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Neural samplers

p(ϕ) P(ϕ) = Z · p(ϕ)

q(ϕ|θ) ≈ p(ϕ)

w(ϕ) =
P(ϕ)

q(ϕ)

⟨w⟩q =

∫
dϕq(ϕ)w(ϕ) = Z

∫
dϕp(ϕ) = Z
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Partition function

Z ≈ Ẑ =
1

N

N∑
i=1

w(ϕi ), ϕi ∼ q(ϕi )

var
[
Ẑ
]
q

=
1

N
var [w ]q
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Importance sampling

⟨h⟩p =

∫
dϕp(ϕ)h(ϕ) =

∫
dϕq(ϕ)w(ϕ)h(ϕ) = ⟨w · h⟩q

w(ϕ) =
w(ϕ)

⟨w⟩q

⟨h⟩p ≈ ĥ ≡
∑N

i=1 w(ϕi )h(ϕi )∑N
i=1 w(ϕi )

ϕi ∼ q(ϕi )

Nicoli, K. A., et al. ”Asymptotically unbiased estimation of physical observables with neural samplers.” Physical

Review E, (2019) 101(2)
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Errors

var
[
ĥ
]
≈ 1

N

(〈
w2
〉
q

⟨w⟩2q
var [h]p +

〈
δwδ2h

〉
p

⟨w⟩q

)
1

N
var [w ] ≪ 1

var
[
ĥ
]
q
≈

var [h]p
N · ESS

A. Kong. A note on importance sampling using standarized weights. University of Chicago Technical Reports,

1992. Jun S. Liu. Metropolized independent sampling with comparisons to rejection sampling and importance

sampling. Statistics and Computing, 6: 113–119, 1996.
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Effective sample size - ESS

ESS =
⟨w⟩2q
⟨w2⟩q

=
⟨w⟩2q

var [w ]q + ⟨w⟩2q
=

1

var [w ]q + 1

ESS =
1

var [w̄ ]q + 1
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ϕ4 model

SA(ϕ|µ2, λ, κ) = −
L−1∑
i ,j=0

(ϕi+1,jϕi ,j + ϕi ,j+1ϕi ,j)

+
L−1∑
i ,j=0

(
µ2 + 4

2
ϕ2
i ,j +

λ

4!
ϕ4
i ,j

)

µ2 = −4, λ = 24.0 − 36.0
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Poorly trained network
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Magnetization λ = 27.0

ESS = 0.006%
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Weights distribution λ = 27.0
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Pareto and exponential distribution

p(w) = ab
b

wb+1
, w > a

x = logw

p(x) = abbe−bx , x ≥ log a
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logw distribution λ = 27.0
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logw distribution λ = 27.0
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Magnetisation
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Better trained network
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Magnetization λ = 27.0

ESS = 9%
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logw distribution λ = 27.0
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logw distribution λ = 27.0
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Magnetisation
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Disordered phase
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Magnetization λ = 36.0

ESS = 57%
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logw distribution λ = 36.0
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logw distribution λ = 36.0
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Quotients (uncorrelated variables)

w(ϕ) =
p(ϕ)

q(ϕ)

W =
X

Y
.

py (y) ≈ a · yb−1 y ≪ 1

pW (w) ≈ a′′

wb+1
1 ≫ w
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logw distribution λ = 27 (poorly trained)
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logw distribution λ = 27 (poorly trained)
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logw distribution λ = 27
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logw distribution λ = 27
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Summary

Importance weights seem to have a power like (Pareto)
distribution.

The power exponent depends on the training results.

Worst case (b < 2) appears to be associated associated with
”partial” mode collapse.

Similar results for Ising model, U(1) and Schwinger.
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Effective support

suppp,ϵ(q) = {ϕ ∈ supp(q) : q(ϕ) > ϵp(ϕ)}

=

{
ϕ ∈ supp(q) : w(ϕ) <

1

ϵ

}

”Detecting and Mitigating Mode-Collapse for Flow-based Sampling of Lattice Field Theories”, Kim A. Nicoli et al.

arXiv:2302.14082
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Software

NeuMC

https://github.com/nmcmc/nmcmc-code
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NeuMC

Physics models (2D)

Scalar fields
Gauge fields

Different plaquette coupling layers
Different masking patterns

Fermions (Schwinger model)

Gradients estimators

Reparameterisation trick
REINFORCE
Path gradients

Introductory notebooks

Albergo, M. S., et al., ”Introduction to Normalizing Flows for Lattice Field Theory.” arxiv.2101.08176
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