
SOLVATION FREE ENERGIES WITH NEURAL TI


23/10/2024

Bálint Máté,  François Fleuret,  Tristan Bereau

arXiv:2410.15815



MOTIVATION

2
Usolvent + Usolute

Usolvent + Usolute + Usolute−solvent



MOTIVATION

2
Usolvent + Usolute

Usolvent + Usolute + Usolute−solvent

1
Z0

e−β(Usolvent +Usolute)
1
Z1

e−β(Usolvent +Usolute+Usolute−solvent)



MOTIVATION

2
Usolvent + Usolute

Usolvent + Usolute + Usolute−solvent

1
Z0

e−β(Usolvent +Usolute)
1
Z1

e−β(Usolvent +Usolute+Usolute−solvent)

ΔF0→1 = β−1(log Z0 − log Z1) = ?
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• Two components:
• interpolating family of potentials

• samples from the equilibrium distributions of the interpolating potentials
• standard TI [Kirkwood, 1935]: 

• start with an interpolation of potentials 

• sample from the equilibrium distribution of those potentials

• Neural TI [Máté, Fleuret, Bereau, 2024]:

• start with a way of generating intermediate samples
• learn the corresponding equilibrium potentials
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• Stochastic interpolants [Albergo et al.]

• Example to keep in mind:  

•  xt = (1 − t)x0 + tx1 + σ(t)z

• By definition,  when  xt ∼ ρt(x) x0 ∼ ρ0, x1 ∼ ρ1, z ∼ 𝒩(0,1)

• We can learn  with Denoising Score Matching (DSM) if ∇log ρt σ(t) > 0

• To do TI, we will need an energy-based model, −∇Uθ
t ≈ ∇log ρt

Assuming that we have access to samples from the endpoint distributions, .x0 ∼ ρ0, x1 ∼ ρ1
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• TI relies on the temporal derivative: ΔF0→1 = ∫
1

0
dt⟨∂tU(t, x)⟩t

• During training we only need the spatial gradient ∇xU(t, x)

• 2 roles for :∂tU(t, x)

• rolling estimate of the free energy difference ̂ΔF0→1 = 𝔼t∼U([0,1]),x∼ρt[∂tU(t, x)]
• Carefully regularizing  to prevent it from exploding∂tU(t, x)2
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• 512 LJ solvent particles  in a box of size (σA, ϵA) 9σA × 9σA × 9σA

• + 1solute LJ-particle with (σB = 2σA, ϵB = 2ϵA)

• solute-solvent interactions: σAB = σA + σB

2 , ϵAB = ϵAϵB

• TI between two potentials:
• U0 = Usolvent (+Usolute)

• U1 = U0 + Usolute−solvent

• Ut(x) = bw
t Usolvent(x, aw

t ) + bws
t Usolvent−solute(x, aws

t ) + bV
t Vθ

t (x)
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• + solute molecule (water/methane)

• rigid molecules, the configuration space is [𝕋 3 × SO(3)]N

• LJ + Coulomb interactions

• 216 water molecules (TIP4P)
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• * if the domain is connected

•  is multimodal  disconnected domaine−βU ≈



CAN WE LEARN  BY OPTIMIZING  ?Ut ∇Ut

10

• If  everywhere, then  up to an additive constant,∇U = ∇Û U = Û
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