A dynamical systems perspective
on measure transport and generative modeling

Lorenz Richter

Machine-Learning-Based Sampling in Lattice Field Theory and Quantum Chemistry
Bethe Center for Theoretical Physics, Bonn

October, 2024

ddida Z!y



Overview

@ Sampling via measure transport can be seen from different perspectives:

Dynamical systems «—— Optimal control

Path measures ¢— > PDEs
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Overview

@ Sampling via measure transport can be seen from different perspectives:

Dynamical systems «—— Optimal control

Path measures ¢— > PDEs

@ The different perspectives will eventually allow us to propose new numerical algorithms.

e This is joint work with Julius Berner (Caltech), Jingtong Sun (Caltech), Denis Blessing
(KIT) and Nikolas Niisken (King's College).

Lorenz Richter A dynamical systems perspective on measure transport and generative modeling 2 /34



Generative modeling

Sample from a complex (high-dimensional, multimodal) distribution D.
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Generative modeling

Task

Sample from a complex (high-dimensional, multimodal) distribution D.

D can be given in the form of:

1. samples X() ~ D (images, text,
audio, ...).
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Generative modeling

Task

Sample from a complex (high-dimensional, multimodal) distribution D.

D can be given in the form of:

1. samples X() ~ D (images, text, 2. an (unnormalized) density (e.g., in
audio, ...). Bayesian statistics, computational physics

and chemistry).
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Generative modeling

@ Impressive results for the first case:
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Generative modeling

@ Impressive results for the first case:

@ The second case is a focus of (our) current research.
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Sampling via dynamical systems

Goal: We want to sample from distribution piareet = p/Z.
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Sampling via dynamical systems

Goal: We want to sample from distribution piarget = p/Z.

Pprior Prarget

SDE

Setting:
Xo ~ Pprior dXs = pu(Xs,s)ds + o(s) dWs
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Sampling via dynamical systems

Goal: We want to sample from distribution piarget = p/Z.

Pprior Drarget

SDE ODE
Setting:
Xo ~ Pprior dXs = pu(Xs,s)ds + o(s) dWs dXs = pu(Xs,s)ds
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Sampling via dynamical systems

Goal: We want to sample from distribution piarget = p/Z.

Pprior Drarget

SDE ODE
Setting:
Xo ~ Pprior dXs = pu(Xs,s)ds + o(s) dWs dXs = pu(Xs,s)ds

Idea: Learn ps.t. X7 ~ Prarget-
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Sampling via dynamical systems

Attempt |: PDE perspective
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Attempt |: PDE perspective
o Considering the density of X;, denoted by px(-, t), leads to the following PDEs:

» SDE: Fokker-Planck equation

depx + div(pxp) — 5 Tr(oo "V2px) = 0,
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» SDE: Fokker-Planck equation

depx + div(pxp) — 5 Tr(oo "V2px) = 0,
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Attempt |: PDE perspective
o Considering the density of X;, denoted by px(-, t), leads to the following PDEs:

» SDE: Fokker-Planck equation

depx + div(pxp) — 5 Tr(oo "V2px) = 0,

» ODE: Continuity equation
O¢px +div(pxp) = 0,

with boundary conditions px(-,0) = pprior and px(-, T) = Prarget-

o ldea: Identify pairs (u, px) that fulfill the above PDEs.
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Attempt |: PDE perspective — learning the evolutions

o Variational formulation of PDEs: Consider loss functionals

L: C(R? x [0, T],RY) x C(RY x [0, T],R) = R

that are zero if and only if a pair (i, px) fulfills the corresponding PDE.
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Attempt |: PDE perspective — learning the evolutions

o Variational formulation of PDEs: Consider loss functionals
L: C(R? x [0, T],RY) x C(RY x [0, T],R) = R
that are zero if and only if a pair (i, px) fulfills the corresponding PDE.
@ For numerical stability, we consider the PDEs in log-space, V := log px, yielding

» SDE:

Riogew (1, V) i= 0V + div(n) + VV - ji = 1o TVV|2 = L Tr(ooTV2V) = 0,

» ODE:
Riogce(p, V) =0,V +div(n) + VV - = 0.
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Attempt |: PDE perspective — general vs. constrained dynamics

@ Learning 1 and px simultaneously typically leads to non-unique solutions.
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Attempt |: PDE perspective — general vs. constrained dynamics

@ Learning 1 and px simultaneously typically leads to non-unique solutions.
@ Adding constraints allows for unique solutions:

» Annealing: Fix px (i.e. a path of densities) and consider

Ricgip (1) = Riogep (i, V), RisgSi () 1= Riogcr(f, V)-
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Attempt |: PDE perspective — general vs. constrained dynamics

@ Learning 1 and px simultaneously typically leads to non-unique solutions.
@ Adding constraints allows for unique solutions:

» Annealing: Fix px (i.e. a path of densities) and consider

Ricgip (1) = Riogep (i, V), RisgSi () 1= Riogcr(f, V)-

» Score-based generative modeling: Fix ;i = 00"V V — f and consider

'RSCOrC(V) = R]ong(UUTVV — f7 \7)
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Attempt |: PDE perspective — general vs. constrained dynamics

@ Learning 1 and px simultaneously typically leads to non-unique solutions.
@ Adding constraints allows for unique solutions:

» Annealing: Fix px (i.e. a path of densities) and consider

R (1) = Riogrp (1, V), REESH (1) = Rioger(fi, V).

» Score-based generative modeling: Fix ;i = 00"V V — f and consider

RscorC(V) = R]ong(UJTVV — f7 \7)

» Optimal transport & Schrodinger bridges: Additionally minimize E [% fOT l(Xs, s)|?ds|.
Find u = V®, where ® solves

RiBE(P) = 0,0 + L(|VO|? + 1 Tr(oo " V20) =0, RE(P) = 0,0 + L(|[Vo[> =0
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Sampling via dynamical systems

Attempt Il: Time-reversals and path space measures
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Attempt II: Time-reversals and path space measures

Pprior Prarget

Lorenz Richter A dynamical systems perspective on measure transport and generative modeling 11 / 34



Attempt II: Time-reversals and path space measures

+

Prarget

o Setting: Consider forward and reverse SDE:

dXs = p1r(Xs, s) ds + o(s) dWs, Xo ~ Ppriors
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Attempt II: Time-reversals and path space measures

P

Pprior Prarget

o Setting: Consider forward and reverse SDE:
dXS = ﬁF(XSJ 5) ds + O'(S) dWSJ XO ~~ Pprior,

—

dYs = pg(Ys,s)ds + o(s)dWs, YT ~ prarget-
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Attempt II: Time-reversals and path space measures
X

Pprior Prarget

Vv

¢ Y
o Setting: Consider forward and reverse SDE:
dXS = ﬁF(X& S) ds + O'(S) dW57 XO ™~ Pprior;
dYs = fig(Ys,s)ds + o(s) dWs, YT ~ Prarget-
o ldea: Learn jif, fig s.t. X is time-reversal of Y, implying X7 ~ prarget, Yo ~ Pprior-
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Attempt II: Time-reversals and path space measures
X

Pprior Prarget

Vv

¢ Y
o Setting: Consider forward and reverse SDE:
dXS = ﬁF(X& S) ds + O'(S) dW57 XO ™~ Pprior;
dYs = fig(Ys,s)ds + o(s) dWs, YT ~ Prarget-
o ldea: Learn jif, fig s.t. X is time-reversal of Y, implying X7 ~ prarget, Yo ~ Pprior-

> Learn jiF and fig simultaneously: LE30F (i, fig)
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Attempt Il: Time-reversals and path space measures
X

Pprior Prarget

Vv

¢ Y
o Setting: Consider forward and reverse SDE:
dXs = pe(Xs, s)ds + o(s)dWs,  Xo ~ Ppriors
dYs = ng(Ys,s)ds + o(s) aWs, YT ~ Prarget-
o ldea: Learn jif, fig s.t. X is time-reversal of Y, implying X7 ~ prarget, Yo ~ Pprior-
BSDE

> Learn jir and fig simultaneously: Lyyiqe(FiF, fiB)

» Fixe annealing px: L2305 (1iF)
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Attempt Il: Time-reversals and path space measures
X

14 prior ptarget

Vv

¢ Y
o Setting: Consider forward and reverse SDE:
dXS = ﬁF(X& S) ds + O'(S) dW57 XO ™~ Pprior;
dYs = ng(Ys,s)ds + o(s) aWs, YT ~ Prarget-
o ldea: Learn jif, fig s.t. X is time-reversal of Y, implying X7 ~ prarget, Yo ~ Pprior-

> Learn piF and pig simultaneously: ngldgEe(,uF iB)

» Fixe annealing px: L2305 (1iF)

» Fix pip suitably: EB%DE(MF)
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Attempt Il: Time-reversals and path space measures

@ We consider the SDEs
dXs = ﬁF(Xs, 5) ds + U(S) dWs, Xo ~ Pprior;
dYs = jig(Ys,s)ds + o(s)dWs, YT ~ prarget-
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Attempt Il: Time-reversals and path space measures

@ We consider the SDEs
dXs = /jF(Xs, 5) ds + U(S) dWs, Xo ~ Pprior;
dYs :ﬁB(Ys,S)d5+U(5)aWs, YT ~~ Ptarget-

o Path space perspective: Consider path measures P xur and PP yus.
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Attempt Il: Time-reversals and path space measures

o We consider the SDEs
dXs = pe(Xs, s)ds + o(s)dWs,  Xo ~ Ppriors
dYs = fig(Ys,s)ds + o(s) dWs, YT ~ Prarget-
o Path space perspective: Consider path measures P xur and PP yus.
o Identify drifts ufg, up via divergence of those measures

14F, g € arg min D (P yir ‘]PV;LB).
HF;UB
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Attempt Il: Time-reversals and path space measures

o We consider the SDEs
dXs = pe(Xs, s)ds + o(s)dWs,  Xo ~ Ppriors
dYs = fig(Ys,s)ds + o(s) dWs, YT ~ Prarget-
o Path space perspective: Consider path measures P xur and PP yus.
o Identify drifts yufg, up via divergence of those measures

14F, g € arg min D(]PXgF‘]P?gB).
HF;UB

Proposition (Log-likelihood for path measures)
d]PXﬁF

log
dPp viB

o) = | " (o2 + 7in) - (B + 2 + - i) (X, 5) ds

T i e Porior (X§%)
+/ o (MF""MB)(XSHR’S)'CIWS‘}"Og—ﬁR
0 ptarget(XT )

Lorenz Richter A dynamical systems perspective on measure transport and generative modeling 12 / 34



Sampling via dynamical systems

Connections and equivalences: divergences and loss functions
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Connections and equivalences: Time-reversals and BSDEs

@ We need to choose a loss £ or a divergence D.
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Connections and equivalences: Time-reversals and BSDEs

@ We need to choose a loss L or a divergence D.
@ First choice: BSDE-based losses for stochastic evolutions.
@ BSDE loss: stochastic representation of PDE via 1té's formula. For the process

dXs = p(Xs, s)ds + o(s) dW.

and a PDE
OV + 3T (00TVRV ) 4 TV 4 h(- -, V,VV) =0

it holds

T T
Ripspr(V) = V(X,0)— V(XT, T)+/ (asv+ 1 Tr(o0 TV2V) +,u-VV>(Xs,s)ds+/ o TVV(Xs,s) dWs = 0.
0 0
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Connections and equivalences: Time-reversals and BSDEs

@ We need to choose a loss £ or a divergence D.
o First choice: BSDE-based losses for stochastic evolutions.
o BSDE loss: stochastic representation of PDE via It6’s formula. For the process

dXs = u(Xs,s)ds + o(s) dWs.
and a PDE
0V + L Tr (UUTVZV) Y- VV 4 h(,, V,VV) =0
it holds

T T
Respe(V) = V(X,0) —V(X7,T) — / h(-,-, V,VV)(Xs,s)ds +/ UTVV(XS,S) -dWs = 0.
0 0

Lorenz Richter A dynamical systems perspective on measure transport and generative modeling 14 / 34



Connections and equivalences: Time-reversals and BSDEs

@ We need to choose a loss £ or a divergence D.
o First choice: BSDE-based losses for stochastic evolutions.
o BSDE loss: stochastic representation of PDE via It6’s formula. For the process

dXs = u(Xs,s)ds + o(s) dWs.
and a PDE
0V + L Tr (JUTV2V> Y- VV 4 h(,, V,VV) =0
it holds

T T
Respe(V) = V(X,0) —V(X7,T) — / h(-,-, V,VV)(Xs,s)ds +/ UTVV(XS,S) -dWs = 0.
0 0

@ We can now consider the loss
- ~ 2
Lpspe(V)=E [(RBSDE(V)(X)> } ;

where the expectation is over different realizations of the process X.
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Connections and equivalences: Time-reversals and BSDEs
o BSDE-based losses are equivalent to a particular divergence between path space measures:

2
dP ~
log GEXEF XHR

= Liggrp (1, V) = L5idge(liF fis)

DlggDE (IPXﬁF IPWB) =E
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Connections and equivalences: Time-reversals and BSDEs

o BSDE-based losses are equivalent to a particular divergence between path space measures:

2

_ APz, - o

DB (P [Pyos) = B <|ogd x (xm) _ CESBEGL V) = CESRE i o)
Y

Proposition (Equivalence to trajectory-based methods)

The BSDE versions of our losses are equivalent to previously existing losses:
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Connections and equivalences: Time-reversals and BSDEs

o BSDE-based losses are equivalent to a particular divergence between path space measures:

2

_ APz, - o

DB (P [Pyos) = B <|ogd x (Xﬂfw) _ CESBEGL V) = CESRE i o)
Y

Proposition (Equivalence to trajectory-based methods)

The BSDE versions of our losses are equivalent to previously existing losses:

@ Assuming the reparametrization oo TVV = 1L — g, it holds

BSDE(~ _ 7 BSDE (~  ~
Liogrp (FF; V) = Liriage(fiF, BB)-
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Connections and equivalences: Time-reversals and BSDEs

o BSDE-based losses are equivalent to a particular divergence between path space measures:

2
dP xar
(i)

yhe

Disépr (Pxar [Pyns) = E = Lopp (11, V) = LiPase(iF, iB)

Proposition (Equivalence to trajectory-based methods)

The BSDE versions of our losses are equivalent to previously existing losses:
@ Assuming the reparametrization oo TVV = 1L — g, it holds
BSDE v, BSDE (~  ~
Liogrp (1iF, V) = LEriage(BF, 1B)-
Q It holds

1,BSDE [~ S ~
Logrp (1F) = LENieD (fiF)-

Lorenz Richter A dynamical systems perspective on measure transport and generative modeling 15 / 34



Connections and equivalences: Time-reversals and BSDEs

o BSDE-based losses are equivalent to a particular divergence between path space measures:

2
<'°g jﬁlzx (X“R)>

yhe

= Liggrp (1, V) = L5idge(liF fis)

DlggDE (IPXﬁF IPWB) =E

Proposition (Equivalence to trajectory-based methods)

The BSDE versions of our losses are equivalent to previously existing losses:

© Assuming the reparametrization oo VV = 1L — g, it holds

CSPEir, V) = LIRS (i i)
Q It holds

1,BSDE (~
Liogip (fiF) = LENCD (TiF)-

© Assuming the reparametrization oo VYV = g — f, it holds

LERN(V) = LB (7F).
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Connections and equivalences: Path measures and optimal control

o D = Dk (Pyar |IP\_/¢LB) = [Iog S XPE (X“F)] leads to stochastic optimal control:
y o
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Connections and equivalences: Path measures and optimal control

o D = Dk (Pyar |IP\_/¢LB) = [Iog S XPE (X“F)] leads to stochastic optimal control:
y o

Proposition (Verification theorem, time-reversed diffusion sampling (DIS))

Set i :=f + ou, i.e. let XY be defined by
dX! = (f + ou) (X, s)ds + o(s) dWs,

and fix ug = f. Consider the loss

L(u) = Dxr.(Pxs|Pxu) = Dkn(Pxe|Pg) — Dxi(Pxy [Py, ),

where IP xu denotes the path space measure of X" etc. Then it holds that

T /1 _ . pyT( )
/0 (§||U||2_d|v(f)) (XY, ) ds + log PYr\20)

—IogZ:Lnelzr)E(u) = TGIZ[]{E P(X0)

where the unique minimum is attained by u* := o'V log py .
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Path space perspective: Recovering score-based generative modeling

o Detour: let us consider the case with available data samples, but no density p
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@ The previous loss is not feasible — we cannot minimize a divergence directly
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Path space perspective: Recovering score-based generative modeling

o Detour: let us consider the case with available data samples, but no density p

@ The previous loss is not feasible — we cannot minimize a divergence directly

o Trick: instead of Dkp,(IPxu|Py) let us consider Dk (Py|Pgu) = [E [Iog ;DIEL(Y)]
X

(which is possible since we have data samples)
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Path space perspective: Recovering score-based generative modeling

o Detour: let us consider the case with available data samples, but no density p

@ The previous loss is not feasible — we cannot minimize a divergence directly

o Trick: instead of Dkp,(IPxu|Py) let us consider Dk (Py|Pgu) = [E [Iog SDIEL(Y)]
X

(which is possible since we have data samples), yielding

LIS T pxu(Yo)
/O <2HuH +d|v(0u—f)>(Ys,s)ds+logY].

L(u) =minE pxe (V)

ueld
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Path space perspective: Recovering score-based generative modeling

o Detour: let us consider the case with available data samples, but no density p

@ The previous loss is not feasible — we cannot minimize a divergence directly

o Trick: instead of Dkp,(IPxu|Py) let us consider Dk (Py|Pgu) = [E [Iog SDIEL(Y)]
X

(which is possible since we have data samples), yielding

— minE
L(u) min

T o0 P (o)
/O <2HUH +d|v(0u—f)>(YS>5)d5+|°g(yT)]-

pPxy

o Not tractable since pxu is not known
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Path space perspective: Recovering score-based generative modeling

o Detour: let us consider the case with available data samples, but no density p

@ The previous loss is not feasible — we cannot minimize a divergence directly

o Trick: instead of Dkp,(IPxu|Py) let us consider Dk (Py|Pgu) = [E [Iog SDIEL(Y)]
X

(which is possible since we have data samples), yielding

L(u)=minE

uel pPxy

T o0 P (o)
/0 <2HUH Jrd,\,(au_f)>(Ys,s)derIog(YT)].

o Not tractable since pxu is not known— as a remedy, maximize ELBO

E [log px#(Yo)] >E [Iog pxy(YT) — /OT (;HUII2 +div(ou — f)) (Ys,s) dS]
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Path space perspective: Recovering score-based generative modeling

@ Denoising score matching: Rewrite the divergence and apply Monte Carlo
approximation of the time-integral, using 7 ~ U([0, T]), so that no trajectories are needed
anymore:
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Path space perspective: Recovering score-based generative modeling

@ Denoising score matching: Rewrite the divergence and apply Monte Carlo
approximation of the time-integral, using 7 ~ U([0, T]), so that no trajectories are needed
anymore:

.
E[log pxu(Y0)] > E| log pxs(YT) — /0 (3llull® + div(ou — £))(Ys,s)ds
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Path space perspective: Recovering score-based generative modeling

@ Denoising score matching: Rewrite the divergence and apply Monte Carlo
approximation of the time-integral, using 7 ~ U([0, T]), so that no trajectories are needed
anymore:

Divergence theorem: u-o 'V log PY,|Y, (in expectation)

const. j/ const.
\: \:

-
E[log pX¥(Y0)] > IE |log pxy (Y1) — /0 (|ul® + div(ou) — div(f))(Ys,s)ds
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Path space perspective: Recovering score-based generative modeling

@ Denoising score matching: Rewrite the divergence and apply Monte Carlo
approximation of the time-integral, using 7 ~ U([0, T]), so that no trajectories are needed

anymore:

Divergence theorem: u-o 'V log PY,|Y, (in expectation)

const. j/ const.
\: \:

-
E[log pX¥(Y0)] > IE |log pxy (Y1) — /0 (|ul? + div(ou) — div(f))(Ys,s) ds]

= %E[H (Yy,7)— 0 (1)V IogpyT‘yo(YT|Yo)H2} + const.

Vv
denoising score matching
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Path space perspective: Novel divergences

@ We propose a novel divergence:

Definition (Log-variance divergence)

7 dP.s. -~
P ) = o G220
Y
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Path space perspective: Novel divergences

@ We propose a novel divergence:

Definition (Log-variance divergence)

7 dP.s. -~
P ) = o G220
Y

@ In principle arbitrary choice for jig allows to balance exploration and exploitation.
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Path space perspective: Novel divergences

@ We propose a novel divergence:

Definition (Log-variance divergence)

7 dP.s. -~
P ) = o G220
Y

@ In principle arbitrary choice for jig allows to balance exploration and exploitation.
o No differentiation through the SDE solver.
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Path space perspective: Novel divergences

@ We propose a novel divergence:

Definition (Log-variance divergence)

2 dPyiir oz
Dry (]PXﬁFy]Ps—,ﬁB) = Var (Iog ﬁ(xuq)

YB

@ In principle arbitrary choice for jig allows to balance exploration and exploitation.
o No differentiation through the SDE solver.

Proposition (Equivalence with KL divergence)

1 0
2 ((SPJTFDE{;(]P)(TLFJPVHB)

5
— % Dxi(Pys [P s
ﬁR=ﬁF) 5 D1 (Pxie [P gis)
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The log-variance divergence: Variance reduction

Proposition (Control variate)

1 0 0 =~
( — DﬁG(IPX”F7IP“”B) > is a control variate version of ——Dkr,(P yir [P cig )-
OF IR=[1F OJLF Y
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Proposition (Control variate)

1 0 0 =~
( — DﬁG(IPX”F7IP“”B) > is a control variate version of ——Dkr,(P yir [P cig )-
OF IR=[1F OJLF Y

o XOV = X+ C, where E[C] =0
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The log-variance divergence: Variance reduction

Proposition (Control variate)

1/ 90 o =
( Dﬁ‘{}(IPX,LF,IPWB) ) is a control variate version of —— D1, (P yur [P i ).
AR=FF = Y

OpF

o XV =X + C, where ]E[C] =0 2007 —— Kl-based loss

17.5 1 —— log-variance loss
15.0

12.5 1

KL metric

10.0 1

7.5

5.0 T T T
0 30000 60000

gradient steps
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The log-variance divergence: Variance reduction

Proposition (Control variate)

. . . b =
) is a control variate version of —— D1, (P yur [P i ).
AR=FF = Y

1 )
3 (52D sr Pysa)]

o XV =X + C, where ]E[C] =0 ’ —— KL-based loss

@ This leads to variance reduction in the 17.59 — log-variance loss

estimated gradient.

KL metric
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gradient steps
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The log-variance divergence: Variance reduction

Proposition (Control variate)

1 1) 5 ~
i . ; . B B
(5,U DLV(IPX“F7IP“1‘B) _ W) is a control variate version of _5l7F DKL(IPX,LFUPWB).

e XOV —x + C, where E[C] =0 2009 —— Kl-based loss

@ This leads to variance reduction in the 17.59 — log-variance loss
estimated gradient.
@ Usually implying faster and better convergence

of gradient based optimization.

KL metric

5.0 T T T
0 30000 60000

gradient steps
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The log-variance divergence: Robustness properties

Proposition (Robustness at solution)

0
Var —-—
(5MF

DH. 1)
DﬁG(PXﬁFaP?ﬁB )> =0, Var ((')'MTB

NER N N _
5 N DLV(IPXNF,IP?MF)) =0.
BE=pF fBe=pB
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The log-variance divergence: Robustness properties

Proposition (Robustness at solution)

0 )
Var —
(5MF

Shig

/D\g\,;(IPXﬁFaIPS‘,ﬁB )) =0, Var (

DEG(IPXﬁF ) ]P?ﬁF)) =0.

AF=HF AB=/B

Proposition (Robustness in high dimensions)

\/Var (5fvv <®7:1 Pi, i, Qi))
Dy (@7:1 Pi, @, Qi)

can be bounded uniformly in d.
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A simulation-free attempt based on PDEs: PINN-based losses

@ Alternative: PINN-based losses for stochastic and deterministic evolutions.
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A simulation-free attempt based on PDEs: PINN-based losses

@ Alternative: PINN-based losses for stochastic and deterministic evolutions.

o Consider parametrization (encoding the boundary conditions)

VQO,Z('v t) = % |Og p;?rf’;t + (1 - %) |Og Pprior + % (1 - %) 90() 1.'),

where we learn z and ¢, cf. Maté & Fleuret, 2023.
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A simulation-free attempt based on PDEs: PINN-based losses

@ Alternative: PINN-based losses for stochastic and deterministic evolutions.

o Consider parametrization (encoding the boundary conditions)

VQO,Z('v t) = % |Og p;?rf’;t + (1 - %) |Og Pprior + % (1 - %) 90() 1.'),

where we learn z and ¢, cf. Maté & Fleuret, 2023.

@ We can then minimize

£1. V) = | (R V)]

where (&,7) ~ v are sampled from a measure v, e.g. v = Unif(Q x [0, T]), Q2 c RY.
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Numerical implications of the losses

@ BSDE-bassed losses:
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Numerical implications of the losses

@ BSDE-bassed losses:

> Neither second-order nor time derivatives have to be computed.
» Gradients of the solutions (usually corresponding to the learned drift) can be learned directly.

» Only stochastic dynamics can be approached.

@ PINN-based losses:

» Can be readily applied to deterministic evolutions.

v

Simulation-free, no time-discretization.

v

Off-policy training comes by design.

v

Need to know “essential support” of target density.

v

Training is sensitive to hyperparameter tuning.
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Numerical examples

@ We consider the following losses:

Method Stochastic ~ Deterministic BSDE version Unique
General bridge Liogrp (11, \7) Liogcr (1, \7) Bridge X
Prescribed bridge E?Sgi?gl( ) Ei“ongnggl( ) CMCD v
Score-based Lscore(V) DIS v
SB & OT Lsp(1, V) Lor(g, V) v
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Numerical examples: Gaussian mixture (d = 2, 9 modes)

-715 =50 -25 00
x

Lorenz Richter

25

5.0

75

Problem Method Loss AlogZ | W§ J  ESST Astd ] sec./it. |
GMM PIS-KL 1.094 0.467 0.0051 1.937 0.503
(d=2) PIS-LV 0.046 0.020 0.9093 0.023 0.500
DIS-KL 1551 0.064 0.0226 2.522 0.565
DIS-LV 0.056 0.020 0.8660 0.004 0.536
SDE LiogFp 0.000 0.020 1.0000 0.004 0.011
SDE-anneal L' 5364 0172 01031 0209  0.062
SDE-score  Lgcore 0.009 0.020 0.9818 0.096 0.013
SB Lsp 0.002 0.020 0.9959 0.050 0.017
ODE LiogCE 0.000 0.020 1.0000 0.003 0.008
ODE-anneal Ll 4227 0.044 01427 0753  0.020
oT Lor 0.005 0.057 0.9932 0.065 0.080
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Numerical examples: Gaussian mixture (d = 2, 9 modes)

o Geometric annealing path can be suboptimal (L{iRsE):

t=0.0 t=0.1 t=0.2 t=0.3 t=04 t=0.5 t=0.6 t=0.7 t=08 t=09 t=10
5
0

- 0 s - 0 s - 0 s - 0 s -5 05 =S 0 s - 0 s =S 0 s -0 s -0 s -0 s

Lorenz Richter A dynamical systems perspective on measure transport and generative modeling 26 / 34



Numerical examples: Gaussian mixture (d = 2, 9 modes)

o Geometric annealing path can be suboptimal (ﬁ?g‘grg%l):

t=09 t=10
0 s

t=0.0 t=0.1 t=02 t=0.3 t=04 t=0.5 t=0.6 t=0.7 t=08
5
0
- 0 s - 0 s - 0 s - 0 s -5 05 =S 0 s - 0 s =S 0 s =S 0 s =S 0 s -5

@ The learned path seems to be more appropriate (LiogcE):

t=0.0 t=0.1 t=0.2 t=04 t=0.5 t=0.6 t=0.7 t=08
5
-5
-5 0 s -5 0 s -5 0 s [ -5 0 s -5 0 s - 0 s =05

t=0.3

t=09 t=10
0 s

- 0 s -5

-5 0 s
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Numerical examples: Gaussian mixture (d = 2, 9 modes)

anneal
LlogFP
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Numerical examples: Gaussian mixture (d = 2, 9 modes)

i t x

Lss
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Numerical examples: Double well (d =5, 32 modes)

5
p(x) =exp | — E:(x,2 —4)?
i=1
Problem Method Loss AlogZ | Ws }  ESS?T Astd] sec./it. |
, KLDIS LV-DIS (ours) MW PIS-KL 3567 1.699 0.0004 1.409 0.441
}5?11 /\ . (d=5,m=506=4) PIS-LV 0.214 0.121 0.6744 0.001 0.402
e . - ' : ' : DIS-KL 1462 1.175 0.0012 0.431 0.490
DIS-LV 0.375 0.120 0.4519 0.001 0.437
SDE LiogFp 0.161 0.123 0.8167 0.016 0.017

SDE-anneal Li’g’gr{;egl 0.842 0.257 0.3464 0.004 0.014
SDE-score Mo 3.969 0.427 0.0124 0.004 0.026

SB Lsp 7.855 0.328 0.0314 0.045 0.029
ODE LiogCE 0.000 0.118 0.9993 0.000 0.008
ODE-anneal Kﬁ)':g"(?%l 0.025 0.121 0.9506 0.005 0.010
oT Lot 0.010 0.120 0.9862 0.002 0.020

Lorenz Richter A dynamical systems perspective on measure transport and generative modeling 29 / 34



Numerical examples: Double well (d = 50, 32 modes)

5

50
1
o 2 2 2
p(x) =exp | — E (x7 —2) 5 26 X

i=1

Problem Method Loss AlogZ | W§ }  ESSt Astd| sec./it. |
MW PIS-KL 0.101 6.821 0.8172 0.001 0.479
(d=50,m=56=2) PIS-LV 0.087 6.823 0.8453 0.000 0.416
DIS-KL 1.785 6.854 0.0225 0.009 0.522
DIS-LV 1.783 6.855 0.0227 0.009 0.450
SDE LiogFP 0.038 6.820 0.9511 0.001 0.050
SDE-anneal ~Limeal 0270 6.899 09171 0.021  0.067
SDE-score  Lscore 1.989 6.803 0.1065 0.016 0.053
SB Lsp 189.71  7.552 0.0106 0.051 0.053
ODE LiogCE 0.003 6.815 0.9937 0.002 0.023
ODE-anneal cjmneal 1750 6.821 02100 0.017  0.043
oT Lor 0.104 6.824 0.9027 0.001 0.043
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Numerical examples: ¢* field theory

2
p(d) =exp [ =Y [ =26 @(x)p(x + i) + (1 — 23)(x)* + A(x)"
n=1

xEN n=
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Numerical examples: ¢* field theory

d
p(x) = exp (— Z (—2r(xixi— + Xxixi+1) + (1 — 2\)x? + Axﬁ))
i=1
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Numerical examples: ¢* field theory

d
p(X) = exp <— Z (—2H(X,'X,'_1_ + X,'X,'+1) + (1 — 2)\)X,~2 + )\X,-Ll))
i=1

o Difficulty depends non-trivially on the choices of x and A.
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Numerical examples: ¢* field theory

d
p(x) = exp (‘ D (—260axi—t + xixia1) + (1= 20)x7 + AX?))

i=1
o Difficulty depends non-trivially on the choices of x and A.

@ Preliminary results, not incorporating any symmetries (with A = 0.022), using
Hamiltonian dynamics and learned priors.
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Numerical examples: ¢* field theory

d
p(X) = exp (— Z (—2R(XiXi_L + X,'X,'+1) + (1 — 2)\)X,~2 + /\Xﬁ))
i=1

o Difficulty depends non-trivially on the choices of x and A.

@ Preliminary results, not incorporating any symmetries (with A = 0.022), using
Hamiltonian dynamics and learned priors.

k  dimension AlogZ | ESS1?T

0.2 16 x 8 0.0002 0.91
64 x 8 0.0057 0.08

0.5 16 x 8 0.0176 0.79
64 x 8 0.0169 0.05
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Conclusion

@ We have established optimal control, PDE and path space perspectives on generative
modeling.
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Conclusion

@ We have established optimal control, PDE and path space perspectives on generative
modeling.

@ This allows to carry over respective methods and theory to generative modeling.

@ We introduced algorithms to sample from an (unnormalized) density, which are already
competitive to MCMC/SMC.

@ The log-variance divergence outperforms the KL divergence.
@ PINNs seem to be suitable for learning dynamical systems for sampling.

@ Often, non-uniqueness helps to find a “better” solution.

Lorenz Richter A dynamical systems perspective on measure transport and generative modeling 32 /34



Outlook

o General framework: (stochastic) normalizing flows and GFlowNets can be incorporated,
however, continuous-time perspective allows for more flexibility.

Lorenz Richter A dynamical systems perspective on measure transport and generative modeling 33 /34



Outlook

o General framework: (stochastic) normalizing flows and GFlowNets can be incorporated,
however, continuous-time perspective allows for more flexibility.

@ SMC: Annealed importance sampling and resampling can be naturally integrated.
(Diffusion model version of CRAFT.)

Lorenz Richter A dynamical systems perspective on measure transport and generative modeling 33 /34



Outlook

o General framework: (stochastic) normalizing flows and GFlowNets can be incorporated,
however, continuous-time perspective allows for more flexibility.

@ SMC: Annealed importance sampling and resampling can be naturally integrated.
(Diffusion model version of CRAFT.)

@ Hamiltonian dynamics: underdamped versions can be considered and lead to improved
performance.
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Thank you for your attention!

richter@zib.de
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