Symmetries in AI4Science

Jan E. Gerken

Workshop on Machine Learning Based Sampling in Lattice Field Theory and Quantum Chemistry

TRA Colloquium

Bonn 22th October 2024

Symmetries in physics

 $SU(2) \times SU(3) \times U(1)$

Standard Model of Elementary Particles

Symmetries in chemistry

Equivariance

Symmetries in generative models

● Sample from an invariant distribution

$$
p(x) = p(\rho(g)x)
$$

Symmetries in generative models

● Sample from an invariant distribution

$$
p(x) = p(\rho(g)x)
$$

● For latent variable models:

invariant latent distribution

Fundamental representation

● Groups act on vector spaces with representations

$$
\rho:G\to\mathbb{R}^{n\times n}
$$

Fundamental representation

• Groups act on vector spaces with representations

$$
\rho:G\to\mathbb{R}^{n\times n}
$$

• Vectors transform in the defining representation of matrix Lie groups

$$
f_X\to \rho(g)f_X
$$

Fundamental representation

• Groups act on vector spaces with representations

$$
\rho:G\to\mathbb{R}^{n\times n}
$$

• Vectors transform in the defining representation of matrix Lie groups

$$
f_X\to \rho(g)f_X
$$

● E.g. atom positions, force vectors

• A group acts on itself by left multiplication $h \rightarrow gh$

- A group acts on itself by left multiplication $h \rightarrow gh$
- This is leads to the regular representation on $\mathbb{R}^{|G|}$

$$
\rho_{reg}(g)e_h = e_{gh}
$$

- A group acts on itself by left multiplication $h \rightarrow gh$
- This is leads to the regular representation on $\mathbb{R}^{|G|}$

$$
\rho_{reg}(g)e_h = e_{gh}
$$

• Functions $G \to \mathbb{R}$ can be identified with $\mathbb{R}^{|G|}$

$$
e_g \leftrightarrow \mathbb{I}_g
$$

- A group acts on itself by left multiplication $h \rightarrow gh$
- This is leads to the regular representation on $\mathbb{R}^{|G|}$

$$
\rho_{reg}(g)e_h = e_{gh}
$$

• Functions $G \to \mathbb{R}$ can be identified with $\mathbb{R}^{|G|}$

$$
e_g \leftrightarrow \mathbb{I}_g
$$

• The regular representation on functions $f: G \to \mathbb{R}$ is given by $(\rho_{reg}(g)f)(h) = f(g^{-1}h)$

• The regular representation on functions $f: G \to \mathbb{R}$ is given by

$$
(\rho_{reg}(g)f)(h) = f(g^{-1}h)
$$

• The regular representation on functions $f: G \to \mathbb{R}$ is given by

$$
(\rho_{reg}(g)f)(h) = f(g^{-1}h)
$$

● For functions on general domains, the regular representation is

$$
(\rho_{reg}(g)f)(x) = f(\rho(g^{-1})x)
$$

• The regular representation on functions $f: G \to \mathbb{R}$ is given by

$$
(\rho_{reg}(g)f)(h) = f(g^{-1}h)
$$

• For functions on general domains, the regular representation is

$$
(\rho_{reg}(g)f)(x) = f(\rho(g^{-1})x)
$$

 \bullet This is how scalar fields transform

Vector fields

• For functions $f: D \to \mathbb{R}^n$, combine defining- with regular representation

$$
f(x) \to \pi(g)f(\rho^{-1}(g)x)
$$

Vector fields

• For functions $f: D \to \mathbb{R}^n$, combine defining- with regular representation

$$
f(x) \to \pi(g)f(\rho^{-1}(g)x)
$$

• This is how vector fields transform

Vector fields

• For functions $f: D \to \mathbb{R}^n$, combine defining- with regular representation

$$
f(x) \to \pi(g)f(\rho^{-1}(g)x)
$$

- This is how vector fields transform
- \bullet π can also be other representation, e.g. adjoint representation

$$
\pi(g)f = \rho(g)f \rho^{-1}(g)
$$

Arbitrary representations

● Any finite-dimensional representation of a compact group can be written as a direct sum of irreducible representations

Arbitrary representations

- Any finite-dimensional representation of a compact group can be written as a direct sum of irreducible representations
- In particular, tensor product representations can be decomposed into direct sums

$$
\rho^{\ell} \otimes \rho^m = \bigoplus_n (\rho^n)^{\oplus c_n^{\ell m}}
$$

Arbitrary representations

- Any finite-dimensional representation of a compact group can be written as a direct sum of irreducible representations
- In particular, tensor product representations can be decomposed into direct sums

$$
\rho^\ell\otimes\rho^m=\bigoplus_n(\rho^n)^{\oplus c_n^{\ell m}}
$$

• Change of basis done via Clebsch–Gordan coefficients

 \bullet Consider linear maps M which are equivariant

- \bullet Consider linear maps M which are equivariant
- For vectors, M needs to be an intertwiner

$$
M\rho_{\text{in}}(g) = \rho_{\text{out}}(g)M \qquad \forall g \in G \qquad (*)
$$

- \bullet Consider linear maps M which are equivariant
- For vectors, M needs to be an intertwiner

$$
M\rho_{\text{in}}(g) = \rho_{\text{out}}(g)M \qquad \forall g \in G \qquad (*)
$$

• Schur's lemma: for complex, irreducible representations

$$
M = \lambda \mathbb{I}
$$
 if $\rho_{\text{in}} = \rho_{\text{out}}$ and $M = 0$ otherwise

- \bullet Consider linear maps M which are equivariant
- For vectors, M needs to be an intertwiner

$$
M\rho_{\text{in}}(g) = \rho_{\text{out}}(g)M \qquad \forall g \in G \qquad (*)
$$

• Schur's lemma: for complex, irreducible representations

$$
M = \lambda \mathbb{I}
$$
 if $\rho_{\text{in}} = \rho_{\text{out}}$ and $M = 0$ otherwise

• Hence, decompose ρ_{in} , ρ_{out} into irreps to solve $(*)$

● For the regular representation, linear equivariant layers are given by group convolutions **Example 2016** [Cohen, Welling 2016]

$$
[\psi * f](g) = \int_G dh \, \psi(h^{-1}g) f(h)
$$

• For the regular representation, linear equivariant layers are given by group convolutions and the cohen, Welling 2016]

$$
[\psi * f](g) = \int_G dh \, \psi(h^{-1}g) f(h)
$$

● For the translation group, these become the usual convolutions

• For the regular representation, linear equivariant layers are given by group convolutions and the cohen, Welling 2016]

$$
[\psi * f](g) = \int_G dh \, \psi(h^{-1}g) f(h)
$$

- For the translation group, these become the usual convolutions
- For combination with fundamental representation $(\pi(g)f(\rho^{-1}(g)x))$, convolution filter needs to be an intertwiner

[Review: Weiler et al. 2023]
Equivariance in quantum chemistry

● Group:

roto-translations of the molecule + permutations of identical atoms

Equivariance in quantum chemistry

● Group:

roto-translations of the molecule + permutations of identical atoms

● Use graph-NNs for permutation part

Equivariance in quantum chemistry

● Group:

roto-translations of the molecule + permutations of identical atoms

- Use graph-NNs for permutation part
- For SO(3), expand in irreps, use tensor products to combine **features** *Features Review: Duval et al. 2023]*

 \bullet In a gauge symmetry, group element can depend on position x

 $\pi(g(x))f(\rho^{-1}(g(x))x)$

 \bullet In a gauge symmetry, group element can depend on position x

$$
\pi(g(x))f(\rho^{-1}(g(x))x)
$$

• Symmetry becomes local

 \bullet In a gauge symmetry, group element can depend on position x

$$
\pi(g(x))f(\rho^{-1}(g(x))x)
$$

- Symmetry becomes local
- In quantum chemistry only global symmetries

 \bullet In a gauge symmetry, group element can depend on position x

$$
\pi(g(x))f(\rho^{-1}(g(x))x)
$$

- Symmetry becomes local
- In quantum chemistry only global symmetries
- Equivariance wrt local coordinate changes is also a gauge **symmetry: Gauge CNNs** [Cheng et al. 2019]

Equivariance in lattice field theory

• In lattice field theory, typically combination of local and global symmetries: $G = SU(n) \times SE(3)$

 $\pi(g(x))f(\rho^{-1}(h)x)$ $g(x) \in SU(n)$ $h \in SE(3)$

Equivariance in lattice field theory

• In lattice field theory, typically combination of local and global symmetries: $G = SU(n) \times SE(3)$

 $\pi(g(x))f(\rho^{-1}(h)x)$ $g(x) \in SU(n)$ $h \in SE(3)$

• The gauge group acts in the adjoint representation

$$
\pi(g(x))f = \rho(g(x)) f \rho^{\dagger}(g(x))
$$

Equivariance in lattice field theory

• In lattice field theory, typically combination of local and global symmetries: $G = SU(n) \times SE(3)$

 $\pi(g(x))f(\rho^{-1}(h)x)$ $g(x) \in SU(n)$ $h \in SE(3)$

- The gauge group acts in the adjoint representation $\pi(g(x))f = \rho(g(x)) f \rho^{\dagger}(g(x))$
- By discretizing on the lattice, obtain links U_{μ} transforming as

$$
U_{\mu}(x) \rightarrow \rho(g(x))U_{\mu}(x)\rho^{\dagger}(g(x+\hat{\mu}))
$$

• Can build loops transforming as

$$
W(x) \to \rho(g(x))W(x)\rho^{\dagger}(g(x)) \qquad (*)
$$

• Can build loops transforming as

$$
W(x) \to \rho(g(x))W(x)\rho^{\dagger}(g(x)) \qquad (*)
$$

● Products of loops are equivariant, traces are invariant

$$
W(x)\tilde{W}(x) \rightarrow \rho(g(x))W(x)\tilde{W}(x)\rho^{\dagger}(g(x))
$$

tr(W(x)) \rightarrow tr(W(x))

• Can build loops transforming as

$$
W(x) \to \rho(g(x))W(x)\rho^{\dagger}(g(x)) \qquad (*)
$$

● Products of loops are equivariant, traces are invariant

$$
W(x)\tilde{W}(x) \rightarrow \rho(g(x))W(x)\tilde{W}(x)\rho^{\dagger}(g(x))
$$

tr(W(x)) \rightarrow tr(W(x))

● Use this together with convolutions to build gauge equivariant \blacksquare networks \blacksquare

• Can build loops transforming as

$$
W(x) \to \rho(g(x))W(x)\rho^{\dagger}(g(x)) \qquad (*)
$$

● Products of loops are equivariant, traces are invariant

$$
W(x)\tilde{W}(x) \rightarrow \rho(g(x))W(x)\tilde{W}(x)\rho^{\dagger}(g(x))
$$

tr(W(x)) \rightarrow tr(W(x))

- Use this together with convolutions to build gauge equivariant \blacksquare networks \blacksquare
- Can also manipulate invariants of $(*)$ [Boyda et al. 2021]

• Can build loops transforming as

$$
W(x) \to \rho(g(x))W(x)\rho^{\dagger}(g(x)) \qquad (*)
$$

● Products of loops are equivariant, traces are invariant

$$
W(x)\tilde{W}(x) \rightarrow \rho(g(x))W(x)\tilde{W}(x)\rho^{\dagger}(g(x))
$$

tr(W(x)) \rightarrow tr(W(x))

- Use this together with convolutions to build gauge equivariant \blacksquare networks \blacksquare
- Can also manipulate invariants of $(*)$ [Boyda et al. 2021]
- Can differentiate an invariant [Bacchio et al. 2023]

[Part II: Other ways of reaching equivariance](#page-51-0)

• Create exactly equivariant model by averaging over the group

$$
\bar{f}(x) = \int_G \mathrm{d}h \, \pi(g) f(\rho^{-1}(g)x)
$$

• Create exactly equivariant model by averaging over the group

$$
\bar{f}(x) = \int_G \mathrm{d}h \, \pi(g) f(\rho^{-1}(g)x)
$$

 \triangle It is sufficient to average over an equivariant subset $\mathcal{F}(x) \subset G$ $(frame)$ [Puny et al. 2022]

• Create exactly equivariant model by averaging over the group

$$
\bar{f}(x) = \int_G \mathrm{d}h \, \pi(g) f(\rho^{-1}(g)x)
$$

- \triangle It is sufficient to average over an equivariant subset $\mathcal{F}(x) \subset G$ $(frame)$ [Puny et al. 2022]
- Works with any architecture

• Create exactly equivariant model by averaging over the group

$$
\bar{f}(x) = \int_G \mathrm{d}h \, \pi(g) f(\rho^{-1}(g)x)
$$

- \triangle It is sufficient to average over an equivariant subset $\mathcal{F}(x) \subset G$ $(frame)$ [Puny et al. 2022]
- Works with any architecture
- Only approximate for continuous groups when sampling is ၺ necessary to evaluate the integral

• Use an equivariant map $D \rightarrow G$ to predict a canonicalizing transformation

- Use an equivariant map $D \rightarrow G$ to predict a canonicalizing transformation
- Use non-equivariant network for prediction

- Use an equivariant map $D \rightarrow G$ to predict a canonicalizing transformation
- Use non-equivariant network for prediction
- **△** Exactly equivariant

- Use an equivariant map $D \rightarrow G$ to predict a canonicalizing transformation
- Use non-equivariant network for prediction
- **△** Exactly equivariant
- Still needs equivariant model

- Use an equivariant map $D \rightarrow G$ to predict a canonicalizing transformation
- Use non-equivariant network for prediction
- **△** Exactly equivariant
- Still needs equivariant model
- Equivariant function with codomain G is hard to construct $\mathbf C$

△ Easy to implement

A No specialized architecture necessary

- **△** Easy to implement
- No specialized architecture necessary
- No exact equivariance

△ Easy to implement

△ No specialized architecture necessary

No exact equivariance

Can we understand data augmentation theoretically?

Emergent Equivariance in Deep Ensembles

in collaboration with

Pan Kessel

Empirical NTK

Training dynamics under continuous gradient descent:

Empirical NTK

Training dynamics under continuous gradient descent:

with the empirical neural tangent kernel (NTK)

$$
\Theta_{\theta}(x, x') = \sum_{\mu} \frac{\partial \mathcal{N}(x)}{\partial \theta_{\mu}} \frac{\partial \mathcal{N}(x')}{\partial \theta_{\mu}}
$$

Infinite width limit Infinite width limit

Infinite width limit Infinite width limit

Infinite width limit and the set of the set of $\frac{1}{2018}$

∞ ∞ ∞ **c** NTK becomes independent of initialization

Infinite width limit and the set of the set of $\frac{1}{2018}$

∞ ∞ ∞ **c** NTK becomes independent of initialization

NTK becomes constant in training

Infinite width limit Infinite Algorithment Infinite Width limit

∞ ∞ ∞ **c** NTK becomes independent of initialization

NTK becomes constant in training

NTK can be computed for most networks

Infinite width limit and the set of the set of $\frac{1}{20181}$ **and** $\frac{1}{20181}$ **and** $\frac{1}{20181}$

- [∞] [∞] NTK becomes independent of initialization
	- *I* NTK becomes constant in training
	- NTK can be computed for most networks
	- \vee Training dynamics can be solved

 \odot At infinite width, the mean prediction is given by

$$
\mu_t(x) = \Theta(x, x) \Theta(x, x)^{-1} (\mathbb{I} - e^{-\eta \Theta(x, x)t}) Y
$$

 \odot At infinite width, the mean prediction is given by

neural tangent kernel

$$
\mu_t(x) = \Theta(x, X) \Theta(X, X)^{-1} (\mathbb{I} - e^{-\eta \Theta(X, X)t}) Y
$$

 \odot At infinite width, the mean prediction is given by

neural tangent kernet
\n
$$
\mu_t(x) = \Theta(x, X) \Theta(X, X)^{-1} (\mathbb{I} - e^{-\eta \Theta(X, X)t}) Y
$$
\ntrain data

At infinite width, the mean prediction is given by

At infinite width, the mean prediction is given by

[Data augmentation](#page-81-0)

$$
\mu_t(x) = \Theta(x, x) \Theta(x, x)^{-1} (\mathbb{I} - e^{-\eta \Theta(x, x)t}) Y
$$

group transformation
\n
$$
\mu_t(\rho(g)x) = \Theta(x, X) \Theta(X, X)^{-1} (\mathbb{I} - e^{-\eta \Theta(X, X)t}) \underbrace{\rho(g)Y}_{=Y}
$$
\nfor invariance

$$
\int_{\mu_t(\rho(g)x)}^{\text{group transformation}}
$$

= $\theta(x,X)\Theta(X,X)^{-1}(\mathbb{I} - e^{-\eta \Theta(X,X)t})\underset{=Y}{\underbrace{\rho(g)Y}}$
= $\mu_t(x)$ for invariance

 $\mu_t(x)$

$$
\mu_t(x) = \mathbb{E}_{\theta_0 \sim \text{initializations}}[\mathcal{N}_{\theta_t}(x)]
$$

$$
\mu_t(x) = \mathbb{E}_{\theta_0 \sim \text{initializations}}[\mathcal{N}_{\theta_t}(x)] = \lim_{n \to \infty} \frac{1}{n} \sum_{\theta_0 = \text{init}_1}^{\text{init}_n} \mathcal{N}_{\theta_t}(x)
$$

$$
\mu_t(x) = \mathbb{E}_{\theta_0 \sim \text{initializations}}[\mathcal{N}_{\theta_t}(x)] = \lim_{n \to \infty} \frac{1}{n} \sum_{\theta_0 = \text{init}_1}^{\text{init}_n} \mathcal{N}_{\theta_t}(x)
$$
\n
$$
\text{mean prediction of deep ensemble}
$$

- \vee Proof of exact equivariance for
	- full data augmentation
	- infinite ensembles
	- at infinite width

- \vee Proof of exact equivariance for
	- full data augmentation
	- infinite ensembles
	- at infinite width
- Equivariance holds for all training times \checkmark

- \vee Proof of exact equivariance for
	- full data augmentation
	- infinite ensembles
	- at infinite width
- Equivariance holds for all training times \checkmark
- Equivariance holds away from the training data \checkmark

Intuitive explanation

- \checkmark Equivariance holds for all training times
- Equivariance holds away from the training data \checkmark

Intuitive explanation

- Equivariance holds for all training times \checkmark
- Equivariance holds away from the training data \checkmark

At infinite width, the mean output at initialization is zero Ω everywhere.

Intuitive explanation

- Equivariance holds for all training times \checkmark
- Equivariance holds away from the training data \checkmark

- At infinite width, the mean output at initialization is zero Ω everywhere.
- \Rightarrow Training with full data augmentation leads to an equivariant function.

[Toy example](#page-100-0)

Initialization

Initialization

Initialization

After 1 Training Step

After 2 Training Steps

After 3 Training Steps

After 2000 Training Steps

After 2000 Training Steps

Initialization

After 1 Training Step

After 2 Training Steps

After 3 Training Steps

After 2000 Training Steps

After 2000 Training Steps

[Experiments](#page-116-0)

Relative Standard Deviation

Histological slices Example 2018 [Kather et al. 2018]

Histological slices Example 2018 [Kather et al. 2018]

Histological slices

Ensemble size 5

 \vee Emergent invariance for rotated FashionMNIST

- \vee Emergent invariance for rotated FashionMNIST
- \vee Partial augmentation for continuous symmetries

- \vee Emergent invariance for rotated FashionMNIST
- \vee Partial augmentation for continuous symmetries
- \vee Emergent equivariance (as opposed to invariance)

Comparison to other methods

Comparison to other methods

Models trained on rotated FashionMNIST

Comparison to other methods

Models trained on rotated FashionMNIST

Orbit same predictions out of distribution:

1 [Weiler et al. 2019], 2 [Kaba et al. 2022]

Key takeaways
Key takeaways

If you need ensembles

use data augmentation to obtain an equivariant model.

Key takeaways

If you need ensembles

 \triangle use data augmentation to obtain an equivariant model.

If you need data augmentation

 \triangle use an ensemble to boost the equivariance.

Key takeaways

If you need ensembles

 \triangle use data augmentation to obtain an equivariant model.

If you need data augmentation

 \triangle use an ensemble to boost the equivariance.

Analysis of neural tangent kernel can lead to powerful practical insights!

Papers

- Geometric deep learning and equivariant neural networks Jan E. Gerken, Jimmy Aronsson, Oscar Carlsson, Hampus Linander, Fredrik Ohlsson, Christoffer Petersson, Daniel Persson Artificial Intelligence Review 2023
- Emergent Equivariance in Deep Ensembles Jan E. Gerken^{*}, Pan Kessel^{*} ICML 2024 (Oral)

 $*$ Equal contribution

Group Website $\frac{44}{44}$