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Overview

Sampling via measure transport can be seen from different perspectives:

Dynamical systems Optimal control

Path measures PDEs

The different perspectives will eventually allow us to propose new numerical algorithms.

This is joint work with Julius Berner (Caltech), Jingtong Sun (Caltech), Denis Blessing
(KIT) and Nikolas Nüsken (King’s College).
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Generative modeling

Task

Sample from a complex (high-dimensional, multimodal) distribution D.

D can be given in the form of:

1. samples X (i) ∼ D (images, text,
audio, ...).

2. an (unnormalized) density (e.g., in
Bayesian statistics, computational physics
and chemistry).
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Generative modeling

Impressive results for the first case:

The second case is a focus of (our) current research.
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Sampling via dynamical systems

Goal: We want to sample from distribution ptarget = ρ/Z.

pprior ptarget

Setting:
SDE

ODE

X0 ∼ pprior dXs = µ(Xs , s)ds + σ(s)dWs

dXs = µ(Xs , s)ds

Idea: Learn µ s.t. XT ∼ ptarget.
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Sampling via dynamical systems

Attempt I: PDE perspective
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Attempt I: PDE perspective

Considering the density of Xt , denoted by pX (·, t), leads to the following PDEs:

▶ SDE: Fokker-Planck equation

∂tpX + div(pXµ)− 1
2 Tr(σσ

⊤∇2pX ) = 0,

▶ ODE: Continuity equation
∂tpX + div(pXµ) = 0,

with boundary conditions pX (·, 0) = pprior and pX (·,T ) = ptarget.

Idea: Identify pairs (µ, pX ) that fulfill the above PDEs.
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Attempt I: PDE perspective – learning the evolutions

Variational formulation of PDEs: Consider loss functionals

L : C (Rd × [0,T ],Rd)× C (Rd × [0,T ],R) → R≥0

that are zero if and only if a pair (µ, pX ) fulfills the corresponding PDE.

For numerical stability, we consider the PDEs in log-space, V := log pX , yielding

▶ SDE:

RlogFP(µ,V ) := ∂tV + div(µ) +∇V · µ− 1
2∥σ

⊤∇V ∥2 − 1
2 Tr(σσ

⊤∇2V ) = 0,

▶ ODE:
RlogCE(µ,V ) := ∂tV + div(µ) +∇V · µ = 0.

Lorenz Richter A dynamical systems perspective on measure transport and generative modeling 8 / 34



Attempt I: PDE perspective – learning the evolutions

Variational formulation of PDEs: Consider loss functionals

L : C (Rd × [0,T ],Rd)× C (Rd × [0,T ],R) → R≥0

that are zero if and only if a pair (µ, pX ) fulfills the corresponding PDE.

For numerical stability, we consider the PDEs in log-space, V := log pX , yielding

▶ SDE:

RlogFP(µ,V ) := ∂tV + div(µ) +∇V · µ− 1
2∥σ

⊤∇V ∥2 − 1
2 Tr(σσ

⊤∇2V ) = 0,

▶ ODE:
RlogCE(µ,V ) := ∂tV + div(µ) +∇V · µ = 0.

Lorenz Richter A dynamical systems perspective on measure transport and generative modeling 8 / 34



Attempt I: PDE perspective – general vs. constrained dynamics

Learning µ and pX simultaneously typically leads to non-unique solutions.

Adding constraints allows for unique solutions:

▶ Annealing: Fix pX (i.e. a path of densities) and consider

Ranneal
logFP (µ̃) := RlogFP(µ̃,V ), Ranneal

logCE (µ̃) := RlogCE(µ̃,V ).

▶ Score-based generative modeling: Fix µ = σσ⊤∇V − f and consider

Rscore(Ṽ ) := RlogFP(σσ
⊤∇Ṽ − f , Ṽ ).

▶ Optimal transport & Schrödinger bridges: Additionally minimize E
[
1
2

∫ T

0
∥µ(Xs , s)∥2ds

]
.

Find µ = ∇Φ, where Φ solves

RSB
HJB(Φ) := ∂tΦ+ 1

2∥∇Φ∥2 + 1
2 Tr(σσ

⊤∇2Φ) = 0, ROT
HJB(Φ) := ∂tΦ+ 1

2∥∇Φ∥2 = 0.

Lorenz Richter A dynamical systems perspective on measure transport and generative modeling 9 / 34



Attempt I: PDE perspective – general vs. constrained dynamics

Learning µ and pX simultaneously typically leads to non-unique solutions.

Adding constraints allows for unique solutions:

▶ Annealing: Fix pX (i.e. a path of densities) and consider

Ranneal
logFP (µ̃) := RlogFP(µ̃,V ), Ranneal

logCE (µ̃) := RlogCE(µ̃,V ).

▶ Score-based generative modeling: Fix µ = σσ⊤∇V − f and consider
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Sampling via dynamical systems

Attempt II: Time-reversals and path space measures
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Attempt II: Time-reversals and path space measures

pprior ptarget

Setting: Consider forward and reverse SDE:

dXs = µ̃F (Xs , s)ds + σ(s)dWs , X0 ∼ pprior,

dYs = µ̃B(Ys , s)ds + σ(s) ⃗dWs , YT ∼ ptarget.

Idea: Learn µ̃F , µ̃B s.t. X is time-reversal of Y , implying XT ∼ ptarget,Y0 ∼ pprior.

▶ Learn µ̃F and µ̃B simultaneously: LBSDE
Bridge(µ̃F , µ̃B)

▶ Fixe annealing pX : LBSDE
CMCD(µ̃F )

▶ Fix µ̃B suitably: LBSDE
DIS (µ̃F )
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Attempt II: Time-reversals and path space measures

We consider the SDEs

dXs = µ̃F (Xs , s)ds + σ(s)dWs , X0 ∼ pprior,

dYs = µ̃B(Ys , s)ds + σ(s) ⃗dWs , YT ∼ ptarget.

Path space perspective: Consider path measures PXµF and P ⃗Y
µB .

Identify drifts µF , µB via divergence of those measures

µF , µB ∈ argmin
µ̃F ,µ̃B

D
(
PX µ̃F

∣∣P ⃗Y
µ̃B

)
.

Proposition (Log-likelihood for path measures)

log
dPX µ̃F

dP ⃗Y
µ̃B

(X µ̃R ) =

∫ T

0

(
σ−2(µ̃F + µ̃B) ·

(
µ̃R +

µ̃B − µ̃F

2

)
+∇ · µ̃B

)
(X µ̃R

s , s)ds

+

∫ T

0
σ−1(µ̃F + µ̃B)(X

µ̃R
s , s) · dWs + log

pprior(X
µ̃R
0 )

ptarget(X
µ̃R
T )
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Sampling via dynamical systems

Connections and equivalences: divergences and loss functions
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Connections and equivalences: Time-reversals and BSDEs

We need to choose a loss L or a divergence D.

First choice: BSDE-based losses for stochastic evolutions.

BSDE loss: stochastic representation of PDE via Itô’s formula. For the process

dXs = µ(Xs , s)ds + σ(s) dWs .

and a PDE
∂tV + 1

2 Tr
(
σσ⊤∇2V

)
+ µ · ∇V+ = 0

it holds
RBSDE(V ) = V (X0, 0)−V (XT ,T ) +

∫ T

0
σ⊤∇V (Xs , s) · dWs = 0.

We can now consider the loss

LBSDE(Ṽ ) = E

[(
RBSDE(Ṽ )(X )

)2]
,

where the expectation is over different realizations of the process X .
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Connections and equivalences: Time-reversals and BSDEs

BSDE-based losses are equivalent to a particular divergence between path space measures:

D µ̃R

BSDE

(
PX µ̃F

∣∣P ⃗Y
µ̃B

)
= E

[(
log

dPX µ̃F

dP ⃗Y
µ̃B

(X µ̃R )

)2]
= LBSDE

logFP(µ̃, Ṽ ) = LBSDE
Bridge(µ̃F , µ̃B)

Proposition (Equivalence to trajectory-based methods)

The BSDE versions of our losses are equivalent to previously existing losses:

1 Assuming the reparametrization σσ⊤∇Ṽ = µ̃F − µ̃B , it holds

LBSDE
logFP (µ̃F , Ṽ ) = LBSDE

Bridge(µ̃F , µ̃B).

2 It holds
Lanneal,BSDE
logFP (µ̃F ) = LBSDE

CMCD(µ̃F ).

3 Assuming the reparametrization σσ⊤∇Ṽ = µ̃F − f , it holds

LBSDE
score (Ṽ ) = LBSDE

DIS (µ̃F ).
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LBSDE
logFP (µ̃F , Ṽ ) = LBSDE
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Connections and equivalences: Path measures and optimal control

D = DKL(PX µ̃F |P ⃗Y
µ̃B ) = E

[
log

dP
X µ̃F

dP
⃗Y
µ̃B

(X µ̃F )

]
leads to stochastic optimal control:

Proposition (Verification theorem, time-reversed diffusion sampling (DIS))

Set µ̃F := f + σu, i.e. let X u be defined by

dX u
s = (f + σu) (X u

s , s)ds + σ(s) dWs ,

and fix µ̃B = f . Consider the loss

L(u) = DKL(PX u |PX u∗ ) = DKL(PX u |P ⃗Y )− DKL(PX u
0
|PYT

),

where PX u denotes the path space measure of X u etc. Then it holds that

− logZ = min
u∈U

L(u) := min
u∈U

E

[∫ T

0

(
1

2
∥u∥2 − div(f )

)
(X u

s , s)ds + log
pYT

(X u
0 )

ρ(X u
T )

]
,

where the unique minimum is attained by u∗ := σ⊤∇ log ⃗pY .
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Path space perspective: Recovering score-based generative modeling

Detour: let us consider the case with available data samples, but no density ρ

The previous loss is not feasible → we cannot minimize a divergence directly

Trick: instead of DKL(PX u |P ⃗Y ) let us consider DKL(PY |P ⃗X
u) = E

[
log dPY

dP ⃗X
u
(Y )

]
(which is possible since we have data samples), yielding

L(u) = min
u∈U

E

[∫ T

0

(
1

2
∥u∥2 + div(σu − f )

)
(Ys , s)ds + log

pX u
T
(Y0)

pX u
0
(YT )

]
.

Not tractable since pX u
T
is not known→ as a remedy, maximize ELBO

E
[
log pX u

T
(Y0)

]
≥ E

[
log pX u

0
(YT )−

∫ T

0

(
1

2
∥u∥2 + div(σu − f )

)
(Ys , s)ds

]
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Path space perspective: Recovering score-based generative modeling

Denoising score matching: Rewrite the divergence and apply Monte Carlo
approximation of the time-integral, using τ ∼ U([0,T ]), so that no trajectories are needed
anymore:

ELBO: E
[
log pX u

T
(Y0)

]
≥ E

[
log pX u

0
(YT )−

∫ T

0

(
1
2∥u∥

2 + div(σu − f )
)
(Ys , s)ds

]

= T
2 E
[∥∥u(Yτ , τ)− σ⊤(τ)∇ log pYτ |Y0

(Yτ |Y0)
∥∥2]︸ ︷︷ ︸

denoising score matching

+ const.
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Path space perspective: Novel divergences

We propose a novel divergence:

Definition (Log-variance divergence)

D µ̃R
LV

(
PX µ̃F ,P ⃗Y

µ̃B

)
:= Var

(
log

dPX µ̃F

dP ⃗Y
µ̃B

(X µ̃R )

)

In principle arbitrary choice for µ̃R allows to balance exploration and exploitation.

No differentiation through the SDE solver.

Proposition (Equivalence with KL divergence)

1

2

(
δ

δµ̃F
D µ̃R
LV(PX µ̃F ,P ⃗Y

µ̃B )
∣∣∣
µ̃R=µ̃F

)
=

δ

δµ̃F
DKL(PX µ̃F |P ⃗Y

µ̃B )
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The log-variance divergence: Variance reduction

Proposition (Control variate)

1

2

(
δ

δµ̃F
D̂ µ̃R
LV(PX µ̃F ,P ⃗Y

µ̃B )
∣∣∣
µ̃R=µ̃F

)
is a control variate version of

δ

δµ̃F
D̂KL(PX µ̃F |P ⃗Y

µ̃B ).

XCV = X + C , where E[C ] = 0

This leads to variance reduction in the
estimated gradient.

Usually implying faster and better convergence
of gradient based optimization.
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The log-variance divergence: Robustness properties

Proposition (Robustness at solution)

Var

(
δ

δµ̃F

∣∣∣
µ̃F=µF

D̂ µ̃R
LV(PX µ̃F ,P ⃗Y

µ̃B )

)
= 0, Var

(
δ

δµ̃B

∣∣∣
µ̃B=µB

D̂ µ̃R
LV(PX µ̃F ,P ⃗Y

µ̃F )

)
= 0.

Proposition (Robustness in high dimensions)√
Var

(
D̂w
LV

(⊗d
i=1Pi ,

⊗d
i=1Qi

))
Dw
LV

(⊗d
i=1Pi ,

⊗d
i=1Qi

) can be bounded uniformly in d.
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A simulation-free attempt based on PDEs: PINN-based losses

Alternative: PINN-based losses for stochastic and deterministic evolutions.

Consider parametrization (encoding the boundary conditions)

Ṽφ,z(·, t) = t
T log

ρtarget
z(t) +

(
1− t

T

)
log pprior +

t
T

(
1− t

T

)
φ(·, t),

where we learn z and φ, cf. Máté & Fleuret, 2023.

We can then minimize

L(µ̃, Ṽ ) = E

[(
R(µ̃, Ṽ )(ξ, τ)

)2]
,

where (ξ, τ) ∼ ν are sampled from a measure ν, e.g. ν = Unif(Ω× [0,T ]),Ω ⊂ Rd .
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Numerical implications of the losses

BSDE-bassed losses:

▶ Neither second-order nor time derivatives have to be computed.

▶ Gradients of the solutions (usually corresponding to the learned drift) can be learned directly.

▶ Only stochastic dynamics can be approached.

PINN-based losses:

▶ Can be readily applied to deterministic evolutions.

▶ Simulation-free, no time-discretization.

▶ Off-policy training comes by design.

▶ Need to know “essential support” of target density.

▶ Training is sensitive to hyperparameter tuning.
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Numerical examples

We consider the following losses:

Method Stochastic Deterministic BSDE version Unique

General bridge LlogFP(µ̃, Ṽ ) LlogCE(µ̃, Ṽ ) Bridge ✗

Prescribed bridge Lanneal
logFP (µ̃) Lanneal

logCE (µ̃) CMCD ✓

Score-based Lscore(Ṽ ) DIS ✓

SB & OT LSB(µ̃, Ṽ ) LOT(µ̃, Ṽ ) ✓
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Numerical examples: Gaussian mixture (d = 2, 9 modes)

7.5 5.0 2.5 0.0 2.5 5.0 7.5
x

5 0 5

5

0

5

Problem Method Loss ∆ logZ ↓ W2
γ ↓ ESS ↑ ∆std ↓ sec./it. ↓

GMM PIS-KL 1.094 0.467 0.0051 1.937 0.503

(d = 2) PIS-LV 0.046 0.020 0.9093 0.023 0.500

DIS-KL 1.551 0.064 0.0226 2.522 0.565

DIS-LV 0.056 0.020 0.8660 0.004 0.536

SDE LlogFP 0.000 0.020 1.0000 0.004 0.011

SDE-anneal Lanneal
logFP 5.364 0.172 0.1031 0.209 0.062

SDE-score Lscore 0.009 0.020 0.9818 0.096 0.013

SB LSB 0.002 0.020 0.9959 0.050 0.017

ODE LlogCE 0.000 0.020 1.0000 0.003 0.008

ODE-anneal Lanneal
logCE 4.227 0.044 0.1427 0.753 0.020

OT LOT 0.005 0.057 0.9932 0.065 0.080
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Numerical examples: Gaussian mixture (d = 2, 9 modes)

Geometric annealing path can be suboptimal (Lanneal
logCE ):
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The learned path seems to be more appropriate (LlogCE):
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Numerical examples: Gaussian mixture (d = 2, 9 modes)
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Numerical examples: Gaussian mixture (d = 2, 9 modes)
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Numerical examples: Double well (d = 5, 32 modes)

ρ(x) := exp

(
−

5∑
i=1

(x2i − 4)2

)
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Problem Method Loss ∆ logZ ↓ W2
γ ↓ ESS ↑ ∆std ↓ sec./it. ↓

MW PIS-KL 3.567 1.699 0.0004 1.409 0.441

(d = 5,m = 5, δ = 4) PIS-LV 0.214 0.121 0.6744 0.001 0.402

DIS-KL 1.462 1.175 0.0012 0.431 0.490

DIS-LV 0.375 0.120 0.4519 0.001 0.437

SDE LlogFP 0.161 0.123 0.8167 0.016 0.017

SDE-anneal Lanneal
logFP 0.842 0.257 0.3464 0.004 0.014

SDE-score Lscore 3.969 0.427 0.0124 0.004 0.026

SB LSB 7.855 0.328 0.0314 0.045 0.029

ODE LlogCE 0.000 0.118 0.9993 0.000 0.008

ODE-anneal Lanneal
logCE 0.025 0.121 0.9506 0.005 0.010

OT LOT 0.010 0.120 0.9862 0.002 0.020
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Numerical examples: Double well (d = 50, 32 modes)

ρ(x) := exp

(
−

5∑
i=1

(x2i − 2)2 − 1

2

50∑
i=6

x2i

)

Problem Method Loss ∆ logZ ↓ W2
γ ↓ ESS ↑ ∆std ↓ sec./it. ↓

MW PIS-KL 0.101 6.821 0.8172 0.001 0.479

(d = 50,m = 5, δ = 2) PIS-LV 0.087 6.823 0.8453 0.000 0.416

DIS-KL 1.785 6.854 0.0225 0.009 0.522

DIS-LV 1.783 6.855 0.0227 0.009 0.450

SDE LlogFP 0.038 6.820 0.9511 0.001 0.050

SDE-anneal Lanneal
logFP 0.270 6.899 0.9171 0.021 0.067

SDE-score Lscore 1.989 6.803 0.1065 0.016 0.053

SB LSB 189.71 7.552 0.0106 0.051 0.053

ODE LlogCE 0.003 6.815 0.9937 0.002 0.023

ODE-anneal Lanneal
logCE 1.759 6.821 0.2100 0.017 0.043

OT LOT 0.104 6.824 0.9027 0.001 0.043
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Numerical examples: ϕ4 field theory

ρ(ϕ) = exp

−
∑
x∈Λ

−2κ
2∑

µ̂=1

ϕ(x)ϕ(x + µ̂) + (1− 2λ)ϕ(x)2 + λϕ(x)4



Difficulty depends non-trivially on the choices of κ and λ.

Preliminary results, not incorporating any symmetries (with λ = 0.022), using
Hamiltonian dynamics and learned priors.

κ dimension ∆ logZ ↓ ESS ↑
0.2 16× 8 0.0002 0.91

64× 8 0.0057 0.08

0.5 16× 8 0.0176 0.79

64× 8 0.0169 0.05
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Conclusion

We have established optimal control, PDE and path space perspectives on generative
modeling.

This allows to carry over respective methods and theory to generative modeling.

We introduced algorithms to sample from an (unnormalized) density, which are already
competitive to MCMC/SMC.

The log-variance divergence outperforms the KL divergence.

PINNs seem to be suitable for learning dynamical systems for sampling.

Often, non-uniqueness helps to find a “better” solution.
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Outlook

General framework: (stochastic) normalizing flows and GFlowNets can be incorporated,
however, continuous-time perspective allows for more flexibility.

SMC: Annealed importance sampling and resampling can be naturally integrated.
(Diffusion model version of CRAFT.)

Hamiltonian dynamics: underdamped versions can be considered and lead to improved
performance.
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Thank you for your attention!

richter@zib.de
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