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Symmetries in physics

Standard Model of Elementary Particles
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Symmetries in chemistry
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Image from: [Satorras et al. 2021]
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Symmetries in prediction models
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Equivariance
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Symmetries in generative models

e Sample from an invariant distribution

p(x) = p(p(g)x)



Symmetries in generative models

e Sample from an invariant distribution
p(x) = p(p(g)x)

e For latent variable models:

equivariant model

invariant latent distribution
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Fundamental representation

e Groups act on vector spaces with representations

0:G— R™N

e Vectors transform in the defining representation of matrix Lie
groups

fx = p(9)fx

e E.g. atom positions, force vectors
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Regular representation

e The regular representation on functions f : G — R is given by
(oreg(9)f)(h) = f(g~*h)
e For functions on general domains, the regular representation is

(oreg(9)f) (x) = f(p(g™*)x)

e Thisis how scalar fields transform
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Vector fields

e Forfunctionsf : D - R", combine defining- with regular
representation

f(x) - n(g)f (o1 (9)x)
e Thisis how vector fields transform

e rmcan also be other representation, e.g. adjoint representation

(g)f =p(g)fp 1 (9)
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Arbitrary representations

¢ Any finite-dimensional representation of a compact group can
be written as a direct sum of irreducible representations

¢ |n particular, tensor product representations can be
decomposed into direct sums

‘m
o' ®p™ =P (")
n

¢ Change of basis done via Clebsch-Gordan coefficients
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How to construct equivariant layers?

e Consider linear maps M which are equivariant

e Forvectors, M needs to be an intertwiner
Moin(9) = pout(9)M VgeG

e Schur’s lemma: for complex, irreducible representations

M=l if pin=pout and M =0 otherwise

e Hence, decompose pj,, pout into irreps to solve (*)

11



How to construct equivariant layers?

e Forthe regular representation, linear equivariant layers are
given by group convolutions [Cohen, Welling 2016]
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How to construct equivariant layers?

e Forthe regular representation, linear equivariant layers are
given by group convolutions [Cohen, Welling 2016]

[¢+f1(g) = [ dhg(h~1g)f(h)
e Forthe translation group, these become the usual convolutions

e For combination with fundamental representation
(m(9)f(p~1(g)x)), convolution filter needs to be an intertwiner

[Review: Weiler et al. 2023]
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Equivariance in quantum chemistry

® Group:
roto-translations of the molecule + permutations of identical
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Equivariance in quantum chemistry

® Group:
roto-translations of the molecule + permutations of identical
atoms

e Use graph-NNs for permutation part

e For SO(3), expand inirreps, use tensor products to combine
features [Review: Duval et al. 2023]
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Gauge symmetry
¢ |n a gauge symmetry, group element can depend on position x
m(g(x))f (o (g(x))x)
e Symmetry becomes local

¢ |In quantum chemistry only global symmetries

e Equivariance wrt local coordinate changes is also a gauge
symmetry: Gauge CNNs [Cheng et al. 2019]
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Equivariance in lattice field theory

e |n lattice field theory, typically combination of local and global
symmetries: G = SU(n) x SE(3)

n(gO))f (et (h)x)  g(x)eSU(n)  heSE@3)

15



Equivariance in lattice field theory

e |n lattice field theory, typically combination of local and global
symmetries: G = SU(n) x SE(3)

n(gO))f (et (h)x)  g(x)eSU(n)  heSE@3)

e The gauge group acts in the adjoint representation
m(g(x)f = p(g(x)) f o' (9(x))

15



Equivariance in lattice field theory

e |n lattice field theory, typically combination of local and global
symmetries: G = SU(n) x SE(3)

n(gO))f (et (h)x)  g(x)eSU(n)  heSE@3)

e The gauge group acts in the adjoint representation
m(g(x)f = p(g(x)) f o' (9(x))

* By discretizing on the lattice, obtain links U, transforming as

Un(x) > p(g())Up(x) " (g(x + 1))
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How to construct gauge equivariant layers?

e Can build loops transforming as

W(x) > p(g())W(x) ' (g(x))
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How to construct gauge equivariant layers?
e Can build loops transforming as
W(x) > p(g()IW(x) o (g(x)) (+)
Products of loops are equivariant, traces are invariant
W)W (x) = p(g())W ()W (x) ' (g(x))
tr(W(x)) — tr(W(x))

Use this together with convolutions to build gauge equivariant
networks [Favoni et al. 2020]

Can also manipulate invariants of (x) [Boyda et al. 2021]

Can differentiate an invariant [Bacchio et al. 2023]
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Part lI: Other ways of reaching equivariance
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(Frame) averaging

¢ Create exactly equivariant model by averaging over the group

F() = [ dh(9)f (o™ (g))
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(Frame) averaging

¢ Create exactly equivariant model by averaging over the group

F() = [ dh(9)f (o™ (g))

b Itis sufficient to average over an equivariant subset F(x) c G
(frame) [Puny et al. 2022]

@5 Works with any architecture

p Only approximate for continuous groups when sampling is
necessary to evaluate the integral
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Canonicalization [Kaba et al. 2022]

e Use an equivariant map D — G to predict a canonicalizing
transformation
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Canonicalization [Kaba et al. 2022]

e Use an equivariant map D — G to predict a canonicalizing
transformation

¢ Use non-equivariant network for prediction
b Exactly equivariant
mp Still needs equivariant model

p Equivariant function with codomain G is hard to construct
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Data augmentation
5 Easytoimplement
5 No specialized architecture necessary

p No exact equivariance

Can we understand data augmentation theoretically?

21



Emergent Equivariance in Deep Ensembles

in collaboration with

Pan Kessel



Empirical NTK

Training dynamics under continuous gradient descent:

learning rate [ loss
dNg(x) _
dt Z Oolx, X')(‘?CN(X,)

training sample
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Empirical NTK

Training dynamics under continuous gradient descent:

learning rate [ loss
dN@(X) Z o (X X oL
dt O ON(x;)

training sample
with the empirical neural tangent kernel (NTK)
ON(x) ON(x")

Og(x,x") =
2. 98, 8,

23



Infinite width limit
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Infinite Width limit [Jacot et al. 2018]

o‘,"” I‘

b NTK becomes independent of initialization
& NTKbecomes constantin training
@5 NTK can be computed for most networks

v Training dynamics can be solved

24



Mean prediction from NTK

® Atinfinite width, the mean prediction is given by

He(x) = O(x,X)O(X, X)L (1 - e 1OXX)tyy

[Jacot et al. 2018]
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Mean prediction from NTK

® Atinfinite width, the mean prediction is given by

neural tangent kernel

He(x) = O, X)O(X, X)L (1 - e 1OXX)tyy

learning rate j

train data

[Jacot et al. 2018]
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Mean prediction from NTK acot et al. 2015]

® Atinfinite width, the mean prediction is given by

neural tangent kernel train labels

He(x) = O, X)O(X, X)L (1 - e 1OXX)tyy

learning rate j

train data
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Data augmentation at infinite width
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Data augmentation at infinite width
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Data augmentation at infinite width

group transformation
( augmented labels
ue(p(9)x) = O, X)O(X,X) (1 - e 19X N)o(g)y
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for invariance
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Data augmentation at infinite width

( group transformation

ke (p(g)x) = ©(x, X)O(X,X) (1 - e 10Xty p(g)y

= pt(X)

~—
. :Y-
for invariance
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Mean prediction

e (x)
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Mean prediction

pe(x) = [E60~initializations [Net ()]
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Mean prediction

init,

1
e (x) :[E60~initializations[Net(x)] = lim — Z Net(X)
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Mean prediction

pe(x) = [E60~initializations [Net (x)] =

init,

- lim 1 >, Ng(x)

n—-oo n
90 inity

mean prediction ofdeep ensemble

28



Main conclusion

Deep ensembles trained with data augmentation are equivariant.
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Intuitive explanation

v Equivariance holds for all training times

v Equivariance holds away from the training data
® Atinfinite width, the mean output at initialization is zero
everywhere.

= Training with full data augmentation leads to an equivariant
function.
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Toy example
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After 1 Training Step
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Initialization

1 |
0.5 11 /
\ |
0| S
A /
-0.5 -
-1 -

-4
— Ground Truth

MLP — Ensemble Mean

33



After 1 Training Step

4 2 0 2 4
— Ground Truth MLP — Ensemble Mean

33



After 2 Training Steps

4 2 0 2 4
— Ground Truth MLP — Ensemble Mean

33



After 3 Training Steps
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After 2000 Training Steps
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After 2000 Training Steps

4 2 0 2 4
— Ground Truth MLP — Ensemble Mean



Experiments
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Ising model
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Ising model
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Ising model
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Ising model
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Relative orbit standard deviation

Out of Distribution Data
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Out of Distribution Data
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Out of Distribution Data

c

.S

GS) 1.5 - No Invariance
© “r_/‘

-E * ¥ % X
.

% % % >— > X

_; Ensemble Means
20.5

5 /

e

S o et

Z 100 1,000 10,000

Ensemble Size
—NTK =« Width 512 Width 1024 —— Width 2048

36



Out of Distribution Data

c
.°
S 014
()] R
S 0.08 %
© NN
2 0.06 | X
8 %t
L 0.04 i
-e “s ~~‘~
L ~.
g 0.02 REEE SN 5
= R
& 0
[3) I I I
o 100 1,000 10,000
Ensemble Size
—NTK  -x- Width 512 Width 1024 -x- Width 2048

37



Histological slices

[Kather et al. 2018]
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Histological slices

[Kather et al. 2018]
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Histological slices
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Out of distribution results
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Further experimental results

v Emergent invariance for rotated FashionMNIST
v Partial augmentation for continuous symmetries

v Emergent equivariance (as opposed to invariance)
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Comparison to other methods
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Comparison to other methods

o Models trained on rotated FashionMNIST
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Comparison to other methods

c» Models trained on rotated FashionMNIST

Orbit same predictions out of distribution:

Cy Cs Ci6
DeepEns+DA 3.85+0.12 7.72+0.34 15.24:0.69
only DA 3.41+0.18 6.73+0.24 12.77+0.71
E2CNN! 4+0.0 7.71+0.21 15.08:0.34

Canon? 4:0.0 7.45:0.14

12.41+0.85

1 Weiler et al. 2019], 2[Kaba et al. 2022]
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Key takeaways

If you need ensembles
b use data augmentation to obtain an equivariant model.

If you need data augmentation
b use an ensemble to boost the equivariance.

Analysis of neural tangent kernel can lead to powerful practical
insights!
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