SOLVATION FREE ENERGIES WITH NEURAL TI Bálint Máté, François Fleuret, Tristan Bereau

EIT 1386

arXiv:2410.15815

MOTIVATION

$U_{\rm solvent} + U_{\rm solute} + U_{\rm solute-solvent}$

2

MOTIVATION

 $U_{\text{solvent}} + U_{\text{solute}} + U_{\text{solute-solvent}}$

2

MOTIVATION

2

• Two components:

• Two components:

• interpolating family of potentials

• Two components:

- interpolating family of potentials
- samples from the equilibrium distributions of the interpolating potentials

• Two components:

- interpolating family of potentials
- samples from the equilibrium distributions of the interpolating potentials
- standard TI [Kirkwood, 1935]:

• Two components:

- interpolating family of potentials
- samples from the equilibrium distributions of the interpolating potentials
- standard TI [Kirkwood, 1935]:
 - start with an interpolation of potentials

• Two components:

- interpolating family of potentials
- samples from the equilibrium distributions of the interpolating potentials
- standard TI [Kirkwood, 1935]:
 - start with an interpolation of potentials
 - sample from the equilibrium distribution of those potentials

• Two components:

- interpolating family of potentials
- samples from the equilibrium distributions of the interpolating potentials
- standard TI [Kirkwood, 1935]:
 - start with an interpolation of potentials
 - sample from the equilibrium distribution of those potentials
- Neural TI [Máté, Fleuret, Bereau, 2024]:

• Two components:

- interpolating family of potentials
- samples from the equilibrium distributions of the interpolating potentials
- standard TI [Kirkwood, 1935]:
 - start with an interpolation of potentials
 - sample from the equilibrium distribution of those potentials
- Neural TI [Máté, Fleuret, Bereau, 2024]:
 - start with a way of generating intermediate samples

• Two components:

- interpolating family of potentials
- samples from the equilibrium distributions of the interpolating potentials
- standard TI [Kirkwood, 1935]:
 - start with an interpolation of potentials
 - sample from the equilibrium distribution of those potentials
- Neural TI [Máté, Fleuret, Bereau, 2024]:
 - start with a way of generating intermediate samples
 - learn the corresponding equilibrium potentials

Assuming that we have access to samples from the endpoint distributions, $x_0 \sim \rho_0, x_1 \sim \rho_1$.

Assuming that we have access to samples from the endpoint distributions, $x_0 \sim \rho_0, x_1 \sim \rho_1$.

• Stochastic interpolants [Albergo et al.]

Assuming that we have access to samples from the endpoint distributions, $x_0 \sim \rho_0, x_1 \sim \rho_1$.

- Stochastic interpolants [Albergo et al.]
 - Example to keep in mind:

Assuming that we have access to samples from the endpoint distributions, $x_0 \sim \rho_0, x_1 \sim \rho_1$.

- Stochastic interpolants [Albergo et al.]
 - Example to keep in mind:

•
$$x_t = (1 - t)x_0 + tx_1 + \sigma(t)z$$

Assuming that we have access to samples from the endpoint distributions, $x_0 \sim \rho_0, x_1 \sim \rho_1$.

- Stochastic interpolants [Albergo et al.]
 - Example to keep in mind:

•
$$x_t = (1 - t)x_0 + tx_1 + \sigma(t)z$$

By definition, $x_t \sim \rho_t(x)$ when $x_0 \sim \rho_0, x_1 \sim \rho_1, z \sim \mathcal{N}(0, 1)$

Assuming that we have access to samples from the endpoint distributions, $x_0 \sim \rho_0, x_1 \sim \rho_1$.

- Stochastic interpolants [Albergo et al.]
 - Example to keep in mind:

•
$$x_t = (1 - t)x_0 + tx_1 + \sigma(t)z$$

• By definition, $x_t \sim \rho_t(x)$ when $x_0 \sim \rho_0, x_1 \sim \rho_1, z \sim \mathcal{N}(0,1)$

We can learn $\nabla \log \rho_t$ with Denoising Score Matching (DSM) if $\sigma(t) > 0$

Assuming that we have access to samples from the endpoint distributions, $x_0 \sim \rho_0, x_1 \sim \rho_1$.

- Stochastic interpolants [Albergo et al.]
 - Example to keep in mind:

•
$$x_t = (1 - t)x_0 + tx_1 + \sigma(t)z$$

- By definition, $x_t \sim \rho_t(x)$ when $x_0 \sim \rho_0, x_1 \sim \rho_1, z \sim \mathcal{N}(0,1)$
- We can learn $\nabla \log \rho_t$ with Denoising Score Matching (DSM) if $\sigma(t) > 0$
 - To do TI, we will need an energy-based model, $-\nabla U_t^{\theta} \approx \nabla \log \rho_t$

TI relies on the temporal derivative: $\Delta F_{0 \to 1} = \int_0^1 dt \langle \partial_t U(t, x) \rangle_t$

- TI relies on the temporal derivative: ΔF_{0}
- During training we only need the spatial gradient $\nabla_x U(t,x)$

$$_{\rightarrow 1} = \int_{0}^{1} dt \langle \partial_{t} U(t, x) \rangle_{t}$$

- TI relies on the temporal derivative: ΔF_{0}
- During training we only need the spatial gradient $\nabla_x U(t,x)$
- 2 roles for $\partial_t U(t, x)$:

$$_{\rightarrow 1} = \int_{0}^{1} dt \langle \partial_{t} U(t, x) \rangle_{t}$$

- TI relies on the temporal derivative: ΔF_{0}
- During training we only need the spatial gradient $\nabla_{x} U(t,x)$
- 2 roles for $\partial_t U(t, x)$:

$$_{\rightarrow 1} = \int_{0}^{1} dt \langle \partial_{t} U(t, x) \rangle_{t}$$

• rolling estimate of the free energy difference $\Delta \hat{F}_{0 \to 1} = \mathbb{E}_{t \sim U([0,1]), x \sim \rho_t} \left[\partial_t U(t,x) \right]$

- TI relies on the temporal derivative: ΔF_{0}
- During training we only need the spatial gradient $\nabla_{y} U(t, x)$
- 2 roles for $\partial_t U(t, x)$:

 - Carefully regularizing $\partial_t U(t, x)^2$ to prevent it from exploding

$$_{\rightarrow 1} = \int_{0}^{1} dt \langle \partial_{t} U(t, x) \rangle_{t}$$

• rolling estimate of the free energy difference $\Delta \hat{F}_{0 \to 1} = \mathbb{E}_{t \sim U([0,1]), x \sim \rho_t} [\partial_t U(t,x)]$

• 512 LJ solvent particles(σ_A, ϵ_A) in a box of size $9\sigma_A \times 9\sigma_A \times 9\sigma_A \times 9\sigma_A$

- 512 LJ solvent particles(σ_A, ϵ_A) in a box of size $9\sigma_A \times 9\sigma_A \times 9\sigma_A \times 9\sigma_A$
 - + 1solute LJ-particle with ($\sigma_B = 2\sigma_A, \epsilon_B = 2\epsilon_A$)

- 512 LJ solvent particles(σ_A, ϵ_A) in a box of size $9\sigma_A \times 9\sigma_A \times 9\sigma_A \times 9\sigma_A$
 - + 1solute LJ-particle with ($\sigma_B = 2\sigma_A, \epsilon_B = 2\epsilon_A$)
 - solute-solvent interactions: $\sigma_{AB} = \frac{\sigma_A + \sigma_B}{2}, \epsilon_{AB} = \sqrt{\epsilon_A \epsilon_B}$

- 512 LJ solvent particles(σ_A, ϵ_A) in a box of size $9\sigma_A \times 9\sigma_A \times 9\sigma_A \times 9\sigma_A$
 - + 1solute LJ-particle with ($\sigma_B = 2\sigma_A, \epsilon_B = 2\epsilon_A$)
 - solute-solvent interactions: $\sigma_{AB} = \frac{\sigma_A + \sigma_B}{2}, \ \epsilon_{AB} = \sqrt{\epsilon_A \epsilon_B}$
 - TI between two potentials:

- 512 LJ solvent particles(σ_A, ϵ_A) in a box of size $9\sigma_A \times 9\sigma_A \times 9\sigma_A \times 9\sigma_A$
 - + 1solute LJ-particle with ($\sigma_B = 2\sigma_A, \epsilon_B = 2\epsilon_A$)
 - solute-solvent interactions: $\sigma_{AB} = \frac{\sigma_A + \sigma_B}{2}, \ \epsilon_{AB} = \sqrt{\epsilon_A \epsilon_B}$
 - TI between two potentials:
 - $U_0 = U_{\text{solvent}} (+U_{\text{solute}})$

- 512 LJ solvent particles(σ_A, ϵ_A) in a box of size $9\sigma_A \times 9\sigma_A \times 9\sigma_A \times 9\sigma_A$
 - + 1solute LJ-particle with ($\sigma_B = 2\sigma_A, \epsilon_B = 2\epsilon_A$)
 - solute-solvent interactions: $\sigma_{AB} = \frac{\sigma_A + \sigma_B}{2}, \ \epsilon_{AB} = \sqrt{\epsilon_A \epsilon_B}$
 - TI between two potentials:
 - $U_0 = U_{\text{solvent}} (+U_{\text{solute}})$
 - $U_1 = U_0 + U_{\text{solute-solvent}}$

- 512 LJ solvent particles(σ_A, ϵ_A) in a box of size $9\sigma_A \times 9\sigma_A \times 9\sigma_A \times 9\sigma_A$
 - + 1solute LJ-particle with ($\sigma_R = 2\sigma_A, \epsilon_R = 2\epsilon_A$)
 - solute-solvent interactions: $\sigma_{AB} = \frac{\sigma_A + \sigma_B}{2}, \epsilon_{AB} = \sqrt{\epsilon_A \epsilon_B}$
 - TI between two potentials:
 - $U_0 = U_{\text{solvent}} (+U_{\text{solute}})$
 - $U_1 = U_0 + U_{\text{solute-solvent}}$
 - $U_t(x) = b_t^W U_{\text{solvent}}(x, a_t^W) + b_t^{WS} U_{\text{solvent-solute}}(x, a_t^{WS}) + b_t^V V_t^{\theta}(x)$

8

• 216 water molecules (TIP4P)

8

• 216 water molecules (TIP4P)

• + solute molecule (water/methane)

8

• 216 water molecules (TIP4P)

- + solute molecule (water/methane)
- rigid molecules, the configuration space is $[\mathbb{T}^3 \times SO(3)]^N$

8

- 216 water molecules (TIP4P)
 - + solute molecule (water/methane)
 - rigid molecules, the configuration space is $[\mathbb{T}^3 \times SO(3)]^N$
 - LJ + Coulomb interactions

8

50k

T=0.00

50k

T=0.00

• If $\nabla U = \nabla \hat{U}$ everywhere, then $U = \hat{U}$ up to an additive constant,

- If $\nabla U = \nabla \hat{U}$ everywhere, then $U = \hat{U}$ up to an additive constant,
 - * if the domain is connected

- If $\nabla U = \nabla \hat{U}$ everywhere, then $U = \hat{U}$ up to an additive constant,
 - * if the domain is connected
 - $e^{-\beta U}$ is multimodal \approx disconnected domain

- If $\nabla U = \nabla \hat{U}$ everywhere, then $U = \hat{U}$ up to an additive constant,
 - * if the domain is connected
 - $e^{-\beta U}$ is multimodal \approx disconnected domain
 - $e^{-\beta U_t^{\theta}} \propto \rho_t$ only locally

- If $\nabla U = \nabla \hat{U}$ everywhere, then $U = \hat{U}$ up to an additive constant,
 - * if the domain is connected
 - $e^{-\beta U}$ is multimodal \approx disconnected domain

•
$$e^{-\beta U_t^{\theta}} \propto \rho_t$$
 only locally

- If $\nabla U = \nabla \hat{U}$ everywhere, then $U = \hat{U}$ up to an additive constant,
 - * if the domain is connected
 - $e^{-\beta U}$ is multimodal \approx disconnected domain
 - $e^{-\beta U_t^{\theta}} \propto \rho_t$ only locally

- If $\nabla U = \nabla \hat{U}$ everywhere, then $U = \hat{U}$ up to an additive constant,
 - * if the domain is connected
 - $e^{-\beta U}$ is multimodal \approx disconnected domain
 - $e^{-\beta U_t^{\theta}} \propto \rho_t$ only locally

QUESTIONS?

