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aka an Answer to Tej’s question of the connection between flows and 
diffusions for sampling

aka a continuous time algorithm for what Alessandro is doing

Will be related to Lorenz’s talk! arxiv:2407.07873
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Remember this from yesterday?

Improved ESS by growing the # of 
discrete affine flows + stochastic steps

NETS is a continuous time limit of SNFs

• Can choose how many steps + diffusion after training

• Knob to explicitly get more performance from more compute
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Advertisement: New Research group

In 2026 I will be starting a group at 
Harvard in Applied mathematics + 
Kempner Institute

• Interdisciplinary! Computationally inclined, 
mathematically inclined welcome

• Current undergraduates, master’s 
students, graduating PhDs, and 
postdocs, please reach out if interested

• Theme: Nature and Computation

• Advisors, please forward your students :)
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Agenda

Annealed Importance Sampling and Jarzynski’s equality

Dynamical Measure Transport

Combining the two!

New learning algorithms Applications, e.g. field theory

Problem statement Much related work!

Recent methods for learning maps between distributions
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Agenda

Annealed Importance Sampling and Jarzynski’s equality

Dynamical Measure Transport

Combining the two!

New learning algorithms Applications, e.g. field theory

Problem statement Much related work!

Recent methods for learning maps between distributions

Main motivation for this work:

Can we explicitly get a machine 
learning-augmented sampling setup for 
which “when I pay more from using my 
model, I get more from my model”? 
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Agenda

Annealed Importance Sampling and Jarzynski’s equality

Dynamical Measure Transport

Combining the two!

New learning algorithms Applications, e.g. field theory

Problem statement Much related work!

Recent methods for learning maps between distributions

Joint work with Eric 
Vanden-Eijnden
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Thanks to all collaborators!
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M. Lindsey
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K. Cranmer N. Boffi

R. Ranganath E. Vanden-EijndenM. Goldstein Y. LeCun S. Xie Y. Chen
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Problem Setup

Sampling problem ubiquitous!

Goal: estimate the unknown probability density function  either through:

1. sample data 

2. query access to the unnormalized log likelihood (energy function)

ρ1 ∈ 𝒟(Ω)
{xi}n

i=1

(obviously, to this audience)
energy function U1(x)

MD simulations

quantum field 
theory

condensed 
matter

bayesian inference in GW 
astronomy

1809.02293
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Approaches to sampling
build randomized sequence of samples  so that{xi}N

i=1Markov Chain Monte Carlo

Common tool: Langevin Dynamics

ρ1(x)

Langevin dynamics on 2-
dimensional distribution

lim
N→∞

𝔼[h(x)]N → 𝔼[h(x)]

dXt = − ϵ∇U1(Xt)dt + 2ϵdWt

Importance Sampling 

incremental brownian 
motiongradient drift

Re-weight samples from 
cheap surrogate model

𝔼
  𝔼  


Effective when  overlap ρ1, ̂ρ1
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Variance can be exponentially 
bad, especially in high dimension

11

Limitations of MCMC and IS
build randomized sequence of samples  so that{xi}N

i=1Markov Chain Monte Carlo

Common tool: Langevin Dynamics

dXt = − ϵ∇U1(Xt)dt + 2ϵdWt

Importance Sampling 

incremental brownian 
motiongradient drift

Re-weight samples from 
cheap surrogate model

𝔼ρ1
[h(x)] = 𝔼 ̂ρ1 [h(x) ρ1(x)

̂ρ1(x) ]

Non-log concave target, 
exponentially slow mixing

ρ1(x) Convergence can be 
exponentially slow
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Common Augmentation: Annealed Langevin Dynamics

Introduce dynamics which anneal to  from some U1(x) U0(x)

Ut(x) = (1 − t)U0 + tU1 PDF: ρt(x) = e−Ut(x)+Ft, Ft = − log Zt
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Introduce dynamics which anneal to  from some U1(x) U0(x)

SDE:

dX̃t = − ϵt ∇Ut(X̃t)dt + 2ϵtdWt

• Time evolving potential
•  sets speed of walkers per time stepϵt

• high temperature -> low temperature 
helps with multimodality

Ut(x) = (1 − t)U0 + tU1 PDF: ρt(x) = e−Ut(x)+Ft, Ft = − log Zt
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 ! ρ̃t ≠ ρt

Compare the Fokker-Planck to ∂tρt

SDE:
dX̃t = − ϵt ∇Ut(X̃t)dt + 2ϵtdWt

FPE:
∂t ρ̃t = ϵ∇ ⋅ (∇Ut ρ̃t + ∇ρ̃t)

ρt(x) = e−Ut(x)+Ft
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 ! ρ̃t ≠ ρt

Compare the Fokker-Planck to ∂tρt

SDE:
dX̃t = − ϵt ∇Ut(X̃t)dt + 2ϵtdWt

FPE:
∂t ρ̃t = ϵ∇ ⋅ (∇Ut ρ̃t + ∇ρ̃t)

ρt(x) = e−Ut(x)+Ft

Direct calculation:

∂tρt = ∂
∂t [e−Ut(x)+Ft] − (∂tUt − ∂tFt)ρt

= ϵt∇ ⋅ (∇Utρt + ∇ρt) + (∂tUt − ∂tFt)ρt since ∇ρt = − ∇Utρt
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 and  differ by 
factor arising from time 

dynamics of 

∂tρt ∂t ρ̃t

Ut

In practice, the walkers 
 “lag behind” the 

intended evolution of 
X̃t

ρt
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The lag of  in practiceX̃t

Compare the Fokker-Planck to ∂tρt ρt(x) = e−Ut(x)+Ft

 and  differ by 
factor arising from time 

dynamics of 

∂tρt ∂t ρ̃t

Ut

In practice, the walkers 
 “lag behind” the 

intended evolution of 
X̃t

ρt

This can in theory be fixed with re-weighting
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Jarzynski Equality:

Proposition
Let  be the solution to the coupled SDE/ODE(Xt, At)

Introduce weights  to account for the lag of the walkersAt

dXt = − ϵt ∇Ut(Xt)dt + 2ϵtdWt, X0 ∼ ρ0

dAt = − ∂tUt(Xt)dt A0 = 0

then for all test functions , we have  h(x)

∫ℝd

h(x)ρt(x)dx =
𝔼[eAth(x)]

𝔼[eAt]

• Can be proven by looking at the FPE for the joint pdf ft(x, a) : ℝd+1 → ℝ

Zt /Z0 = e−Ft+F0 = 𝔼 [eAt]

Jarzynski! change in 
free energy

average 
work!

MSA & Vanden-Eijnden  arXiv:2410.02711 (2024);

Jarzynski, PRL  78, 2690  (1997)



October 24, 2024 22

Jarzynski Equality:

Proposition
Let  be the solution to the coupled SDE/ODE(Xt, At)

Introduce weights  to account for the lag of the walkersAt

dXt = − ϵt ∇Ut(Xt)dt + 2ϵtdWt, X0 ∼ ρ0

dAt = − ∂tUt(Xt)dt A0 = 0

then for all test functions , we have  h(x)

MSA & Vanden-Eijnden  arXiv:2410.02711 (2024);

Jarzynski, PRL  78, 2690  (1997)

∫ℝd

h(x)ρt(x)dx =
𝔼[eAth(x)]

𝔼[eAt]

• Can be proven by looking at the FPE for the joint pdf ft(x, a) : ℝd+1 → ℝ
• Problem:  variance of  may be so large that re-weighting not usefuleAt

Zt /Z0 = e−Ft+F0 = 𝔼 [eAt]
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Jarzynski Equality:

Proposition
Let  be the solution to the coupled SDE/ODE(Xt, At)

Introduce weights  to account for the lag of the walkersAt

dXt = − ϵt ∇Ut(Xt)dt + 2ϵtdWt, X0 ∼ ρ0

dAt = − ∂tUt(Xt)dt A0 = 0

then for all test functions , we have  h(x)

∫ℝd

h(x)ρt(x)dx =
𝔼

𝔼

• Can be proven by looking at the FPE for thejoint pdf ft(x, a) : ℝd+1 → ℝ

• Problem:  variance of  may be so large that re-weighting not usefuleAt

Can we fix this with measure transport?

MSA & Vanden-Eijnden  arXiv:2410.02711 (2024);

Jarzynski, PRL  78, 2690  (1997)
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Measure Transport

May 28, 2023

space

tim
e

t = 0

t = 1

X0(x) = x

Xt(x)

Xt=1 = T

Xt=0(x) = x ∈ ℝd

·Xt(x) = bt(Xt(x))

 flow map given by velocity field  Xt b(t, x)
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If  solves TE, then ρ(t) ρt=1 = ρ1

At the level of the of the distribution, how does  evolve?ρ(t, x)

∂tρt + ∇ ⋅ (btρt) = ϵ∇ ⋅ (∇Utρt + ∇ρt)Fokker-Planck 
Equation

·Xt(x) = bt(Xt(x))
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Measure Transport

May 28, 2023

space

tim
e

t = 0

t = 1

X0(x) = x

Xt(x)

Xt=1 = T

Xt=0(x) = x ∈ ℝd

·Xt(x) = bt(Xt(x))

 flow map given by velocity field  Xt b(t, x)

∂tρt + ∇ ⋅ (btρt) = 0, ρt=0 = ρ0
Transport 
equation

If  solves TE, then ρ(t) ρt=1 = ρ1

At the level of the of the distribution, how does  evolve?ρ(t, x)

Exact sampling

If  solves Xt dXt = − ϵt ∇Ut(Xt)dt + bt(Xt)dt + 2ϵtdWt Then Xt ∼ ρt
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Non-equilibrium transport sampler

What if you don’t have the perfect  ?bt

Using ∇ ⋅ (b̂tρt) = ∇ ⋅ b̂tρt − ∇Ut ⋅ btρt

MSA & Vanden-Eijnden  arXiv:2410.02711 (2024);

Vargas et al ICLR  (2024);


Vaikuntanathan and Jarzynski, PRL  78, 2690  (2008)

∂tρt + ∇ ⋅ (b̂tρt) = ϵt∇ ⋅ (∇Utρt + ∇ρt) + (∇ ⋅ b̂t − ∇Ut ⋅ b̂t − ∂tUt + ∂tFt)ρt

FPE: New non-eq term!

Proposition
Let  be the solution to the coupled SDE/ODE(Xt, At)

dXt = − ϵt ∇Ut(Xt)dt + 2ϵtdWt, X0 ∼ ρ0

dAt = (∇ ⋅ b̂t(Xt) − ∇Ut(Xt) ⋅ b̂t(Xt) − ∂tUt(Xt))dt A0 = 0

then for all test functions , we have  h(x)

∫ℝd

h(x)ρt(x)dx =
𝔼[eAth(x)]

𝔼[eAt] Zt /Z0 = e−Ft+F0 = 𝔼 [eAt]
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Non-equilibrium transport sampler

What if you don’t have the perfect  ?bt
MSA & Vanden-Eijnden  arXiv:2410.02711 (2024);


Vargas et al ICLR  (2024);

Vaikuntanathan and Jarzynski, PRL  78, 2690  (2008)

Proposition
Let  be the solution to the coupled SDE/ODE(Xt, At)

dXt = − ϵt ∇Ut(Xt)dt + 2ϵtdWt, X0 ∼ ρ0

dAt = (∇ ⋅ b̂t(Xt) − ∇Ut(Xt) ⋅ b̂t(Xt) − ∂tUt(Xt))dt A0 = 0

then for all test functions , we have  h(x)

∫ℝd

h(x)ρt(x)dx =
𝔼[eAth(x)]

𝔼[eAt] Zt /Z0 = e−Ft+F0 = 𝔼 [eAt]
Correctable dynamical transport for sampling

Valid for any diffusion  which we will exploitϵt

Strict augmentation of annealed Langevin dynamics
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Learning b:

∂tρt + ∇ ⋅ (b̂tρt) = ϵt∇ ⋅ (∇Utρt + ∇ρt) + (∇ ⋅ b̂t − ∇Ut ⋅ b̂t − ∂tUt + ∂tFt)ρt

Need either =0 =0
solves the transport removes the non-equilibrium lag

FPE:
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Learning b: Physics Informed Neural Network Loss

∂tρt + ∇ ⋅ (b̂tρt) = ϵt∇ ⋅ (∇Utρt + ∇ρt) + (∇ ⋅ b̂t − ∇Ut ⋅ b̂t − ∂tUt + ∂tFt)ρt

Need either =0 =0
solves the transport removes the non-equilibrium lag

FPE:

PINN Loss

LPINN[b̂, ̂F] = ∫
1

0 ∫ℝd

∇ ⋅ b̂t(x) − ∇Ut(x) ⋅ b̂t(x) − ∂tUt(x) + ∂t
̂Ft

2
̂ρt(x)dxdt

All minimizers  of the objective(bt, Ft)

are such that ,  is the free energy, and  solves 
the transport  

LPINN[b, F] = 0 Ft bt

Valid for any  !
Controls the KL !

̂ρt

MSA & Vanden-Eijnden  arXiv:2410.02711 (2024);

Tian et. al ICML (2024); 
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Learning b: Action Matching Loss

∂tρt + ∇ ⋅ (b̂tρt) = ϵt∇ ⋅ (∇Utρt + ∇ρt) + (∇ ⋅ b̂t − ∇Ut ⋅ b̂t − ∂tUt + ∂tFt)ρt

Need either =0 =0
solves the transport removes the non-equilibrium lag

FPE:

Action matching loss

LT
AM[ ̂ϕ] = ∫

T

0 ∫ℝd [ 1
2

∇ ̂ϕt(x)
2

+ ∂t
̂ϕt(x)] ρt(x)dxdt

+∫ℝd
[ ̂ϕ0(x)ρ0(x) − ̂ϕT(x)ρT(x)] dx

The minimizer  of the objectivebt = ∇ϕt

is unique up to a constant, and solves the transport. 

Needs reweighted 
samples from ρt
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Numerical Example: Painfully multimodal GMM

°40 °20 0 20 40

°40

°20

0

20

40

ESS: 0.7%

AIS, no transport, ≤ = 4.0

°40 °20 0 20 40

ESS: 95%

Only transport, ≤ = 0.0

°40 °20 0 20 40

ESS: 98%

AIS and transport, ≤ = 4.0

Turning on the diffusion improves ESS
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More diffusion helps more with transport than without

0 10 20 30 40 50 60 70 80

DiÆusion coe±cient ≤

0.0
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ze

8-mode GMM, dim=[36, 64, 128, 200]

dim=36, transport

dim=36, no transport

dim=64, transport

dim=64, no transport

dim=128, transport

dim=128, no transport

dim=200, transport

dim=200, no transport

-8

0

8
Cross section of x27 vs x3 Cross section of x10 vs x24 Cross section of x13 vs x27
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Scaling study: Use same neural network for multimodal GMM of 
growing dimension

Drop in ESS for deterministic flow  can be alleviated by growing  ϵt = 0 ϵt

Less apparent in practice if you just use annealed Langevin along!
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Standard test:  theoryϕ4
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Choose energy interpolation in  for the action given bym2(t), λ(t)

Ut(φ) = ∑
x

[− 2∑
μ

φxφx+μ] + (2D + m2
t ) φ2

x + λtφ4
x

at phase 
transition

passed phase 
transition
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Conclusion

Dynamical formulation of unbiased sampling with 
transport based on Jarzynski equality

Loss functions do not require backpropagating through 
SDE

PINN loss is an off-policy loss! (See also Lorenz’ previous talk)

Here’s one more fun gif! Thanks!
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Computationally cheaper weights!

Proposition
Let  be the solution to the coupled SDE/ODE(Xt, At)
dXt = − ϵt ∇Ut(Xt)dt + ∇ϕt(Xt)dt + 2ϵtdWt, X0 ∼ ρ0

dBt = ∂tUt (Xt) dt+ 1
εt

∂t
̂ϕt (Xt)+ 1

εt
∇ ̂ϕt(Xt)

2
dt + 2

εt
∇ ̂ϕt (Xt) ⋅ dWt A0 = 0

then for all test functions , we have  h(x)

∫ℝd

h(x)ρt(x)dx =
𝔼[eAth(x)]

𝔼[eAt] Zt /Z0 = e−Ft+F0 = 𝔼 [eAt]

Note that the weights do not need a divergence if you use bt = ∇ϕt

where At = 1
εt

[ ̂ϕt (Xt) − ̂ϕ0(X0)] − Bt

works by using expanding  with Ito formula.dϕt
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Proof:

dXt = − εt ∇U(Xt)dt + ∇̂ϕt(Xt)dt + 2εtdWt, X̂0 ∼ ρ0,

dAt = Δ ̂ϕt(Xt)dt − ∇Ut(Xt) ⋅ ∇ ̂ϕ(Xt)dt − ∂tUt(Xt)dt, A0 = 0,

Definition of the SDE/ODE for  with Xt, At bt = ∇ϕt

Ito formula says

d ̂ϕt(Xt) = ∂t
̂ϕt(Xt)dt − εt ∇ ̂ϕt(Xt) ⋅ ∇U(Xt)dt + ∇ ̂ϕt(Xt)

2
dt

+ 2εt ∇ ̂ϕt(Xt) ⋅ dWt + εtΔ ̂ϕt(Xt)dt,

Solving for  allows us to write the relationΔϕt

dAt = 1
εt

d ̂ϕt(Xt)dt + dBt

where dBt = ∂tUt (Xt) dt+ 1
εt

∂t
̂ϕt (Xt)+ 1

εt
∇ ̂ϕt(Xt)

2
dt + 2

εt
∇ ̂ϕt (Xt) ⋅ dWt
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