(1)) < 4— bp — bp| pdxdt
CIOIRIT N— by, — by does control KL
divergence

.
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Benefits and Challenges of dynamical measure transport

Essential for many

Access to likelihoods scientific applications

Contemporary losses are

' jectiv :
Regression objectives functionally convex!

- = : By ‘& B 1
. 3N K
;__(.':_':7,’ o ar
- - . e %
\ AT ' AN
1 3 RO
{
y : o
o L7 -
RIS

‘ |

Ilterative sampling can be slow

One to few sampling would
be ideal

Many proposals, no final

- = 2 .
Formulation for discrete data® picture



Directly learning the 1 to few step flow map

Can be done with a two-time flow map
X, (x5) = X,
/\Xo‘,s X7 0 Xo,s X710 Xs7r0Xos ’

“consistency models”
“map matching”

. :
N ° XS,T o XO,S /0’1

Discrete diﬁUSion: def binary search(arr, x):

What's the best way to parameterize a discrete

time markov process? § 76 x e grester
Graph? Masking? # If x is smaller
else:
Iterative denoising? Gat et al arXiv:2407.15595
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Thank you!

October 24, 2024 47
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Generative modeling

4 )
_—
—>
—

\_ W,

Ex. Image generation
Ex. Statistical physics

Domain Adaptation

(| )
>
—
T

\ J

Ex. Translation
Ex. Superresolution

Forecasting

4 )

&

\_ ,
Ex. Climate/weather
Ex. Dynamical systems

We will use the design flexibility of the interpolant and the
coupling between X, x; to approach various problems

50



Example: Interpolants for image generation

MSA & EVE (ICLR 2023) 2209.15571;

-
[ —> } NM, MG, MSA, NB, EVE, SX (ECCV 2024) 2401.08740
—~—

Freedom to choose a, f in:
x(1) = a(t)xy + p(0)x;

to reduce transport cost:

1
_ 2 Model Params(M) Training Steps FID |
C[b] o J [E[ | b(t’ x) | ]dt Frechet Inception Distance ls)llTTSS gg jggﬁ ggf;
0 N ~ ors| DitB 130 400K 435
o 4 SiT-B 130 400K 33.5
"~ DiT-L 458 400K 233
SiT-L 458 400K 18.8
\ DiT-XL 675 400K 19.5
i SIT-XL 675 400K 17.2
Freedom to choose ¢(?) in: 1x DAL T VIR T
SIT-XL 675 ™ 8.6
200k Epochs 600k DITXL cris 75 — e
dXtF — bF dt + 4 /) 6( t) d WZ‘F SITXL s 675 ™ 2.06
to tighten bounds on: Systematic improvements to
Dy, (5, 110) methods underlying, e.g.
kL\P111P1 Sora (OpenAl, 2024)
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MSA, MG, NB, RR, EVE (ICML 2024 Spotlight) 2310.03725
MSA, NB, ML, EVE (ICLR 2024) 2310.03695

What if one X, is coupled to another x;?

p (X, X1) = pr(x)po(xg [ x1)

In-painting Super-resolution
X @ masked image Xy a low-res image

X now proximal to its target

Frechet Inception Distance

Model Train Valid
Improved DDPM (Nichol & Dhariwal, 2021) 12.26 -
SR3 (Saharia et al., 2022) 11.30 5.20
ADM (Dhariwal & Nichol, 2021) 7.49 3.10
Cascaded Diffusion (Ho et al., 2022a) 4.88 4.63
I?SB (Liu et al., 2023a) - 2.70
Dependent Coupling (Ours) 2.13 2.05

More efficient and better performance across tasks
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[ N:, t] YC, MG, MH, MSA, NB, EVE arXiv:2402. (2024)

Interpolants for ensembles of future events
P (X, X1) = po(xp)p1(xy | Xp)

Navier Stokes Ensemble of w,, ,

X ; “ N Ve;

Enstrophy

Evolution of the vorticity @

Map w, to distribution p(w,. .| ,)

Choose NS w/ random forcing
that has invariant measure

Video completion Real Prediction  Prediction
Map x, to distribution p(x,, ;| x,_..)

Roll out subsequent frames
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The two-time flow map X, /// A
g ()

.S

0.0(X) =X

space

Given an ordinary differential equation of the form
X, = b, <Xt>v Xi=0 = X0 ™~ Po

The two-time flow map is an arbitrary integrator from s to ¢

Xs,t(xs) = X
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Semi-group property X, (X (x)) = X, (x) composable

Xl‘,S(XS,t(X)) =X Invertible

X, 5(x) = x stationarity
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What dynamical equations does the flow map satisfy?

X; [(x) is the unique

. : 0
Lagrangian Equation (E) solution of

atXS,t(xs) — xt — bt(Xs,t(x)) anS,t(x) — bt(XS,t(x))
X, (X)) = x

Eulerian Equation (%)

d
E S,t((Xt,S(-x)) =0 dSXSJ(x) -+ VXS,t(_x) . bt(x) =)

— aSXs,z(Xt,s(x)) Xt,t(x) = X
+bt(XS,t(Xt,S(x)) ' VXS,t Xt,s(x))

Can we use these equation to design objectives for learning X ,?



Boffi, MSA, Vanden-Eijnden arXiv:2406.07507

Learning the flow map

Learn from existing b,(x) Learn from data x; ~ p,

Lagrangian Map Distillation (LMD)
Eulerian Map Distillation (EMD)

Flow Map Matching (FMM)

Can we use these equation to design objectives for learning X ,?
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Lagrangian Map Distillation (LMD)

Prop.

The flow map X , is the global minimizer of

LLMD(X ) = J [
(0,712 J R4

subject to X (x) = x.

2

0,X 5.4(X) — b, <)A( S,t(x)) p(xX)dx ds dt

* PINN loss - minimized only when integrand is zero
- b,(x) any known drift, for example previous trained flow model

Ansatz Tutorial!

X, () == (t—s)x+ @ —s)f? (x) https://tinyurl.com/lagrangian-map



https://tinyurl.com/lagrangian-map

Eulerian Map Distillation (EMD)

Prop.

The flow map X , is the global minimizer of

LEMD(X ) = J [
(0,712 J R4

subject to X (x) = x.

. . 2
0, X, (x) + by(x) - VX, ()| py(x)dxdsdt

* PINN loss - minimized only when integrand is zero
- b,(x) any known drift, for example previous trained flow model

Ansatz Tutorial!

)A(S,t(x) =1-0=-s)x+ (- s)ff,'t(x) Coming soon....



Flow map matching (FMM)

Prop.
The flow map X , is the global minimizer of
( B . ol i 2] \

Loy d X1 = J E +E
[0,1]° \

dsdt

where [, is an interpolant with Law(/,) = p..

- Depends solely on )A(SJ and interpolant /,

* First term ensures Lagrangian equation, second term semigroup.

Ansatz Tutorial!

X, () == (t—s)x+ @ —s)f? (x) https://tinyurl.com/map-match



https://tinyurl.com/map-match

2D checkerboard distribution

SI, N=380 FMM, N=1 FMM, N=4 PFMM, N=1 LMD, N=1 EMD, N=1
| DKL: 0.02 DKL: 0.107 DKL: 0.045 DKL: 0.043 DKL: 0.043

One to few step map matching and
Lagrangian distillation on par with Eulerian Map Distillation struggles
80-step interpolant
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=== | .MD, ImageNet-32x32 LMD, CIFAR10
=== EMD, ImageNet-32x32 EMD, CIFAR10

‘\‘:—80
é 1.
101—- . ‘\\\:—20

T T — T T T T T T T
103 107 100000 200000
Training Step Training Step

Loss

2
1-step FID

Produce samples in much fewer steps
than through solving the ODE (Sl)

Lagrangian distillation converges
faster than Eulerian

Does this make sense theoretically? What can we say about the loss
functions
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Wasserstein Control on Distillation Losses

Let pf = Xo.1#ppand p; = )A(O,l#po. Then the squared Wasserstein
distance sz(p1 , P1) satisfies

Lagrangian Bound Eulerian Bound

1 . A .
W2t p)) < e b lGlar (%) W2(p?, p1) < eLgypX)

\/

Eulerian bound much tighter!

- Bringing L; 3,p and Lg;,p to same value would imply better learning for EMD

- But empirically, optimization is harder! Bounds useful, but don’t tell whole story.



