Will be related to Lorenz’s talk! arxiv:2407.07873

NETS

A Non-Equilibrium Transport Sampler

aka an Answer to Tej’s question of the connection between flows and
diffusions for sampling

aka a continuous time algorithm for what Alessandro is doing

Michael Albergo Bonn, Germany October 24 2024



Remember this from yesterday?

Stochastic normalizing flows as

. non-equilibrium transformations

Michele Caselle!2 * Elia Cellini!2,T Alessandro Nadal* and Marco Panero!:2%

1.0

Improved ESS by growing the # of f
discrete affine flows + stochastic steps
—— Ny
02 o = 1o, ONN
—&— n,, =24, CNN
—— n,, =48, CNN

T T T T T
0 100 200 300 400 500

NETS is a continuous time limit of SNFs

» Can choose how many steps + diffusion after training

* Knob to explicitly get more performance from more compute
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Annealed Importance Sampling and Jarzynski’s equality

Problem statement Much related work!

Dynamical Measure Transport

Recent methods for learning maps between distributions

Combining the two!

New learning algorithms Applications, e.g. field theory
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Annealed Importance Sampling and Jarzynski’s equality

Problem stat

Can we explicitly get a machine
learning-augmented sampling setup for
which “when | pay more from using my
=Pvgees model, | get more from my model”?

Dynamical Measur

Combining the two!

New learning algorithms  Applications, e.g. field theory
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Problem Setup

Goal: estimate the unknown probability density function p; € D(L2) either through:
1. sample data {x;}"_,
2. query access to the unnormalized log likelihood (energy function)

Sampling problem ubiquitous!

_ | _ energy function U, (x)
(obviously, to this audience)

quantum field
theory

bayesian inference in GW
astronomy

MD simulations condensed

matter
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Markov Chain Monte Carlo build randomized sequence of samples {xi}ﬁ.\i ; 8o that

lim E[A(x)]y — E[h()]

N— o0

Common tool: Langevin Dynamics

dX, = —eVU(X)dt ++/2edW,
Langevin dynamics on 2- / \

dimensional distribution , , incremental brownian
gradient drift motion

Importance Sampling

Re-weight samples from
cheap surrogate model

E, [h(0] = E,, | h(05 ]

p1(x)
Effective when p, p, overlap
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Markov Chain Monte Carlo build randomized sequence of samples [x,} | so that

p1(x)
L)
A L

Non-log concave target,
exponentially slow mixing

Common tool: Langevin Dynamics

dX,= —eVU(X)dt ++/2edW,
/ N\

Importance Sampling

reweighted

0 surrogate

Re-weight samples from
cheap surrogate model

E, [h(x)] = E;, [h(x) ”1(’”]

p1(x)
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Introduce dynamics which anneal to U,(x) from some U(x)

Ux)=(1-0U,+ tU, PDF: p(x) = e VWt F = —logZ
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Introduce dynamics which anneal to U,(x) from some U(x)

Ux)=(1-0U,+ tU, PDF: p(x) = e VWt F = —logZ
SDE:

t=0.00

~/

dX, = — e, VUX)dt ++/2¢,dW,

* Time evolving potential
- €, sets speed of walkers per time step

* high temperature -> low temperature
helps with multimodality
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Common Augmentation: Annealed Langevin Dynamics

Introduce dynamics which anneal to U,(x) from some U,(x)

Ux)=(1-0U,+ tU, PDF: p(x) = e Ut F = —logZ
SDE:

t=0.00

~/

dX, = — e, VUX)dt ++/2¢,dW,

* Time evolving potential
- €, sets speed of walkers per time step

* high temperature -> low temperature
helps with multimodality

Question: does the solution Xt to this SDE have p, as its density?
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Compare the Fokker-Planck to 0,p, pAx) = e~ UlO+h

SDE: FPE:
dX = — e, VUX)dt ++/2¢.dW,  0p, =¢eV-(VUp,+Vp,)
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Compare the Fokker-Planck to 0,p, pAx) = e~ UlO+h

SDE: FPE:
dX = — e, VUX)dt ++/2¢.dW,  0p, =¢eV-(VUp,+Vp,)

Direct calculation:

0 [,-Ufx
0P = o [e Ul )+Ft] — (0,U, = 9,F)p,

since Vp, = — VU,p,
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Compare the Fokker-Planck to 0,p, pAx) = e~ UlO+h

SDE: FPE:
dX, = — ¢, VUX)dt +1/2¢,dW,  0,p,=€V - (VUp,+ Vp,

Direct calculation:

O [ —U
0P = & [e Ul )+Ft] — (0,U, = 9,F)p,

since Vp, = — VU,p,

0 p.and 0 P, differ by In Qractice, the walkers
factor arising from time X, “lag behind” the
dynamics of U, intended evolution of p,
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Compare the Fokker-Planck to 0,p, pAx) = e~ UlO+h

40 mode GMM, &; = 4.0, NO transport

0 p.and 0 P, differ by In Qractice, the walkers
factor arising from time X, “lag behind” the
dynamics of U, intended evolution of p,

This can in theory be fixed with re-weighting
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Compare the Fokker-Planck to 0,p, pAx) = e~ UlO+h

40 mode GMM, ¢; = 15.0, NO transport

0 p.and 0 P, differ by In Qractice, the walkers
factor arising from time X, “lag behind” the
dynamics of U, intended evolution of p,

This can in theory be fixed with re-weighting
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Jarzynski Equality;

MSA & Vanden-Eijjnden arXiv:2410.02711 (2024);
Jarzynski, PRL 78, 2690 (1997)

Introduce weights A, to account for the lag of the walkers

Proposition
Let (X,, A,) be the solution to the coupled SDE/ODE

dXt = EIV Ut(Xt)dt + 261‘th’ XO i po

dAt —_ 0tUt(Xt)dt AO — O
then for all test functions /(x), we have
E[e*h(x)] _FAF A
J'Rd h(x)p(x)dx = = Zt/ZO — e il = [F [e z]
o "
- change in average
Jar zZyn ski! free energy work!

- Can be proven by looking at the FPE for the joint pdf f,(x, a) : R 5 R
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MSA & Vanden-Eijjnden arXiv:2410.02711 (2024);
Jarzynski, PRL 78, 2690 (1997)

Introduce weights A, to account for the lag of the walkers

Proposition
Let (X,, A,) be the solution to the coupled SDE/ODE

dX[ —_ GZV UZ‘(XZ‘)dt + 2€ZdWZ’ XO ~ po

Can we fix this with measure transport?

JRd 1< 7]

- Can be proven by looking at the FPE for thejoint pdf f.(x, a) : R 5 R

. Problem: variance of e’ may be so large that re-weighting not useful
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X, flow map given by velocity field b(%, x) / /?f{/ / !
i’;;/; ;

//// /

tho(X) =X & Rd

Xt(x) — bt(Xt(.X))

space
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X, flow map given by velocity field b(z,x) =1

tho(X) =X & Rd

XI(X) — bt(Xt(.X))

space

At the level of the of the distribution, how does p(t, x) evolve?

Transport atpt + V. (btpt) =0, Pi=0 = Po

equation

If p(7) solves TE, then p,_; = p,
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X, flow map given by velocity field b(%, x)

X_ox)=x€ R4
Xt(-x) — bt(Xt(.X))

space

At the level of the of the distribution, how does p(t, x) evolve?

Transport atpt + V- (btpt) = 0, Pr=0 = Po

equation

If p(7) solves TE, then p,_; = p,

Fokker-Planck
Equation atp [

V- (btpt) =eV-(VUp,+ Vp)
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X, flow map given by velocity field b(%, x)

X _o(x) =x € R?
X(x) = b(X,(x))

space

At the level of the of the distribution, how does p(t, x) evolve?

Transport atpt + V- (btpt) = 0, Pr=0 = Po

equation
If p(7) solves TE, then p,_; = p,

Exact sampling

If X, solves dX, = — €, VU(X)dt + b(X)dt + /2¢,dW,  Then X, ~ p,
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Non-equilibrium transport sampler

MSA & Vanden-Eiinden arXiv.2410.02711 (2024);

What if you don’t have the perfect b, ? Vargas et al ICLR (2024);
Vaikuntanathan and Jarzynski, PRL 78, 2690 (2008)

Using V - (l;tpt) =V. l;tpt — VU, - b,p,

FPE: New non-eq term!
0,0,+V -(bp)=€eV-(VUp,+Vp)+(V-b,—VU-b,— U+ 0,F)p,

Proposition
Let (X,, A,) be the solution to the coupled SDE/ODE

Xm« —_ = GtV UZ‘(XZ‘)dt + \/ 2€ZdWZ’ XO I~ po
dA, = (V-b(X) - VUX) b(X)—-0UX))dt Ay=0

then for all test functions /(x), we have
E[e?h(x)]
E[eA]

J h(xX)pAx)dx = 217y = e fitfo = [eAf]
Rd



Non-equilibrium transport sampler

MSA & Vanden-Eiinden arXiv.2410.02711 (2024);

What if you don’t have the perfect b, ? Vargas et al ICLR (2024);
Vaikuntanathan and Jarzynski, PRL 78, 2690 (2008)

Proposition
Let (X,, A,) be the solution to the coupled SDE/ODE

dXt —_ €tV UZ(XZ)dt + 2€tde’ XO . po
dA, = (V-b(X) - VUX) b(X)—oUX))dt Ay=0

then for all test functions /i(x), we have
E[e?h(x)]
E[eA]

Z1Zy=e 'itho = [eAf]

J h(0p,(x)dx =
Rd

Correctable dynamical transport for sampling
Valid for any diffusion €, which we will exploit

Strict augmentation of annealed Langevin dynamics



FPE:

0,0,+V -(bp)=¢eV-(VUp,+Vp)+ (V- -b,—VU-b,— U +0,F)p,

— N =
=0 Need either =0

solves the transport removes the non-equilibrium lag
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Learning b: Physics Informed Neural Network Loss

MSA & Vanden-Eijnden arXiv.2410.02711 (2024);
FPE' Tian et. al ICML (2024);

0,0,+V -(bp)=€eV-(VUp,+Vp)+(V-b—VU-b,— U+ 0,F)p,

\-——V—§J \——\/g
=0 Need either =0
solves the transport removes the non-equilibrium lag
PINN Loss

All minimizers (b,, F,) of the objective

Lppunlb, F] = J J V-b(x)—VU(x)- -b(x)—0U(x)+0dF,| p(x)dxdt
Rd

0

are such that Lp;ynl b, F] = 0, F, is the free energy, and b, solves
the transport



Learning b: Action Matching Loss

FPE:

0,0, +V - (bp)=eNV-(NUp,+Vp)+(V-b,—VU-b,— U +d,F)p,

\-—V§J \-—V_~J
=0 Need either =0
solves the transport removes the non-equilibrium lag

Action matching loss

The minimizer b, = V @, of the objective

A T
LZM[Qb] — " J
0 JR4

% ‘ V() ‘ g athI(x)] p (0)dxd

+J | Bo@po) = br(0pr(o) | dx
Rd

IS unique up to a constant, and solves the transport.



40 mode GMM, &; = 4.0, NO transport 40 mode GMM, &; = 4.0, with transport
N

Turning on the diffusion improves ESS

AlS, no transport, € = 4.0

Ss——

OnI transport, € = 0.0

.

Vi \
) BN}
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Scaling study: Use same neural network for multimodal GMM of
growing dimension

8-mode GMM, dim=[36, 64, 128, 200] Cross section of x97 vs x3 Cross section of x1g vs 294 Cross section of 13 vs Ta7

8
1.0 H e—

0.8

(]

UE) mmgm=  im=36, transport Target
o =e = dim=36, no transport

a %] / mmgu=  dim=064, transport

g 1 =9  dim=64, no transport "

wn mmgm= dim=128, transport 8

q>) 0.4 = * dim=128, no transport

4::3 dim=200, transport

[y m—

tE @ » dim=200, no transport Model

0.2

L _J
-
-
_—.

. ’—
0.0-“---=----—.

0 10 20 30 40 50 60 70 80 -8 I I I (I) I I I 8 -8 I I I (I) I I I 8 -8 I I I (I) I I I 8
Diffusion coefficient €

Drop in ESS for deterministic flow ¢, = O can be alleviated by growing ¢,

Less apparent in practice if you just use annealed Langevin along!
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Choose energy interpolation in m?(£), A(f) for the action given by
Ul(p) = Z [— 2 Z gox(pxw] + (2D + mtz) 2+ Aot

ESS over Time Mlp(x)] => o(x)

at phase
transition

O ¢~ Uy O AIS E NETS [ Reweighted, NETS B HMC 0.2 0.4 0.6 0.8 1.0 ~050 —0.25 0.00 025  0.50

t Average Magnetization
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Dynamical formulation of unbiased sampling with
transport based on Jarzynski equality

Loss functions do not require backpropagating through
SDE

PINN loss is an off-policy loss! (See also Lorenz’ previous talk)

Here’s one more fun gif! Thanks!
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Backup Slides



Computationally cheaper weights!

Note that the weights do not need a divergence if you use b, = V @,

Proposition
Let (X,, A,) be the solution to the coupled SDE/ODE
dX,=—¢,VUX,)dt + Vp(X)dt ++/2¢,dW, Xo ~ Po
dB, = 0,U, (X,) di+— 6tq§t ‘ Vo, (X \/%vg/; (X)) -dW,  A,=0

then for all test functions /(x), we have
E[e?h(x)]
E[eA]

J h(x)pt(x)dx — Zt/ZO — e_Ft+FO — | [eAt]
Rd

works by using expanding d¢, with Ito formula.



Definition of the SDE/ODE for X, A, with b, = V ¢,

dX, = — &, VU(X,)dt + V ¢,(X,)dt + /2¢,dW, X, ~ po,
dA, = Ap,(X,)dt = VU,(X,) - Vo (X,)dt — 0,U,(X,)dL, Ay =0,

Ito formula says

dt

A, (X)) = 0, (X)dt — &V §(X,) - VU(X,)dt + | V(X))
+1/2¢,V,(X,) - dW, + eA¢,(X,) dt,

Solving for A¢, allows us to write the relation

dA, = —dd,(X,)dt + dB,

Vo

V(X))

October 24, 2024 39
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Proposition S (KL control). Let p; be the solution to the transport equation

Oypy ==V - (bepe),  Pr=o = po 27)

where b, (x) is some predefined velocity field. Then, given any estimate B, of the exact free energy Fy,
we have

Dia(peeillpr) < \/LEZA(D, B). (28)

This proposition is proven in Appendix 5.1.
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