
Symmetries in AI4Science
Jan E. Gerken

WALLENBERG AI, 
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Workshop on Machine Learning Based Sampling in Lattice Field Theory and Quantum Chemistry

TRA Colloquium

Bonn
22th October 2024

1



Symmetries in physics
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Symmetries in chemistry

E E
Image from: [Satorras et al. 2021]
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Symmetries in predictionmodels
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Symmetries in predictionmodels
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⇐⇒ N(ρin(g)x) = ρout(g)N(x)
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Equivariance
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Symmetries in generativemodels
● Sample from an invariant distribution

p(x) = p(ρ(g)x)

● For latent variable models:

invariant latent distribution

equivariant model
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Fundamental representation

● Groups act on vector spaces with representations

ρ : G→ Rn×n

● Vectors transform in the defining representation of matrix Lie
groups

fx → ρ(g)fx

● E.g. atom positions, force vectors
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Regular representation
● A group acts on itself by leftmultiplication h→ gh

● This is leads to the regular representation on R∣G∣

ρreg(g)eh = egh

● Functions G→ R can be identified with R∣G∣

eg↔ Ig

● The regular representation on functions f : G→ R is given by

(ρreg(g)f )(h) = f (g−1h)
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Regular representation

● The regular representation on functions f : G→ R is given by
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● For functions on general domains, the regular representation is

(ρreg(g)f )(x) = f (ρ(g−1)x)

● This is how scalar fields transform
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Vector fields
● For functions f : D→ Rn, combine defining- with regular
representation

f (x)→ π(g)f (ρ−1(g)x)

● This is how vector fields transform

● π can also be other representation, e.g. adjoint representation

π(g)f = ρ(g) f ρ−1(g)
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Arbitrary representations

● Any finite-dimensional representation of a compact group can
be written as a direct sum of irreducible representations

● In particular, tensor product representations can be
decomposed into direct sums

ρ
` ⊗ ρm =⊕

n
(ρn)⊕c`mn

● Change of basis done via Clebsch–Gordan coefficients
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How to construct equivariant layers?
● Consider linear mapsMwhich are equivariant

● For vectors,M needs to be an intertwiner

Mρin(g) = ρout(g)M ∀g ∈ G (∗)

● Schur’s lemma: for complex, irreducible representations

M = λI if ρin = ρout and M = 0 otherwise

● Hence, decompose ρin, ρout into irreps to solve (∗)
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How to construct equivariant layers?

● For the regular representation, linear equivariant layers are
given by group convolutions [Cohen, Welling 2016]

[ψ ∗ f ](g) = ∫Gdhψ(h
−1g)f (h)

● For the translation group, these become the usual convolutions

● For combination with fundamental representation
(π(g)f (ρ−1(g)x)), convolution filter needs to be an intertwiner

[Review: Weiler et al. 2023]
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Equivariance in quantum chemistry

● Group:
roto-translations of the molecule + permutations of identical
atoms

● Use graph-NNs for permutation part

● For SO(3), expand in irreps, use tensor products to combine
features [Review: Duval et al. 2023]
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Gauge symmetry

● In a gauge symmetry, group element can depend on position x

π(g(x))f (ρ−1(g(x))x)

● Symmetry becomes local

● In quantum chemistry only global symmetries

● Equivariance wrt local coordinate changes is also a gauge
symmetry: Gauge CNNs [Cheng et al. 2019]
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Equivariance in lattice field theory
● In lattice field theory, typically combination of local and global
symmetries: G = SU(n) × SE(3)

π(g(x))f (ρ−1(h)x) g(x) ∈ SU(n) h ∈ SE(3)

● The gauge group acts in the adjoint representation

π(g(x))f = ρ(g(x)) f ρ†(g(x))

● By discretizing on the lattice, obtain links Uμ transforming as

Uμ(x)→ ρ(g(x))Uμ(x) ρ†(g(x + μ̂))

15
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How to construct gauge equivariant layers?
● Can build loops transforming as

W(x)→ ρ(g(x))W(x) ρ†(g(x)) (∗)

● Products of loops are equivariant, traces are invariant

W(x)W̃(x)→ ρ(g(x))W(x)W̃(x) ρ†(g(x))
tr(W(x))→ tr(W(x))

● Use this together with convolutions to build gauge equivariant
networks [Favoni et al. 2020]

● Can also manipulate invariants of (∗) [Boyda et al. 2021]

● Can differentiate an invariant [Bacchio et al. 2023]
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Part II: Other ways of reaching equivariance
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(Frame) averaging
● Create exactly equivariant model by averaging over the group

f̄ (x) = ∫Gdhπ(g)f (ρ
−1(g)x)

It is sufficient to average over an equivariant subset F(x) ⊂ G
(frame) [Puny et al. 2022]

Works with any architecture

Only approximate for continuous groups when sampling is
necessary to evaluate the integral

18
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Canonicalization [Kaba et al. 2022]

● Use an equivariant map D→ G to predict a canonicalizing
transformation

● Use non-equivariant network for prediction

Exactly equivariant

Still needs equivariant model

Equivariant function with codomain G is hard to construct

19
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Data augmentation
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Data augmentation

Easy to implement

No specialized architecture necessary

No exact equivariance

Can we understand data augmentation theoretically?
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Emergent Equivariance in Deep Ensembles
in collaboration with

Pan Kessel



Empirical NTK
Training dynamics under continuous gradient descent:

dN
θ
(x)

dt
= − η

N

N
∑
i=1
Θ
θ
(x, xi)

∂L
∂N(xi)

learning rate

training sample

loss

with the empirical neural tangent kernel (NTK)

Θ
θ
(x, x′) =∑

μ

∂N(x)
∂θμ

∂N(x′)
∂θμ
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Infinite width limit [Jacot et al. 2018]
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Mean prediction fromNTK [Jacot et al. 2018]

At infinite width, the mean prediction is given by

μt(x) = Θ(x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)Y
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Data augmentation

26



Data augmentation at infinite width

μt(x) = Θ(x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)Y

= μt(x)
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Mean prediction

μt(x)

= E
θ0∼initializations[Nθt(x)] = lim

n→∞
1
n

initn
∑

θ0=init1
N
θt(x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
mean prediction of deep ensemble
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Main conclusion

Deep ensembles trained with data augmentation are equivariant.

Proof of exact equivariance for

● full data augmentation
● infinite ensembles
● at infinite width

Equivariance holds for all training times

Equivariance holds away from the training data
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Intuitive explanation

Equivariance holds for all training times

Equivariance holds away from the training data

At infinite width, the mean output at initialization is zero
everywhere.

Training with full data augmentation leads to an equivariant
function.
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Toy example
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Experiments
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Histological slices [Kather et al. 2018]
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Out of distribution results
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Further experimental results

Emergent invariance for rotated FashionMNIST

Partial augmentation for continuous symmetries

Emergent equivariance (as opposed to invariance)
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Comparison to other methods

Orbit same predictions out of distribution:

C4 C8 C16

DeepEns+DA 3.85±0.12 7.72±0.34 15.24±0.69
only DA 3.41±0.18 6.73±0.24 12.77±0.71
E2CNN1 4±0.0 7.71±0.21 15.08±0.34
Canon2 4±0.0 7.45±0.14 12.41±0.85
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Key takeaways

If you need ensembles
use data augmentation to obtain an equivariant model.

If you need data augmentation
use an ensemble to boost the equivariance.

Analysis of neural tangent kernel can lead to powerful practical
insights!
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