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o TWo components:

o interpolating family of potentials

o samples from the equilibrium distributions of the interpolating potentials
o standard TI |Kirkwood, 1935]:

o start with an interpolation of potentials

o sample from the equilibrium distribution of those potentials
o Neural TI [Maté, Fleuret, Bereau, 2024|:

o start with a way of generating intermediate samples

o learn the corresponding equilibrium potentials
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HOW DO WE GENERATE INTERMEDIATE SAMPLES?

Assuming that we have access to samples from the endpoint distributions, xy ~ pg, X; ~ py.

® Stochastic interpolants | Albergo et al. |

® Example to keep in mind:

o x,=( —0xy+tx;+ 0o()z
* By definition, x, ~ p,(x) when x, ~ pg, X; ~ p;,2 ~ N (0,1)
* We can learn Vlog p, with Denoising Score Matching (DSM) if o(z) > 0

e To do TI, we will need an energy-based model, — VU? ~ Vlog p,
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MAKING USE OF THE TEMPORAL DERIVATIVE

1

TI relies on the temporal derivative: AF|,_,; = j dt(o,U(t, x)),
0

* During training we only need the spatial gradient V, U(z, x)

* 2roles for 0, U(t, x):

» rolling estimate of the free energy difterence AFAO_)l = &, y([0.1]) x~p, [dtU (1, x)]

o Carefully regularizing 0,U(t, x) to prevent it from exploding
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512 LJ solvent particles(o,, €,) in a box of size 96, X 96, X 96,

+ 1solute Ll-particle with (65 = 20,4, €5 = 2¢€,)

: : 0y T+ Op
solute-solvent interactions: o, = ——, €4 = \/ €4€p

TI between two potentials:
UO = Usolvent (+ Usolute)

U1=UO+ US

olute—solvent

Ut(x) =b tW Usolvent(x9 atw ) +b tw S Usolvent—solute(x’ atw S) +b tV Vz‘e ()C)
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EXPERIMENT 2

® 216 water molecules (TIP4P)

®* + solute molecule (water/methane)

* rigid molecules, the configuration space is [T°> X SO(3)]"

® LJ + Coulomb interactions
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o U p, only locally

* if the domain is connected

e PV is multimodal ~ disconnected domain
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CAN WE LEARN U, BY OPTIMIZING VU, ?

e fVU=VU everywhere, then U = U up to an additive constant,

* *if the domain is connected

o ¢ PVis multimodal ~ disconnected domain

o U p, only locally

t =0.00 t =0.25 t =0.50 t =0.75 t =1.00
- ﬁ logZ = 0.715
= log Z = 0.716
O logZ = 0.735
log Z = 0.687
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