Will be related to Lorenz's talk! arxiv:2407.07873

NETS A Non-Equilibrium Transport Sampler

aka an Answer to Tej's question of the connection between flows and diffusions for sampling

aka a continuous time algorithm for what Alessandro is doing

Michael Albergo Bonn, Germany October 24 2024

Remember this from yesterday?

Stochastic normalizing flows as

non-equilibrium transformations

Michele Caselle^{1,2},^{*} Elia Cellini^{1,2},[†] Alessandro Nada^{1‡} and Marco Panero^{1,2§}

NETS is a continuous time limit of SNFs

- Can choose how many steps + diffusion after training
- Knob to explicitly get more performance from more compute

Advertisement: New Research group

In 2026 I will be starting a group at Harvard in Applied mathematics + Kempner Institute

- Theme: Nature and Computation
- Interdisciplinary! Computationally inclined, mathematically inclined welcome
- Current undergraduates, master's students, graduating PhDs, and postdocs, please reach out if interested
- Advisors, please forward your students :)

UNIVERSITY

Advertisement: New Research group

In 2026 I will be starting a group at Harvard in Applied mathematics + Kempner Institute

- Theme: Nature and Computation
- Interdisciplinary! Computationally inclined, mathematically inclined welcome
- Current undergraduates, master's students, graduating PhDs, and postdocs, please reach out if interested
- Advisors, please forward your students :)

UNIVERSITY

Annealed Importance Sampling and Jarzynski's equality

Problem statement

Much related work!

Dynamical Measure Transport

Recent methods for learning maps between distributions

Combining the two!

New learning algorithms Applications, e.g. field theory

Annealed Importance Sampling and Jarzynski's equality

Problem stat	Main motivation for this work:
Dynamical Measur	Can we explicitly get a machine learning-augmented sampling setup for
Recent metho	which "when I pay more from using my model, I get more from my model"?
Combining the two	

New learning algorithms Applications, e.g. field theory

IVEL IRI Itasi

Annealed Importance Sampling and Jarzynski's equality

New learning algorithms Applications, e.g. field theory

Thanks to all collaborators!

P. Shanahan

D. Hackett

F. Romero-

D. Boyda

J. Urban

M. Lindsey

P. Lunts

A. Patel

NEW YORK UNIVERSITY

M. Goldstein

D. Rezende

A. Razavi

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

G. Kanwar

ATIRON Center for Computational Quantum Physics

R. Ranganath

E. Vanden-Eijnden

Y. LeCun

S. Xie

Y. Chen

Problem Setup

Goal: estimate the unknown *probability density function* $\rho_1 \in \mathscr{D}(\Omega)$ either through:

- 1. sample data $\{x_i\}_{i=1}^n$
- 2. query access to the unnormalized log likelihood (energy function)

Sampling problem ubiquitous!

(obviously, to this audience)

energy function $U_1(x)$

Problem Setup

Goal: estimate the unknown *probability density function* $\rho_1 \in \mathscr{D}(\Omega)$ either through:

- 1. sample data $\{x_i\}_{i=1}^n$
- 2. query access to the unnormalized log likelihood (energy function)

Sampling problem ubiquitous!

(obviously, to this audience)

energy function $U_1(x)$

Markov Chain Monte Carlo build randomized sequence of samples $\{x_i\}_{i=1}^N$ so that

 $\lim_{N \to \infty} \mathbb{E}[h(x)]_N \to \mathbb{E}[h(x)]$

Common tool: Langevin Dynamics

Langevin dynamics on 2dimensional distribution

Importance Sampling

 $\rho_1(x)$

Re-weight samples from cheap surrogate model

$$\mathbb{E}_{\rho_1}[h(x)] = \mathbb{E}_{\hat{\rho}_1}\left[h(x)\frac{\rho_1(x)}{\hat{\rho}_1(x)}\right]$$

Effective when $\rho_1, \hat{\rho}_1$ overlap

Markov Chain Monte Carlo build randomized sequence of samples $\{x_i\}_{i=1}^N$ so that

 $\lim_{N \to \infty} \mathbb{E}[h(x)]_N \to \mathbb{E}[h(x)]$

Common tool: Langevin Dynamics

Langevin dynamics on 2dimensional distribution

Importance Sampling

 $\rho_1(x)$

Re-weight samples from cheap surrogate model

$$\mathbb{E}_{\rho_1}[h(x)] = \mathbb{E}_{\hat{\rho}_1}\left[h(x)\frac{\rho_1(x)}{\hat{\rho}_1(x)}\right]$$

Effective when $\rho_1, \hat{\rho}_1$ overlap

Markov Chain Monte Carlo build randomized sequence of samples $\{x_i\}_{i=1}^N$ so that

 $\lim_{N \to \infty} \mathbb{E}[h(x)]_N \to \mathbb{E}[h(x)]$

Common tool: Langevin Dynamics

Langevin dynamics on 2dimensional distribution

Importance Sampling

 $\rho_1(x)$

Re-weight samples from cheap surrogate model

$$\mathbb{E}_{\rho_1}[h(x)] = \mathbb{E}_{\hat{\rho}_1}\left[h(x)\frac{\rho_1(x)}{\hat{\rho}_1(x)}\right]$$

Effective when $\rho_1, \hat{\rho}_1$ overlap

October 24, 2024

Markov Chain Monte Carlo build randomized sequence of samples $\{x_i\}_{i=1}^N$ so that

 $\lim_{N \to \infty} \mathbb{E}[h(x)]_N \to \mathbb{E}[h(x)]$

Common tool: Langevin Dynamics

Langevin dynamics on 2dimensional distribution

Importance Sampling

 $\rho_1(x)$

Re-weight samples from cheap surrogate model

$$\mathbb{E}_{\rho_1}[h(x)] = \mathbb{E}_{\hat{\rho}_1}\left[h(x)\frac{\rho_1(x)}{\hat{\rho}_1(x)}\right]$$

Effective when $\rho_1, \hat{\rho}_1$ overlap

October 24, 2024

Limitations of MCMC and IS

Markov Chain Monte Carlo build randomized sequence of samples $\{x_i\}_{i=1}^N$ so that

Convergence can be exponentially slow

Common tool: Langevin Dynamics

 $dX_t = -\epsilon \nabla U_1(X_t)dt + \sqrt{2\epsilon}dW_t$

gradient drift

incremental brownian

motion

Non-log concave target, exponentially slow mixing

Importance Sampling

Re-weight samples from cheap surrogate model

$$\mathbb{E}_{\rho_1}[h(x)] = \mathbb{E}_{\hat{\rho}_1}\left[h(x)\frac{\rho_1(x)}{\hat{\rho}_1(x)}\right]$$

Variance can be exponentially bad, especially in high dimension

Limitations of MCMC and IS

Markov Chain Monte Carlo build randomized sequence of samples $\{x_i\}_{i=1}^N$ so that

Convergence can be exponentially slow

Common tool: Langevin Dynamics

 $dX_t = -\epsilon \nabla U_1(X_t)dt + \sqrt{2\epsilon}dW_t$

gradient drift

incremental brownian

motion

Non-log concave target, exponentially slow mixing

Importance Sampling

Re-weight samples from cheap surrogate model

$$\mathbb{E}_{\rho_1}[h(x)] = \mathbb{E}_{\hat{\rho}_1}\left[h(x)\frac{\rho_1(x)}{\hat{\rho}_1(x)}\right]$$

Variance can be exponentially bad, especially in high dimension

Introduce dynamics which anneal to $U_1(x)$ from some $U_0(x)$

 $U_t(x) = (1 - t)U_0 + tU_1$ PDF: $\rho_t(x) = e^{-U_t(x) + F_t}$, $F_t = -\log Z_t$

Introduce dynamics which anneal to $U_1(x)$ from some $U_0(x)$

$$U_t(x) = (1-t)U_0 + tU_1$$
 PDF: $\rho_t(x) = e^{-U_t(x) + F_t}, \quad F_t = -\log Z_t$

SDE:

$$d\tilde{X}_t = -\epsilon_t \nabla U_t(\tilde{X}_t) dt + \sqrt{2\epsilon_t} dW_t$$

- Time evolving potential
- ϵ_t sets speed of walkers per time step
- high temperature -> low temperature helps with multimodality

Introduce dynamics which anneal to $U_1(x)$ from some $U_0(x)$

$$U_t(x) = (1-t)U_0 + tU_1$$
 PDF: $\rho_t(x) = e^{-U_t(x) + F_t}, \quad F_t = -\log Z_t$

SDE:

$$d\tilde{X}_t = -\epsilon_t \nabla U_t(\tilde{X}_t) dt + \sqrt{2\epsilon_t} dW_t$$

- Time evolving potential
- ϵ_t sets speed of walkers per time step
- high temperature -> low temperature helps with multimodality

Introduce dynamics which anneal to $U_1(x)$ from some $U_0(x)$

$$U_t(x) = (1 - t)U_0 + tU_1$$
 PDF: $\rho_t(x) = e^{-U_t(x) + F_t}, \quad F_t = -\log Z_t$

SDE:

$$d\tilde{X}_t = -\epsilon_t \nabla U_t(\tilde{X}_t) dt + \sqrt{2\epsilon_t} dW_t$$

- Time evolving potential
- ϵ_t sets speed of walkers per time step
- high temperature -> low temperature helps with multimodality

Question: does the solution \tilde{X}_t to this SDE have ρ_t as its density?

Introduce dynamics which anneal to $U_1(x)$ from some $U_0(x)$

$$U_t(x) = (1 - t)U_0 + tU_1$$
 PDF: $\rho_t(x) = e^{-U_t(x) + F_t}, \quad F_t = -\log Z_t$

SDE:

$$d\tilde{X}_t = -\epsilon_t \nabla U_t(\tilde{X}_t) dt + \sqrt{2\epsilon_t} dW_t$$

- Time evolving potential
- ϵ_t sets speed of walkers per time step
- high temperature -> low temperature helps with multimodality

Question: does the solution \tilde{X}_t to this SDE have ρ_t as its density?

Introduce dynamics which anneal to $U_1(x)$ from some $U_0(x)$

$$U_t(x) = (1 - t)U_0 + tU_1$$
 PDF: $\rho_t(x) = e^{-U_t(x) + F_t}, \quad F_t = -\log Z_t$

SDE:

$$d\tilde{X}_t = -\epsilon_t \nabla U_t(\tilde{X}_t) dt + \sqrt{2\epsilon_t} dW_t$$

- Time evolving potential
- ϵ_t sets speed of walkers per time step
- high temperature -> low temperature helps with multimodality

tion: does the solution $ilde{X}_t$ to this SDE have ho_t as its density?

NO! only if $\epsilon_t \to \infty$ and $dt \to 0$Why?

Introduce dynamics which anneal to $U_1(x)$ from some $U_0(x)$

$$U_t(x) = (1 - t)U_0 + tU_1$$
 PDF: $\rho_t(x) = e^{-U_t(x) + F_t}, \quad F_t = -\log Z_t$

SDE:

$$d\tilde{X}_t = -\epsilon_t \nabla U_t(\tilde{X}_t) dt + \sqrt{2\epsilon_t} dW_t$$

- Time evolving potential
- ϵ_t sets speed of walkers per time step
- high temperature -> low temperature helps with multimodality

tion: does the solution $ilde{X}_t$ to this SDE have ho_t as its density?

NO! only if $\epsilon_t \to \infty$ and $dt \to 0$Why?

 $\tilde{\rho}_t \neq \rho_t !$

Compare the Fokker-Planck to $\partial_t \rho_t$

$$\rho_t(x) = e^{-U_t(x) + F_t}$$

IVEL IRI Itasi

SDE: $d\tilde{X}_t = -\epsilon_t \nabla U_t(\tilde{X}_t) dt + \sqrt{2\epsilon_t} dW_t$

FPE: $\partial_t \tilde{\rho}_t = \epsilon \nabla \cdot (\nabla U_t \tilde{\rho}_t + \nabla \tilde{\rho}_t)$

 $\tilde{\rho}_t \neq \rho_t !$

Compare the Fokker-Planck to $\partial_t \rho_t$

$$\rho_t(x) = e^{-U_t(x) + F_t}$$

SDE: $d\tilde{X}_t = -\epsilon_t \nabla U_t(\tilde{X}_t) dt + \sqrt{2\epsilon_t} dW_t$ FPE: $\partial_t \tilde{\rho}_t = \epsilon \nabla \cdot (\nabla U_t \tilde{\rho}_t + \nabla \tilde{\rho}_t)$

Direct calculation:

$$\begin{aligned} \partial_t \rho_t &= \frac{\partial}{\partial t} \left[e^{-U_t(x) + F_t} \right] - (\partial_t U_t - \partial_t F_t) \rho_t \\ &= \epsilon_t \nabla \cdot (\nabla U_t \rho_t + \nabla \rho_t) + (\partial_t U_t - \partial_t F_t) \rho_t \quad \text{since } \nabla \rho_t = -\nabla U_t \rho_t \end{aligned}$$

 $\tilde{\rho}_t \neq \rho_t$!

Compare the Fokker-Planck to $\partial_t \rho_t$

$$\rho_t(x) = e^{-U_t(x) + F_t}$$

SDE: $d\tilde{X}_t = -\epsilon_t \nabla U_t(\tilde{X}_t) dt + \sqrt{2\epsilon_t} dW_t$ FPE: $\partial_t \tilde{\rho}_t = \epsilon \nabla \cdot (\nabla U_t \tilde{\rho}_t + \nabla \tilde{\rho}_t)$

Direct calculation:

$$\begin{aligned} \partial_t \rho_t &= \frac{\partial}{\partial t} \left[e^{-U_t(x) + F_t} \right] - (\partial_t U_t - \partial_t F_t) \rho_t \\ &= \epsilon_t \nabla \cdot (\nabla U_t \rho_t + \nabla \rho_t) + (\partial_t U_t - \partial_t F_t) \rho_t \quad \text{since } \nabla \rho_t = -\nabla U_t \rho_t \end{aligned}$$

 $\partial_t \rho_t$ and $\partial_t \tilde{\rho}_t$ differ by factor arising from time dynamics of U_t In practice, the walkers \tilde{X}_t "lag behind" the intended evolution of ρ_t

Compare the Fokker-Planck to $\partial_t \rho_t$

 $\rho_t(x) = e^{-U_t(x) + F_t}$

 $\partial_t \rho_t$ and $\partial_t \tilde{\rho}_t$ differ by factor arising from time dynamics of U_t

In practice, the walkers \tilde{X}_t "lag behind" the intended evolution of ρ_t

This can in theory be fixed with re-weighting

Compare the Fokker-Planck to $\partial_t \rho_t$

 $\rho_t(x) = e^{-U_t(x) + F_t}$

 $\partial_t \rho_t$ and $\partial_t \tilde{\rho}_t$ differ by factor arising from time dynamics of U_t

In practice, the walkers \tilde{X}_t "lag behind" the intended evolution of ρ_t

This can in theory be fixed with re-weighting

Compare the Fokker-Planck to $\partial_t \rho_t$

 $\rho_t(x) = e^{-U_t(x) + F_t}$

 $\partial_t \rho_t$ and $\partial_t \tilde{\rho}_t$ differ by factor arising from time dynamics of U_t

In practice, the walkers \tilde{X}_t "lag behind" the intended evolution of ρ_t

This can in theory be fixed with re-weighting

October 24, 2024

Compare the Fokker-Planck to $\partial_t \rho_t$

 $\rho_t(x) = e^{-U_t(x) + F_t}$

 $\partial_t \rho_t$ and $\partial_t \tilde{\rho}_t$ differ by factor arising from time dynamics of U_t

In practice, the walkers \tilde{X}_t "lag behind" the intended evolution of ρ_t

This can in theory be fixed with re-weighting

October 24, 2024

Jarzynski Equality:

MSA & Vanden-Eijnden arXiv:2410.02711 (2024); Jarzynski, PRL **78**, 2690 (1997)

Introduce weights A_t to account for the lag of the walkers

• Can be proven by looking at the FPE for the joint $pdf_t(x, a) : \mathbb{R}^{d+1} \to \mathbb{R}$

Jarzynski Equality:

MSA & Vanden-Eijnden arXiv:2410.02711 (2024); Jarzynski, PRL **78**, 2690 (1997)

Introduce weights A_t to account for the lag of the walkers

- Can be proven by looking at the FPE for the joint $pdf_t(x, a) : \mathbb{R}^{d+1} \to \mathbb{R}$
- **Problem**: variance of e^{A_t} may be so large that re-weighting not useful

Jarzynski Equality:

- Can be proven by looking at the FPE for the joint $pdf_t(x, a) : \mathbb{R}^{d+1} \to \mathbb{R}$
- **Problem**: variance of e^{A_t} may be so large that re-weighting not useful

 X_t flow map given by velocity field b(t, x)

 $X_{t=0}(x) = x \in \mathbb{R}^d$ $\dot{X}_t(x) = b_t(X_t(x))$

October 24, 2024

At the level of the of the distribution, how does $\rho(t, x)$ evolve?

Transport equation

$$\partial_t \rho_t + \nabla \cdot (b_t \rho_t) = 0, \quad \rho_{t=0} = \rho_0$$

If $\rho(t)$ solves TE, then $\rho_{t=1} = \rho_1$

 $X_{t} \text{ flow map given by velocity field } b(t, x) \qquad t = 1 \qquad X_{t=1} = T$ $X_{t=0}(x) = x \in \mathbb{R}^{d}$ $\dot{X}_{t}(x) = b_{t}(X_{t}(x))$ $t = 0 \qquad y = 0$ $t = 0 \qquad y = 0$ y = 0

At the level of the of the distribution, how does $\rho(t, x)$ evolve?

Transport equation

$$\partial_t \rho_t + \nabla \cdot (b_t \rho_t) = 0, \quad \rho_{t=0} = \rho_0$$

If $\rho(t)$ solves TE, then $\rho_{t=1} = \rho_1$

Fokker-Planck Equation

$$\partial_t \rho_t + \nabla \cdot (b_t \rho_t) = \epsilon \nabla \cdot (\nabla U_t \rho_t + \nabla \rho_t)$$

 $X_{t} \text{ flow map given by velocity field } b(t, x) \qquad t = 1 \qquad X_{t=1} = T$ $X_{t=0}(x) = x \in \mathbb{R}^{d}$ $\dot{X}_{t}(x) = b_{t}(X_{t}(x))$ $t = 0 \qquad y = 0$ $f = 0 \qquad y = 0$ $f = 0 \qquad y = 0$ $f = 0 \qquad y = 0$

At the level of the of the distribution, how does $\rho(t, x)$ evolve?

Transport equation

$$\partial_t \rho_t + \nabla \cdot (b_t \rho_t) = 0, \quad \rho_{t=0} = \rho_0$$

If $\rho(t)$ solves TE, then $\rho_{t=1} = \rho_1$

Exact sampling

If
$$X_t$$
 solves $dX_t = -\epsilon_t \nabla U_t(X_t)dt + b_t(X_t)dt + \sqrt{2\epsilon_t}dW_t$

Then $X_t \sim \rho_t$

Non-equilibrium transport sampler

What if you don't have the perfect b_t ?

MSA & Vanden-Eijnden arXiv:2410.02711 (2024); Vargas et al ICLR (2024); Vaikuntanathan and Jarzynski, PRL **78**, 2690 (2008)

Using
$$\nabla \cdot (\hat{b}_t \rho_t) = \nabla \cdot \hat{b}_t \rho_t - \nabla U_t \cdot b_t \rho_t$$

FPE:

New non-eq term!

$$\partial_t \rho_t + \nabla \cdot (\hat{b}_t \rho_t) = \epsilon_t \nabla \cdot (\nabla U_t \rho_t + \nabla \rho_t) + (\nabla \cdot \hat{b}_t - \nabla U_t \cdot \hat{b}_t - \partial_t U_t + \partial_t F_t) \rho_t$$

Proposition

Let (X_t, A_t) be the solution to the coupled SDE/ODE

$$dX_t = -\epsilon_t \nabla U_t(X_t) dt + \sqrt{2\epsilon_t} dW_t, \qquad X_0 \sim \rho_0$$

$$dA_t = (\nabla \cdot \hat{b}_t(X_t) - \nabla U_t(X_t) \cdot \hat{b}_t(X_t) - \partial_t U_t(X_t))dt \qquad A_0 = 0$$

then for all test functions h(x), we have

$$\int_{\mathbb{R}^d} h(x)\rho_t(x)dx = \frac{\mathbb{E}[e^{A_t}h(x)]}{\mathbb{E}[e^{A_t}]}$$

$$Z_t/Z_0 = e^{-F_t + F_0} = \mathbb{E}\left[e^{A_t}\right]$$

Non-equilibrium transport sampler

What if you don't have the perfect b_t ?

MSA & Vanden-Eijnden arXiv:2410.02711 (2024); Vargas et al ICLR (2024); Vaikuntanathan and Jarzynski, PRL **78**, 2690 (2008)

Proposition

Let (X_t, A_t) be the solution to the coupled SDE/ODE

$$dX_{t} = -\epsilon_{t} \nabla U_{t}(X_{t})dt + \sqrt{2\epsilon_{t}}dW_{t}, \qquad X_{0} \sim \rho_{0}$$
$$dA_{t} = (\nabla \cdot \hat{b}_{t}(X_{t}) - \nabla U_{t}(X_{t}) \cdot \hat{b}_{t}(X_{t}) - \partial_{t}U_{t}(X_{t}))dt \qquad A_{0} = 0$$

then for all test functions h(x), we have

$$\int_{\mathbb{R}^d} h(x)\rho_t(x)dx = \frac{\mathbb{E}[e^{A_t}h(x)]}{\mathbb{E}[e^{A_t}]} \qquad \qquad Z_t/Z_0 = e^{-F_t + F_0} = \mathbb{E}\left[e^{A_t}\right]$$

Correctable dynamical transport for sampling

Valid for any diffusion ϵ_t which we will exploit

Strict augmentation of annealed Langevin dynamics

Learning b:

FPE:

solves the transport

removes the non-equilibrium lag

Learning b: Physics Informed Neural Network Loss

MSA & Vanden-Eijnden arXiv:2410.02711 (2024); Tian et. al ICML (2024); FPE: $\partial_t \rho_t + \nabla \cdot (\hat{b}_t \rho_t) = \epsilon_t \nabla \cdot (\nabla U_t \rho_t + \nabla \rho_t) + (\nabla \cdot \hat{b}_t - \nabla U_t \cdot \hat{b}_t - \partial_t U_t + \partial_t F_t) \rho_t$ Need either =0=0removes the non-equilibrium lag solves the transport **PINN Loss** Valid for any $\hat{\rho}_t$! Controls the KL ! All minimizers (b_t, F_t) of the objective $L_{PINN}[\hat{b},\hat{F}] = \int_{0}^{1} \int_{\mathbb{D}^d} \left| \nabla \cdot \hat{b}_t(x) - \nabla U_t(x) \cdot \hat{b}_t(x) - \partial_t U_t(x) + \partial_t \hat{F}_t \right|^2 \hat{\rho}_t(x) dx dt$ are such that $L_{PINN}[b, F] = 0$, F_t is the free energy, and b_t solves the transport

Learning b: Action Matching Loss

The minimizer $b_t = \nabla \phi_t$ of the objective

FPE:

solves the transport

removes the non-equilibrium lag

Action matching loss

Needs reweighted samples from ρ_t

$$L_{AM}^{T}[\hat{\phi}] = \int_{0}^{T} \int_{\mathbb{R}^{d}} \left[\frac{1}{2} \left| \nabla \hat{\phi}_{t}(x) \right|^{2} + \partial_{t} \hat{\phi}_{t}(x) \right] \rho_{t}(x) dx dt + \int_{\mathbb{R}^{d}} \left[\hat{\phi}_{0}(x) \rho_{0}(x) - \hat{\phi}_{T}(x) \rho_{T}(x) \right] dx$$

is unique up to a constant, and solves the transport.

Numerical Example: Painfully multimodal GMM

Turning on the diffusion improves ESS

Numerical Example: Painfully multimodal GMM

Turning on the diffusion improves ESS

More diffusion helps more with transport than without

Scaling study: Use same neural network for multimodal GMM of growing dimension

Drop in ESS for deterministic flow $\epsilon_t = 0$ can be alleviated by growing ϵ_t

Less apparent in practice if you just use annealed Langevin along!

Standard test: ϕ^4 theory

Choose energy interpolation in $m^2(t)$, $\lambda(t)$ for the action given by

$$U_t(\varphi) = \sum_x \left[-2\sum_\mu \varphi_x \varphi_{x+\mu} \right] + \left(2D + m_t^2 \right) \varphi_x^2 + \lambda_t \varphi_x^4$$

Conclusion

Dynamical formulation of unbiased sampling with transport based on Jarzynski equality

Loss functions do not require backpropagating through SDE

PINN loss is an off-policy loss! (See also Lorenz' previous talk)

Here's one more fun gif! Thanks!

Conclusion

Dynamical formulation of unbiased sampling with transport based on Jarzynski equality

Loss functions do not require backpropagating through SDE

PINN loss is an off-policy loss! (See also Lorenz' previous talk)

Here's one more fun gif! Thanks!

Backup Slides

Computationally cheaper weights!

Note that the weights do not need a divergence if you use $b_t = \nabla \phi_t$

Proposition

Let
$$(X_t, A_t)$$
 be the solution to the coupled SDE/ODE
 $dX_t = -\epsilon_t \nabla U_t(X_t)dt + \nabla \phi_t(X_t)dt + \sqrt{2\epsilon_t}dW_t,$
 $X_0 \sim \rho_0$
 $dB_t = \partial_t U_t(X_t) dt + \frac{1}{\epsilon_t} \partial_t \hat{\phi}_t(X_t) + \frac{1}{\epsilon_t} \left| \nabla \hat{\phi}_t(X_t) \right|^2 dt + \sqrt{\frac{2}{\epsilon_t}} \nabla \hat{\phi}_t(X_t) \cdot dW_t$
 $A_0 = 0$
then for all test functions $h(x)$, we have
 $\int_{\mathbb{R}^d} h(x)\rho_t(x)dx = \frac{\mathbb{E}[e^{A_t}h(x)]}{\mathbb{E}[e^{A_t}]}$
 $Z_t/Z_0 = e^{-F_t+F_0} = \mathbb{E}\left[e^{A_t}\right]$

where
$$A_t = \frac{1}{\varepsilon_t} \left[\hat{\phi}_t \left(X_t \right) - \hat{\phi}_0 \left(X_0 \right) \right] - B_t$$

works by using expanding $d\phi_t$ with Ito formula.

Proof:

Definition of the SDE/ODE for X_t , A_t with $b_t = \nabla \phi_t$

$$dX_t = -\varepsilon_t \nabla U(X_t) dt + \hat{\nabla} \phi_t(X_t) dt + \sqrt{2\varepsilon_t} dW_t, \qquad \hat{X}_0 \sim \rho_0,$$

$$dA_t = \Delta \hat{\phi}_t(X_t) dt - \nabla U_t(X_t) \cdot \nabla \hat{\phi}(X_t) dt - \partial_t U_t(X_t) dt, \qquad A_0 = 0,$$

Ito formula says

$$\begin{split} d\hat{\phi}_t(X_t) &= \partial_t \hat{\phi}_t(X_t) dt - \varepsilon_t \nabla \hat{\phi}_t(X_t) \cdot \nabla U(X_t) dt + \left| \nabla \hat{\phi}_t(X_t) \right|^2 dt \\ &+ \sqrt{2\varepsilon_t} \nabla \hat{\phi}_t(X_t) \cdot dW_t + \varepsilon_t \Delta \hat{\phi}_t(X_t) dt, \end{split}$$

Solving for $\Delta \phi_t$ allows us to write the relation

$$dA_t = \frac{1}{\varepsilon_t} d\hat{\phi}_t (X_t) dt + dB_t$$

where
$$dB_t = \partial_t U_t(X_t) dt + \frac{1}{\varepsilon_t} \partial_t \hat{\phi}_t(X_t) + \frac{1}{\varepsilon_t} \left| \nabla \hat{\phi}_t(X_t) \right|^2 dt + \sqrt{\frac{2}{\varepsilon_t}} \nabla \hat{\phi}_t(X_t) \cdot dW_t$$

E RI

Proposition 5 (KL control). Let $\hat{\rho}_t$ be the solution to the transport equation

$$\partial_t \hat{\rho}_t = -\nabla \cdot (\hat{b}_t \rho_t), \qquad \hat{\rho}_{t=0} = \rho_0 \tag{27}$$

where $\hat{b}_t(x)$ is some predefined velocity field. Then, given any estimate \hat{F}_t of the exact free energy F_t , we have

$$D_{KL}(\hat{\rho}_{t=1}||\rho_1) \le \sqrt{L_{PINN}^{T=1}(\hat{b}, \hat{F})}.$$
(28)

This proposition is proven in Appendix 5.1.

