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Lattice Quantum Field Theory (LQFT)
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Lattice Quantum Field Theory (LQFT)

@) = [ Dop9)0) ~ 306

generated with MCMC



Nature is not a Lattice (as far as we can tell)
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Continuum Limit (intuitive):

a— 0 N — o0 such that a*N* = V =~ const.




Critical Slowing Down:

Cla = 1) = (0@OW) ~ exp (=)
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Critical Slowing Down:

Clz 1) = (0@OW) ~ exp (-5 )
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— Critical exponent



Intermitent Summary

O6)) = [ Dép(6)0@) ~ 1306

Critical slowing down:

exponentially growing number of samples needed for the same variance
as we take the continuum limit.



We will now discuss two examples of LQFT:

- Lattice Gauge Theory

- Proteins
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Matter fields




Force-carrying fields




U,(x) € SU(3)



Un(z)Us(z + 2)Up(z + )0, ()



r pu<v

Un(z)Us(z + 2)Up(z + )0, ()



Uu(x) — Q(z) Uu(m) Qz + ﬂ)T

Uu(z)Uy(z + p1)Up(z + ﬁ)TUv(x)T



U (2) = U(z)Us (z + 1) Up(z + 0) U ()



U (2) = U(z)Us (z + 1) Up(z + 0) U ()



S(U) = —g > ) ReTrUp(z) U (z) = Uu(2)U,(z + p)Uy(z + 0)TU, ()]

r u<v
IS Invariant!



Action S(U Z > ReTrU,(z) is gauge invariant:

r u<v

U,(z) = Qx)U,(z) Uz + )T
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Action S(U Z > ReTrU,(z) is gauge invariant:

r u<v

U,(z) = Qx)U,(z) Uz + )T

Symmetry group is huge: &8 X L?* free parameters!

L =16 - 500k
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Critical slowing down:
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Intermitent Summary

©ow) = [ PIpw) %‘@

* Critical slowing down;

growing number of samples needed for the same variance
as we take the continuum limit.

exponent
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Aminoacid

side chain

amino group carboxyl group
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Differences to Lattice Gauge Theory:

- Exact action is unknown. We only have crude approximations.
- No gauge symmetry

- No need to necessarily extrapolate, e.g. structure prediction

- Joint challenge: landscape rugged and thus large autocorrelation.



Training

Reverse KL: KL(gq,p) = (logq(U) + S(U))q + const.
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Training

Reverse KL.: KL(g,p) = (logq(U) + S(U))q + const.
Only action needed. - Relies on self-sampling.
Forward KL: KL(q,p) = (logq(U)), + const.

No action but samples needed.



Training e

AlphaZero was made & trained by it simply playing against itself multiple(many) times, using 5,000 first-generation TPUs to generate
the games and 64 second-generation TPUs to train the neural networks. Training took several days, totaling about 41 TPU-years. In
parallel, the in-training AlphaZero was periodically matched against its benchmark (Stockfish, EImo, or AlphaGo Zero) in brief one-
second-per-move games to determine how well the training was progressing. DeepMind judged that AlphaZero's performance
exceeded the benchmark after around four hours of training for Stockfish, two hours for EImo, and eight hours for AlphaGo Zero.!?!
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Attention is all we need?



Architectures

Proteins

Algorithm 22 Invariant point attention (IPA)
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Lattice Gauge Theory

inputs for another transformation. While the attention
mechanism is at the heart of some of the most power-
ful artificial intelligence applications to date [75], we find
that in our experiments, convolution architectures gen-
erally train faster and result in higher performances.

Abbot et al (2305.02402)

Ongoing work by A. Tomiya et al



ABSTRACT

We propose a unifying approach that starts from the perturbative construction of trivializing maps by
LUscher and then improves on it by learning. The resulting continuous normalizing flow model can be
implemented using common tools of lattice field theory and requires several orders of magnitude
fewer parameters than any existing machine learning approach. Specifically, our model can achieve
competitive performance with as few as 14 parameters while existing deep-learning models have
around 1 million parameters for SU(3) Yang-Mills theory on a 167 lattice. This has obvious
consequences for training speed and interpretability. It also provides a plausible path for scaling
machine-learning approaches toward realistic theories.

Bacchio et al, 2023



Can we use ML in other ways?



