Will be related to Lorenz's talk! arxiv:2407.07873

NETS A Non-Equilibrium Transport Sampler

aka an Answer to Tej's question of the connection between flows and diffusions for sampling

aka a continuous time algorithm for what Alessandro is doing

Michael Albergo Bonn, Germany October 24 2024

Remember this from yesterday?

Stochastic normalizing flows as

non-equilibrium transformations

Michele Caselle^{1,2},* Elia Cellini^{1,2},[†] Alessandro Nada^{1‡} and Marco Panero^{1,2§}

Improved ESS by growing the # of discrete affine flows + stochastic steps

NETS is a continuous time limit of SNFs

- Can choose how many steps + diffusion *after training*
- Knob to explicitly get more performance from more compute

Advertisement: New Research group

In 2026 I will be starting a group at Harvard in Applied mathematics + Kempner Institute

- *• Theme: Nature and Computation*
- *• Interdisciplinary! Computationally inclined, mathematically inclined welcome*
- *• Current undergraduates, master's students, graduating PhDs, and postdocs, please reach out if interested*
- *•Advisors, please forward your students :)*

Advertisement: New Research group

In 2026 I will be starting a group at Harvard in Applied mathematics + Kempner Institute

- *• Theme: Nature and Computation*
- *• Interdisciplinary! Computationally inclined, mathematically inclined welcome*
- *• Current undergraduates, master's students, graduating PhDs, and postdocs, please reach out if interested*
- *•Advisors, please forward your students :)*

Annealed Importance Sampling and Jarzynski's equality

Problem statement Much related work!

Dynamical Measure Transport

Recent methods for learning maps between distributions

Combining the two!

New learning algorithms Applications, e.g. field theory

Annealed Importance Sampling and Jarzynski's equality

New learning algorithms Applications, e.g. field theory

1001 1001
10291

Annealed Importance Sampling and Jarzynski's equality

New learning algorithms Applications, e.g. field theory

Thanks to all collaborators!

D. Boyda

J. Urban

M. Lindsey

_b
Universität
Bern

AEC
ALBERT EINSTEIN CENTER
FOR FUNDAMENTAL PHYSICS

G. Kanwar

Center for Computational Quantum Physics

P. Lunts

A. Patel

M. Goldstein **R. Ranganath E. Vanden-Eijnden** Y. LeCun S. Xie Y. Chen

Problem Setup

Goal: estimate the unknown *probability density function* $\rho_1 \in \mathscr{D}(\Omega)$ either through:

- 1. sample data $\{x_i\}_{i=1}^n$
- **2. query access to the unnormalized log likelihood (energy function)**

Sampling problem ubiquitous!

pling problem upiquitous:
(obviously, to this audience) energy function $U_1(x)$

Problem Setup

Goal: estimate the unknown *probability density function* $\rho_1 \in \mathscr{D}(\Omega)$ either through:

- 1. sample data $\{x_i\}_{i=1}^n$
- **2. query access to the unnormalized log likelihood (energy function)**

Sampling problem ubiquitous!

pling problem upiquitous:
(obviously, to this audience) energy function $U_1(x)$

Markov Chain Monte Carlo build randomized sequence of samples $\{x_i\}_{i=1}^N$ so that

 $\lim_{N \to \infty} \mathbb{E}[h(x)]_N \to \mathbb{E}[h(x)]$ *N*→∞

Common tool: Langevin Dynamics

Langevin dynamics on 2 dimensional distribution

Importance Sampling

 $\rho_1(x)$

Re-weight samples from cheap surrogate model

$$
\mathbb{E}_{\rho_1}[h(x)] = \mathbb{E}_{\hat{\rho}_1}\left[h(x)\frac{\rho_1(x)}{\hat{\rho}_1(x)}\right]
$$

Markov Chain Monte Carlo build randomized sequence of samples $\{x_i\}_{i=1}^N$ so that

 $\lim_{N \to \infty} \mathbb{E}[h(x)]_N \to \mathbb{E}[h(x)]$ *N*→∞

Common tool: Langevin Dynamics

Langevin dynamics on 2 dimensional distribution

Importance Sampling

 $\rho_1(x)$

Re-weight samples from cheap surrogate model

$$
\mathbb{E}_{\rho_1}[h(x)] = \mathbb{E}_{\hat{\rho}_1}\left[h(x)\frac{\rho_1(x)}{\hat{\rho}_1(x)}\right]
$$

Markov Chain Monte Carlo build randomized sequence of samples $\{x_i\}_{i=1}^N$ so that

 $\lim_{N \to \infty} \mathbb{E}[h(x)]_N \to \mathbb{E}[h(x)]$ *N*→∞

Common tool: Langevin Dynamics

Langevin dynamics on 2 dimensional distribution

Importance Sampling

 $\rho_1(x)$

Re-weight samples from cheap surrogate model

$$
\mathbb{E}_{\rho_1}[h(x)] = \mathbb{E}_{\hat{\rho}_1}\left[h(x)\frac{\rho_1(x)}{\hat{\rho}_1(x)}\right]
$$

Markov Chain Monte Carlo build randomized sequence of samples $\{x_i\}_{i=1}^N$ so that

 $\lim_{N \to \infty} \mathbb{E}[h(x)]_N \to \mathbb{E}[h(x)]$ *N*→∞

Common tool: Langevin Dynamics

Langevin dynamics on 2 dimensional distribution

Importance Sampling

 $\rho_1(x)$

Re-weight samples from cheap surrogate model

$$
\mathbb{E}_{\rho_1}[h(x)] = \mathbb{E}_{\hat{\rho}_1}\left[h(x)\frac{\rho_1(x)}{\hat{\rho}_1(x)}\right]
$$

Limitations of MCMC and IS

Markov Chain Monte Carlo build randomized sequence of samples $\{x_i\}_{i=1}^N$ so that

exponentially slow

Common tool: Langevin Dynamics

 $dX_t = -\epsilon \nabla U_1(X_t)dt + \sqrt{2\epsilon}dW_t$

gradient drift motion and motion motion

incremental brownian

Non-log concave target, exponentially slow mixing

Importance Sampling

Re-weight samples from cheap surrogate model

$$
\mathbb{E}_{\rho_1}[h(x)] = \mathbb{E}_{\hat{\rho}_1}\left[h(x)\frac{\rho_1(x)}{\hat{\rho}_1(x)}\right]
$$

Variance can be exponentially bad, especially in high dimension

Limitations of MCMC and IS

Markov Chain Monte Carlo build randomized sequence of samples $\{x_i\}_{i=1}^N$ so that

exponentially slow

Common tool: Langevin Dynamics

 $dX_t = -\epsilon \nabla U_1(X_t)dt + \sqrt{2\epsilon}dW_t$

gradient drift motion and motion motion

incremental brownian

Non-log concave target, exponentially slow mixing

Importance Sampling

Re-weight samples from cheap surrogate model

$$
\mathbb{E}_{\rho_1}[h(x)] = \mathbb{E}_{\hat{\rho}_1}\left[h(x)\frac{\rho_1(x)}{\hat{\rho}_1(x)}\right]
$$

Variance can be exponentially bad, especially in high dimension

Introduce dynamics which anneal to $U_1(x)$ *from some* $U_0(x)$

 $U_t(x) = (1 - t)U_0 + tU_1$ **PDF:** $\rho_t(x) = e^{-U_t(x) + F_t}, F_t = -\log Z_t$

Introduce dynamics which anneal to $U_1(x)$ *from some* $U_0(x)$

$$
U_t(x) = (1 - t)U_0 + tU_1 \qquad \text{PDF: } \rho_t(x) = e^{-U_t(x) + F_t}, \quad F_t = -\log Z_t
$$

SDE:

$$
d\tilde{X}_t = -\epsilon_t \nabla U_t(\tilde{X}_t)dt + \sqrt{2\epsilon_t}dW_t
$$

- Time evolving potential
- \cdot ϵ _t sets speed of walkers per time step
- high temperature -> low temperature helps with multimodality

Introduce dynamics which anneal to $U_1(x)$ *from some* $U_0(x)$

$$
U_t(x) = (1 - t)U_0 + tU_1 \qquad \text{PDF: } \rho_t(x) = e^{-U_t(x) + F_t}, \quad F_t = -\log Z_t
$$

SDE:

$$
d\tilde{X}_t = -\epsilon_t \nabla U_t(\tilde{X}_t)dt + \sqrt{2\epsilon_t}dW_t
$$

- Time evolving potential
- \cdot ϵ _t sets speed of walkers per time step
- high temperature -> low temperature helps with multimodality

Introduce dynamics which anneal to $U_1(x)$ *from some* $U_0(x)$

$$
U_t(x) = (1 - t)U_0 + tU_1 \qquad \text{PDF: } \rho_t(x) = e^{-U_t(x) + F_t}, \quad F_t = -\log Z_t
$$

SDE:

$$
d\tilde{X}_t = -\epsilon_t \nabla U_t(\tilde{X}_t)dt + \sqrt{2\epsilon_t}dW_t
$$

- Time evolving potential
- \cdot ϵ _t sets speed of walkers per time step
- high temperature -> low temperature helps with multimodality

Question: does the solution \bar{X}_t *to this SDE have* ρ_t *as its density?*

Introduce dynamics which anneal to $U_1(x)$ *from some* $U_0(x)$

$$
U_t(x) = (1 - t)U_0 + tU_1 \qquad \text{PDF: } \rho_t(x) = e^{-U_t(x) + F_t}, \quad F_t = -\log Z_t
$$

SDE:

$$
d\tilde{X}_t = -\epsilon_t \nabla U_t(\tilde{X}_t)dt + \sqrt{2\epsilon_t}dW_t
$$

- Time evolving potential
- \cdot ϵ _t sets speed of walkers per time step
- high temperature -> low temperature helps with multimodality

Question: does the solution \bar{X}_t *to this SDE have* ρ_t *as its density?*

Introduce dynamics which anneal to $U_1(x)$ *from some* $U_0(x)$

$$
U_t(x) = (1 - t)U_0 + tU_1 \qquad \text{PDF: } \rho_t(x) = e^{-U_t(x) + F_t}, \quad F_t = -\log Z_t
$$

SDE:

$$
d\tilde{X}_t = -\epsilon_t \nabla U_t(\tilde{X}_t)dt + \sqrt{2\epsilon_t}dW_t
$$

- Time evolving potential
- \cdot ϵ _t sets speed of walkers per time step
- high temperature -> low temperature helps with multimodality

Questing the solution \tilde{X}_t *to this SDE have* ρ_t *as its density?*

NO! only if $\epsilon_t \to \infty$ and $dt \to 0$Why?

Introduce dynamics which anneal to $U_1(x)$ *from some* $U_0(x)$

$$
U_t(x) = (1 - t)U_0 + tU_1 \qquad \text{PDF: } \rho_t(x) = e^{-U_t(x) + F_t}, \quad F_t = -\log Z_t
$$

SDE:

$$
d\tilde{X}_t = -\epsilon_t \nabla U_t(\tilde{X}_t)dt + \sqrt{2\epsilon_t}dW_t
$$

- Time evolving potential
- \cdot ϵ _t sets speed of walkers per time step
- high temperature -> low temperature helps with multimodality

Questing the solution \tilde{X}_t *to this SDE have* ρ_t *as its density?*

NO! only if $\epsilon_t \to \infty$ and $dt \to 0$Why?

 $\tilde{\rho}_t \neq \rho_t$!

Compare the Fokker-Planck to $\partial_t \rho_t$

$$
\rho_t(x) = e^{-U_t(x) + F_t}
$$

IVEL 180
| 10.91

SDE: $d\tilde{X}_t = -\epsilon_t \nabla U_t(\tilde{X}_t)dt + \sqrt{2\epsilon_t}dW_t$

FPE: $\partial_t \tilde{\rho}_t = \epsilon \nabla \cdot (\nabla U_t \tilde{\rho}_t + \nabla \tilde{\rho}_t)$

 $\tilde{\rho}_t \neq \rho_t$!

Compare the Fokker-Planck to $\partial_t \rho_t$

$$
\rho_t(x) = e^{-U_t(x) + F_t}
$$

SDE: $d\tilde{X}_t = -\epsilon_t \nabla U_t(\tilde{X}_t)dt + \sqrt{2\epsilon_t}dW_t$ **FPE:** $\partial_t \tilde{\rho}_t = \epsilon \nabla \cdot (\nabla U_t \tilde{\rho}_t + \nabla \tilde{\rho}_t)$

Direct calculation:

$$
\partial_t \rho_t = \frac{\partial}{\partial t} \left[e^{-U_t(x) + F_t} \right] - (\partial_t U_t - \partial_t F_t) \rho_t
$$

= $\epsilon_t \nabla \cdot (\nabla U_t \rho_t + \nabla \rho_t) + (\partial_t U_t - \partial_t F_t) \rho_t$ since $\nabla \rho_t = - \nabla U_t \rho_t$

 $\tilde{\rho}_t \neq \rho_t$!

Compare the Fokker-Planck to $\partial_t \rho_t$

$$
\rho_t(x) = e^{-U_t(x) + F_t}
$$

SDE: $d\tilde{X}_t = -\epsilon_t \nabla U_t(\tilde{X}_t)dt + \sqrt{2\epsilon_t}dW_t$ **FPE:** $\partial_t \tilde{\rho}_t = \epsilon \nabla \cdot (\nabla U_t \tilde{\rho}_t + \nabla \tilde{\rho}_t)$

Direct calculation:

$$
\partial_t \rho_t = \frac{\partial}{\partial t} \left[e^{-U_t(x) + F_t} \right] - (\partial_t U_t - \partial_t F_t) \rho_t
$$

= $\epsilon_t \nabla \cdot (\nabla U_t \rho_t + \nabla \rho_t) + (\partial_t U_t - \partial_t F_t) \rho_t$ since $\nabla \rho_t = - \nabla U_t \rho_t$

 $\partial_t \rho_t$ and $\partial_t \tilde{\rho}_t$ differ by *factor arising from time* dynamics of $U_t^{\vphantom{\dagger}}$

In practice, the walkers \tilde{X}_t "lag behind" the intended evolution of $\rho_{_t}$

Compare the Fokker-Planck to $\partial_t \rho_t$

 $f(x) = e^{-U_t(x) + F_t}$

 $\partial_t \rho_t$ and $\partial_t \tilde{\rho}_t$ differ by *factor arising from time* dynamics of $U_t^{\vphantom{\dagger}}$

In practice, the walkers \tilde{X}_t "lag behind" the intended evolution of $\rho_{_t}$

This can in theory be fixed with re-weighting

Compare the Fokker-Planck to $\partial_t \rho_t$

 $f(x) = e^{-U_t(x) + F_t}$

 $\partial_t \rho_t$ and $\partial_t \tilde{\rho}_t$ differ by *factor arising from time* dynamics of $U_t^{\vphantom{\dagger}}$

In practice, the walkers \tilde{X}_t "lag behind" the intended evolution of $\rho_{_t}$

This can in theory be fixed with re-weighting

Compare the Fokker-Planck to $\partial_t \rho_t$

 $f(x) = e^{-U_t(x) + F_t}$

 $\partial_t \rho_t$ and $\partial_t \tilde{\rho}_t$ differ by *factor arising from time* dynamics of $U_t^{\vphantom{\dagger}}$

In practice, the walkers \tilde{X}_t "lag behind" the intended evolution of $\rho_{_t}$

This can in theory be fixed with re-weighting

Compare the Fokker-Planck to $\partial_t \rho_t$

 $f(x) = e^{-U_t(x) + F_t}$

 $\partial_t \rho_t$ and $\partial_t \tilde{\rho}_t$ differ by *factor arising from time* dynamics of $U_t^{\vphantom{\dagger}}$

In practice, the walkers \tilde{X}_t "lag behind" the intended evolution of $\rho_{_t}$

This can in theory be fixed with re-weighting

Jarzynski Equality:

MSA & Vanden-Eijnden arXiv:2410.02711 (2024); Jarzynski, PRL 78, 2690 (1997)

Introduce weights A to account for the lag of the walkers ^t

• Can be proven by looking at the FPE for the joint pdf $f_t^{}(x,a): \mathbb{R}^{d+1} \rightarrow \mathbb{R}$

Jarzynski Equality:

MSA & Vanden-Eijnden arXiv:2410.02711 (2024); Jarzynski, PRL 78, 2690 (1997)

Introduce weights A to account for the lag of the walkers ^t

- Can be proven by looking at the FPE for the joint pdf $f_t(x,a): \mathbb{R}^{d+1} \rightarrow \mathbb{R}$
- **Problem**: variance of e^{A_t} may be so large that re-weighting not useful

Jarzynski Equality:

• Can be proven by looking at the FPE for thejoint pdf $f_t(x,a): \mathbb{R}^{d+1} \to \mathbb{R}$

 L_{L}

• **Problem**: variance of e^{A_t} may be so large that re-weighting not useful

∫ℝ*d*

 X_t flow map given by velocity field $b(t, x)$

 $X_{t=0}(x) = x \in \mathbb{R}^d$.
V $X_t(x) = b_t(X_t(x))$

<mark>ve</mark>t 180
1731

October 24, 2024 24

 $X_{t=1} = T$ X_t flow map given by velocity field $b(t, x)$ $t = 1$ ρ_1 $X_{t=0}(x) = x \in \mathbb{R}^d$ *time* $X_t(x)$.
V $X_t(x) = b_t(X_t(x))$ $t = 0$ $X_0(x) = x$ ρ_0 *space*

At the level of the of the distribution, how does $\rho(t, x)$ evolve?

Transport equation

$$
\partial_t \rho_t + \nabla \cdot (b_t \rho_t) = 0, \quad \rho_{t=0} = \rho_0
$$

If $\rho(t)$ solves TE, **then** $\rho_{t=1} = \rho_1$

 $X_{t=1} = T$ X_t flow map given by velocity field $b(t, x)$ $t = 1$ ρ_1 $X_{t=0}(x) = x \in \mathbb{R}^d$ *time* $X_t(x)$.
V $X_t(x) = b_t(X_t(x))$ $t = 0$ ϕ $X_0(x) = x$ ρ_0 *space*

At the level of the of the distribution, how does $\rho(t, x)$ evolve?

Transport equation

$$
\partial_t \rho_t + \nabla \cdot (b_t \rho_t) = 0, \quad \rho_{t=0} = \rho_0
$$

If $\rho(t)$ solves TE, then $\rho_{t=1} = \rho_1$

Equation

Fokker-Planck
$$
\partial_t \rho_t + \nabla \cdot (b_t \rho_t) = \epsilon \nabla \cdot (\nabla U_t \rho_t + \nabla \rho_t)
$$

 $X_{t=1} = T$ X_t flow map given by velocity field $b(t, x)$ $t = 1$ ρ_1 $X_{t=0}(x) = x \in \mathbb{R}^d$ *time* $X_t(x)$.
V $X_t(x) = b_t(X_t(x))$ $t = 0$ ϕ $X_0(x) = x$ ρ_0 *space*

At the level of the of the distribution, how does $\rho(t, x)$ evolve?

Transport equation

$$
\partial_t \rho_t + \nabla \cdot (b_t \rho_t) = 0, \quad \rho_{t=0} = \rho_0
$$

If $\rho(t)$ solves TE, then $\rho_{t=1} = \rho_1$

Exact sampling

If
$$
X_t
$$
 solves $dX_t = -\epsilon_t \nabla U_t(X_t)dt + b_t(X_t)dt + \sqrt{2\epsilon_t}dW_t$ Then $X_t \sim \rho_t$

Non-equilibrium transport sampler

What if you don't have the perfect b_t *?*

MSA & Vanden-Eijnden arXiv:2410.02711 (2024); Vargas et al ICLR (2024); Vaikuntanathan and Jarzynski, PRL 78, 2690 (2008)

Using
$$
\nabla \cdot (\hat{b}_t \rho_t) = \nabla \cdot \hat{b}_t \rho_t - \nabla U_t \cdot b_t \rho_t
$$

FPE: *New non-eq term!*

$$
\partial_t \rho_t + \nabla \cdot (\hat{b}_t \rho_t) = \epsilon_t \nabla \cdot (\nabla U_t \rho_t + \nabla \rho_t) + (\nabla \cdot \hat{b}_t - \nabla U_t \cdot \hat{b}_t - \partial_t U_t + \partial_t F_t) \rho_t
$$

Proposition

Let (X_{t}, A_{t}) be the solution to the coupled SDE/ODE

$$
dX_t = -\epsilon_t \nabla U_t(X_t)dt + \sqrt{2\epsilon_t}dW_t, \qquad X_0 \sim \rho_0
$$

$$
dA_t = (\nabla \cdot \hat{b}_t(X_t) - \nabla U_t(X_t) \cdot \hat{b}_t(X_t) - \partial_t U_t(X_t))dt \qquad A_0 = 0
$$

then for all test functions $h(x)$, we have

$$
\int_{\mathbb{R}^d} h(x)\rho_t(x)dx = \frac{\mathbb{E}[e^{A_t}h(x)]}{\mathbb{E}[e^{A_t}]}
$$

$$
\frac{P_{t}(X)}{[e^{A_{t}}]} \qquad Z_{t}/Z_{0} = e^{-F_{t}+F_{0}} = \mathbb{E}\left[e^{A_{t}}\right]
$$

Non-equilibrium transport sampler

What if you don't have the perfect b_t *?*

MSA & Vanden-Eijnden arXiv:2410.02711 (2024); Vargas et al ICLR (2024); Vaikuntanathan and Jarzynski, PRL 78, 2690 (2008)

Proposition

Let (X_{t}, A_{t}) be the solution to the coupled SDE/ODE

$$
dX_t = -\epsilon_t \nabla U_t(X_t)dt + \sqrt{2\epsilon_t}dW_t, \qquad X_0 \sim \rho_0
$$

$$
dA_t = (\nabla \cdot \hat{b}_t(X_t) - \nabla U_t(X_t) \cdot \hat{b}_t(X_t) - \partial_t U_t(X_t))dt \qquad A_0 = 0
$$

then for all test functions $h(x)$, we have

$$
\int_{\mathbb{R}^d} h(x)\rho_t(x)dx = \frac{\mathbb{E}[e^{A_t}h(x)]}{\mathbb{E}[e^{A_t}]} \qquad Z_t/Z_0 = e^{-F_t+F_0} = \mathbb{E}[e^{A_t}]
$$

Correctable dynamical transport for sampling

Valid for any diffusion ϵ , which we will exploit

Strict augmentation of annealed Langevin dynamics

Learning b:

FPE:

solves the transport removes the non-equilibrium lag

Learning b: Physics Informed Neural Network Loss

 $\partial_t \rho_t + \nabla \cdot (\hat{b}_t \rho_t) = \epsilon_t \nabla \cdot (\nabla U_t \rho_t + \nabla \rho_t) + (\nabla \cdot \hat{b}_t - \nabla U_t \cdot \hat{b}_t - \partial_t U_t + \partial_t F_t) \rho_t$ **=0** *Need either* **=0** *solves the transport removes the non-equilibrium lag* **FPE: PINN Loss** $L_{\text{PINN}}[b,F] = \int$ ̂ 1 0 $\int_{\mathbb{R}^d}$ $\nabla \cdot \hat{b}_t(x) - \nabla U_t(x) \cdot \hat{b}_t(x) - \partial_t U_t(x) + \partial_t \hat{F}_t$ ̂ 2 *ρ t* (*x*)*dxdt* ̂ All minimizers $(b_{\it t},F_{\it t})$ of the objective are such that $L_{PINN}\!\![b,F]=0$, F_{t} is the free energy, and b_{t} solves the transport Valid for any $\hat{\rho}_{t}$! *Controls the KL !* ̂ *MSA & Vanden-Eijnden arXiv:2410.02711 (2024); Tian et. al ICML (2024);*

Learning b: Action Matching Loss

The minimizer $b_t = \nabla \phi_t$ of the objective

FPE:

solves the transport removes the non-equilibrium lag

Action matching loss

Needs reweighted samples from ρt

$$
L_{AM}^T[\hat{\phi}] = \int_0^T \int_{\mathbb{R}^d} \left[\frac{1}{2} \left| \nabla \hat{\phi}_t(x) \right|^2 + \partial_t \hat{\phi}_t(x) \right] \rho_t(x) dx dt
$$

$$
+ \int_{\mathbb{R}^d} \left[\hat{\phi}_0(x) \rho_0(x) - \hat{\phi}_T(x) \rho_T(x) \right] dx
$$

is unique up to a constant, and solves the transport.

Numerical Example: Painfully multimodal GMM

Turning on the diffusion improves ESS

October 24, 2024 33

Numerical Example: Painfully multimodal GMM

Turning on the diffusion improves ESS

October 24, 2024 33

More diffusion helps more with transport than without

Scaling study: Use same neural network for multimodal GMM of growing dimension

Drop in ESS for deterministic flow $\epsilon_t = 0$ *can be alleviated by growing* ϵ_t

Less apparent in practice if you just use annealed Langevin along!

Standard test: ϕ^4 theory

Choose energy interpolation in $m^2(t), \lambda(t)$ for the action given by

$$
U_{t}(\varphi) = \sum_{x} \left[-2 \sum_{\mu} \varphi_{x} \varphi_{x+\mu} \right] + (2D + m_{t}^{2}) \varphi_{x}^{2} + \lambda_{t} \varphi_{x}^{4}
$$

Conclusion

Dynamical formulation of unbiased sampling with transport based on Jarzynski equality

Loss functions do not require backpropagating through **SDE**

PINN loss is an off-policy loss! (See also Lorenz' previous talk)

Here's one more fun gif! Thanks!

Conclusion

Dynamical formulation of unbiased sampling with transport based on Jarzynski equality

Loss functions do not require backpropagating through **SDE**

PINN loss is an off-policy loss! (See also Lorenz' previous talk)

Here's one more fun gif! Thanks!

Backup Slides

Computationally cheaper weights!

Note that the weights do not need a divergence if you use $b_t = \nabla \phi_t$

Proposition

Let
$$
(X_t, A_t)
$$
 be the solution to the coupled SDE/ODE
\n
$$
dX_t = -\epsilon_t \nabla U_t(X_t)dt + \nabla \phi_t(X_t)dt + \sqrt{2\epsilon_t}dW_t, \qquad X_0 \sim \rho_0
$$
\n
$$
dB_t = \partial_t U_t(X_t) dt + \frac{1}{\epsilon_t} \partial_t \hat{\phi}_t(X_t) + \frac{1}{\epsilon_t} \left[\nabla \hat{\phi}_t(X_t) \right]^2 dt + \sqrt{\frac{2}{\epsilon_t}} \nabla \hat{\phi}_t(X_t) \cdot dW_t \qquad A_0 = 0
$$
\nthen for all test functions $h(x)$, we have\n
$$
\int_{\mathbb{R}^d} h(x)\rho_t(x)dx = \frac{\mathbb{E}[e^{A_t}h(x)]}{\mathbb{E}[e^{A_t}]} \qquad Z_t/Z_0 = e^{-F_t + F_0} = \mathbb{E}[e^{A_t}]
$$

where
$$
A_t = \frac{1}{\epsilon_t} \left[\hat{\phi}_t \left(X_t \right) - \hat{\phi}_0 \left(X_0 \right) \right] - B_t
$$

works by using expanding $d\phi_t$ with Ito formula.

Proof:

Definition of the SDE/ODE for X_{t} , A_{t} with $b_{t} = \nabla \boldsymbol{\phi}_{t}$

$$
dX_t = -\varepsilon_t \nabla U(X_t) dt + \hat{\nabla} \phi_t(X_t) dt + \sqrt{2\varepsilon_t} dW_t, \qquad \hat{X}_0 \sim \rho_0,
$$

$$
dA_t = \Delta \hat{\phi}_t(X_t) dt - \nabla U_t(X_t) \cdot \nabla \hat{\phi}(X_t) dt - \partial_t U_t(X_t) dt, \qquad A_0 = 0,
$$

Ito formula says

$$
d\hat{\phi}_t(X_t) = \partial_t \hat{\phi}_t(X_t) dt - \varepsilon_t \nabla \hat{\phi}_t(X_t) \cdot \nabla U(X_t) dt + \left| \nabla \hat{\phi}_t(X_t) \right|^2 dt
$$

$$
+ \sqrt{2\varepsilon_t} \nabla \hat{\phi}_t(X_t) \cdot dW_t + \varepsilon_t \Delta \hat{\phi}_t(X_t) dt,
$$

Solving for $\Delta \phi_t$ allows us to write the relation

$$
dA_t = \frac{1}{\varepsilon_t} d\hat{\phi}_t(X_t) dt + dB_t
$$

where
$$
dB_t = \partial_t U_t(X_t) dt + \frac{1}{\varepsilon_t} \partial_t \hat{\phi}_t(X_t) + \frac{1}{\varepsilon_t} \left| \nabla \hat{\phi}_t(X_t) \right|^2 dt + \sqrt{\frac{2}{\varepsilon_t} \nabla \hat{\phi}_t(X_t) \cdot dW_t}
$$

Proposition 5 (KL control). Let $\hat{\rho}_t$ be the solution to the transport equation

$$
\partial_t \hat{\rho}_t = -\nabla \cdot (\hat{b}_t \rho_t), \qquad \hat{\rho}_{t=0} = \rho_0 \tag{27}
$$

where $\hat{b}_t(x)$ is some predefined velocity field. Then, given any estimate \hat{F}_t of the exact free energy F_t , we have

$$
D_{KL}(\hat{\rho}_{t=1}||\rho_1) \le \sqrt{L_{PINN}^{T=1}(\hat{b}, \hat{F})}.
$$
\n(28)

This proposition is proven in Appendix 5.1.

