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Simulating Yang-Mills theory on the lattice

▶ For a Yang-Mills theory regularized on the lattice we want to compute expectation values

⟨O⟩ =
1

Z

∫ ∏
dU O(U)︸ ︷︷ ︸

measure

exp(−SYM(U))︸ ︷︷ ︸
sample

with the probability distribution for SU(3) YM theory at a given β

p(U) = exp(−SYM(U))/Z SYM(U) = β
∑

x,µ<ν

1−
1

3
ReTrUµν(x)

then continuum extrapolation a→ 0 (roughly β →∞)

▶ (Thermalized) Markov Chain: elegant and scalable numerical solution

U(0) Pp→ U(1) Pp→ . . .
Pp→︸ ︷︷ ︸

thermalization

U(t) Pp→ U(t+1) Pp→ · · · → U(t+n)︸ ︷︷ ︸
equilibrium

measure O on equilibrium configurations

▶ MCMC algorithms (Metropolis, HMC...) define the transition probability Pp
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Critical slowing down

The configurations sampled sequentially in a Markov Chain are autocorrelated

· · · → U(t) → U(t+1) → · · · → U(t+n)

Measure of this autocorrelation for O:
τint(O)

→ true independent configurations = n/2τint(O)

Critical slowing down

When a critical point is approached τint diverges

The continuum limit a→ 0 is a critical point, so
τint(O) ∼ a−z

where z depends on the algorithm and on the observable under study
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Topological freezing in lattice gauge theory

▶ in the continuum: field configurations classified by integer topological charge Q

▶ on the lattice: topological sectors emerge for a→ 0

▶ Using standard local MCMC algorithms the transition between these sectors is strongly suppressed

▶ Strong freezing of topology at β ≥ 6.5 (r0/a > 11)

▶ τint(Q
2) > 103 with 1 heat-bath step + 4

over-relaxation steps (z ∼ 5)

▶ Open boundaries mitigate the issue. But: more
expensive simulation, more complicated analysis, only for
topology

▶ General solution for critical slowing down?
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Image courtesy of C. Bonanno
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Re-framing critical slowing down: flowing from one distribution to the other

What if every new configuration is sampled independently from the previous one?

Flow-based approach

mapping between the target p(U) and some tractable distribution q0(z)

→ novel approach to fight critical slowing down

→ successfully applied in LFTs in 2d: ϕ4 scalar field theory [Albergo et al.; 2019], [Kanwar et al.; 2020], [Nicoli et al.; 2020],
[Del Debbio et al.; 2021], U(1) [Singha et al.; 2023], SU(N) [Boyda et al.; 2020]

→ including fermions [Albergo et al.; 2021] in U(1) and SU(N) [Abbott et al.; 2022], Schwinger model [Finkenrath et al.; 2022],
[Albergo et al.; 2022], and QCD [Abbott et al.; 2022]

→ first attempts in 4d [Abbott et al.; 2023] with interesting applications [Abbott et al.; 2024]

→ new architectures such as Continuous Normalizing Flows [Gerdes et al.; 2022], [Caselle et al.; 2023], [Gerdes et al.; 2024]

→ strongly related to the idea of trivializing maps [Lüscher; 2009], [Bacchio et al.; 2022], [Albandea et al.; 2023]

→ ...

Alessandro Nada (UniTo) Stochastic Normalizing Flows for lattice gauge theory 21/10/2024 5



Re-framing critical slowing down: flowing from one distribution to the other

What if every new configuration is sampled independently from the previous one?

Flow-based approach

mapping between the target p(U) and some tractable distribution q0(z)

→ novel approach to fight critical slowing down

Normalizing flows do not appear to scale well with the volume (i.e. with the degrees of freedom)

However: same approach is possible stochastically! → NE-MCMC

Can we obtain a clear scaling?

Can we combine it with NFs in a new architecture?
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Non-equilibrium Monte Carlo



Out-of-equilibrium evolutions

sampling each consecutive step from a sequence of distributions

q0 ≃ e−Sc(0) → e−Sc(1) → · · · → p ≃ e
−Sc(nstep)

▶ c(n) is a parameter of the action Sc(n) of the model

▶ start at equilibrium from a distribution q0 = e−Sc(0)/Z0, the prior

▶ nstep intermediate steps

▶ at each step: MC update with transition probability Pc(n)(Un → Un+1)

▶ Pc(n) changes along the evolution according to the protocol c(n)

▶ end at the target probability distribution p = e
−Sc(nstep)/Znstep ≡ e−S/Z

”forward” transition probability

Pf [U0, . . . ,U] =

nstep∏
n=1

Pc(n)(Un−1 → Un)
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Crooks’ theorem

Look at the ratio of the forward evolution and its reverse

q0(U0)Pf [U0, . . . ,Unstep ]

p(U)Pr[Unstep , . . . ,U0]
=

q0(U0)
∏nstep

n=1 Pc(n)(Un−1 → Un)

p(Unstep )
∏nstep

n=1 Pc(n)(Un → Un−1)

→ Crooks’ theorem for MCMC [Crooks; 1999]: if the update algorithm satisfies detailed balance

q0(U0)Pf [U0, . . . ,Unstep ]

p(U)Pr[Unstep , . . . ,U0]
= exp(W −∆F )

with the generalized work

W =

nstep−1∑
n=0

{
Sc(n+1) [Un]− Sc(n) [Un]

}
and the free energy difference

exp(−∆F ) =
Zc(nstep)

Zc(0)
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Jarzynski’s equality for MCMC

Integrating over all paths gives∫
[dU0 . . . dUnstep ]q0(U0)Pf [U0, . . . ,Unstep ] exp(−(W −∆F )) = 1 → ⟨exp (−Wd )⟩f = 1

with the dissipated work Wd = W −∆F

Formal derivation of Jarzynski’s equality [Jarzynski; 1997] for MCMC

⟨exp (−W )⟩f = exp(−∆F ) =
Z

Z0

A ratio of partition functions is computed directly with an average over ”forward” non-equilibrium evolutions

⟨A⟩f =
∫

[dU0 . . . dU]q0(U0)Pf [U0, . . . ,U] A[U0, . . . ,U]

Using Jensen’s inequality ⟨exp x⟩ ≥ exp⟨x⟩

exp(−∆F ) = ⟨exp(−W )⟩f ≥ exp (−⟨W ⟩f)

we get the Second Law of Thermodynamics
⟨W ⟩f ≥ ∆F
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Out-of-equilibrium stochastic evolutions

▶ it’s a non-equilibrium process!
qn(Un) ̸= exp(−Sc(n)(Un))/Zn

▶ valid process also far from equilibrium (e.g. nstep is ”small”: nstep = 1 is standard reweighting)

▶ the ⟨A⟩f average is taken over all possible evolutions (always true for infinite statistics)

NE-MCMC

This goes beyond computing free energy differences! The same derivation holds if you want to compute v.e.v. of an
observable for the target distribution p

⟨O⟩ =
⟨O exp(−W )⟩f
⟨exp(−W )⟩f

= ⟨O exp(−Wd )⟩f
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A non-equilibrium paradigm to perform MCMC

n
st

ep

nbetween

n
st

ep

nbetween
n

st
ep

nbetween

n
st

ep

nbetween

eq MC

non-eq MC
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Applications of Jarzynski’s equality in Lattice Field Theory

Several applications in the last 8 years!

▶ Calculation of the interface free-energy in the Z2 gauge theory [Caselle et al.; 2016]

▶ SU(3) pure gauge equation of state in 4d from the pressure [Caselle et al.; 2018]

▶ Renormalized coupling for SU(N) YM theories [Francesconi et al.; 2020]

▶ Connection with Stochastic Normalizing Flows: first test for ϕ4 scalar field theory [Caselle et al.; 2022]

▶ Entanglement entropy [Bulgarelli and Panero; 2023], also with (S)NFs [Bulgarelli et al.; 2024] ← see Andrea’s poster

▶ Topological unfreezing for CP(N − 1) model [Bonanno et al.; 2024]

▶ Numerical simulations of Effective String Theory [Caselle et al.; 2024] ← see Elia’s poster

Computation of free energies and/or sampling problematic distributions
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How far are we from equilibrium?

Intuitively we want to be as close to equilibrium as possible!

We can measure the similarity of forward and reverse processes

D̃KL(q0Pf∥pPr) =

∫
[dU0 . . . dU] q0(U0)Pf [U0, . . . ,U] log

q0(U0)Pf [U0, . . . ,U]

p(U)Pr[U,Unstep−1, . . . ,U0]

Clear ”thermodynamic” interpretation

D̃KL(q0Pf∥pPr) = ⟨W ⟩f + log
Z

Z0
= ⟨W ⟩f −∆F ≥ 0︸ ︷︷ ︸

Second Law of thermodynamics!

→ measure of how reversible the process is!

For NFs we minimize D̃KL(q∥p).
But interestingly

D̃KL(q∥p) ≤ D̃KL(q0Pf∥pPr)
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The effective sample size

Effective Sample Size: defined in general as the ratio between the ”theoretical” variance and the actual variance of the NE
observable

Var(O)NE

n
=

Var(O)p
nESS

but difficult to compute

We use the (customary) approximate estimator

ˆESS =
⟨exp(−W )⟩2f
⟨exp(−2W )⟩f

=
1

⟨exp(−2Wd )⟩f

Easy to understand in terms of the variance of exp(−W ):

Var(exp(−W )) =

(
1

ˆESS
− 1

)
exp(−2∆F ) ≥ 0

which leads to
0 < ˆESS ≤ 1
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Numerical results for SU(3) in 4 dimensions



Non-equilibrium strategies for critical slowing down in SU(3)

How to sample frozen topological observables at βtarget on a L4 lattice?

Evolution in the boundary conditions Evolution in β (THIS TALK)

Prior thermalized Markov Chain at βtarget thermalized Markov Chain at β0 < βtarget

with OBC on a L3d defect (a0 > atarget)

Protocol Gradually switch on PBC Gradually increase β (compress the volume)

d.o.f. ∼ (Ld/a)
3 ∼ (L/a)4

Intermediate sampling — possible at any intermediate β

Papers JHEP 04 (2024) 126 – 2402.06561 2411.XXXX
with C. Bonanno and D.Vadacchino with A. Bulgarelli and E. Cellini

More alternatives are possible, depending on the problem. But the approach is general!Alessandro Nada (UniTo) Stochastic Normalizing Flows for lattice gauge theory 21/10/2024 14



Evolutions in β: volume scaling

(1.8fm)4 → (1.4fm)4 for L/a = 20

0.00 0.05 0.10 0.15 0.20

nstep/(L/a)4
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β = 6.02→ 6.178

NEMC, L/a = 10
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NEMC, L/a = 20
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Stochastic Normalizing Flows



SNFs as systematic improvement of non-equilibrium evolutions

What if you introduce the same transformations used in NFs between the non-equilibrium Monte Carlo updates?

n
st

ep

nbetween

n
st

ep

nbetween

n
st

ep

nbetween

n
st

ep

nbetween

eq MC

non-eq MC
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SNFs as systematic improvement of non-equilibrium evolutions

What if you introduce the same transformations used in NFs between the non-equilibrium Monte Carlo updates?

Stochastic Normalizing Flows (introduced in [Wu et al.; 2020])

U0
g1−→ g1(U0)

Pc(1)−→ U1
g2−→ g2(U1)

Pc(2)−→ U2
g3−→ . . .

Pc(nstep)
−→ Unstep

n
st

ep

nbetween

n
st

ep

nbetween

n
st

ep

nbetween

n
st

ep

nbetween

eq MC

non-eq MC

GE layer
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SNFs as systematic improvement of non-equilibrium evolutions

What if you introduce the same transformations used in NFs between the non-equilibrium Monte Carlo updates?

Stochastic Normalizing Flows (introduced in [Wu et al.; 2020])

U0
g1−→ g1(U0)

Pc(1)−→ U1
g2−→ g2(U1)

Pc(2)−→ U2
g3−→ . . .

Pc(nstep)
−→ Unstep

The (generalized) work now is

W =

nstep−1∑
n=0

Sc(n+1)(gn(Un))− Sc(n)(gn(Un))︸ ︷︷ ︸
stochastic

− log |det Jn(Un)|︸ ︷︷ ︸
deterministic

▶ use gauge-equivariant layers to effectively decrease nstep

▶ how to do training? advantages from the architecture

▶ same scaling with the volume?
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Gauge-equivariant layers

Implementation of the coupling layers introduced in [Nagai and Tomiya; 2021] and the link-level flow used in [Abbott et al.;

2023]

Essentially a stout-smearing transformation [Morningstar and Peardon; 2003] with masks to make them invertible (and
compute log J)

U′
µ(x) = gl (Uµ(x)) = exp

(
Q

(l)
µ (x)

)
Uµ(x)

with the algebra-valued

Q
(l)
µ (x) = 2

[
Ω

(l)
µ (x)

]
TA

Ω
(l)
µ (x) = C

(l)
µ (x)︸ ︷︷ ︸
frozen

U†
µ(x)︸ ︷︷ ︸

active

Sum of frozen staples

C
(l)
µ (x) =

∑
ν ̸=µ

ρ
(l)
µν(x)Sµν(x)︸ ︷︷ ︸

staple

in this work: ρ
(l)
µν(x) −→ ρ(l), meaning 1 parameter per mask/8 parameters per layer
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Learning ρ

Architecture: (1 gauge-equivariant CL + 1 full MC update) ×nstep

Training: minimizing D̃KL(q0Pf∥pPr) = ⟨W ⟩f + const

To avoid memory issues for large nstep and large volumes we train each layer separately during the non-equilibrium evolution

It’s a feature of SNFs

U0
g1−→ g1(U0)

Pc(1)−→ U1
g2−→ g2(U1)

Pc(2)−→ U2
g3−→ . . .

Pc(nstep)
−→ Unstep

Look at the loss W = S(Unstep )− S0(U0)− Q − log J

Q + log J =

nstep−1∑
n=0

Sc(n+1)(Un+1)− Sc(n+1)(gn(Un)) + log det Jn(Un)

the terms in the sum can be trained separately!

→ each layer connects two
neighbouring intermediate
distributions

→ reminiscent of CRAFT [Matthews

at al.; 2022]

→ memory usage independent of
nstep!

→ bias in the gradient (no visible
effect)
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Transferring ρ

Short trainings: 200-1000 epochs enough to saturate

Training only with small nstep: clear pattern emerges

0 10 20 30 40 50 60
n

0.0001

0.0002

0.0003

ρ
(n

)

L/a = 12, β = 6.0→ 6.2

nstep = 16

nstep = 32

nstep = 64
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Transferring ρ

Short trainings: 200-1000 epochs enough to saturate

▶ global interpolation of ρ from trainings at
nstep = 16, 32, 64

▶ ρ(l) extrapolated to large nstep → no retraining!

▶ Heavy use of transfer learning for each β0 → β evolution

▶ Transfer learning also possible between different volumes

Training only with small nstep: clear pattern emerges

0.0 0.2 0.4 0.6 0.8 1.0
n/nstep
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×
n
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SNF volume scaling
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SNF volume scaling

nstep ∼ V for fixed D̃KL or ESS
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Conclusions and future improvements

Main results

▶ Stochastic approach guarantees a clear scaling with the degrees of freedom

nstep ∼ d.o.f.→ fixed D̃KL or ESS

▶ SNFs improve on NE-MCMC with very cheap training

▶ thermodynamic understanding of the flow → interpretability

Future strategy

Systematic improvement over NE-MCMC and current SNFs while retaining the scaling

Better protocols

Huge literature from non-equilibrium SM on optimal
protocols

No reason to think linear protocol are particularly
efficient

Understand the scaling in β

Better and deeper layers

Include larger loops beyond the plaquette in the
smearing

ρ(l) as a neural network as in residual flows [Abbott et

al.; 2023]
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Future prospects

Topological freezing

Implement SNF for evolutions in the BC

Base distribution: open BC on a defect Ld → target
distribution: periodic BC

# d.o.f. scales like (Ld/a)
3

Work in collaboration with C. Bonanno and D.
Vadacchino [Bonanno et al.; 2024]

Further applications

Use SNFs and NE-MCMC to quantitatively study
thermalization processes

Possible application to master-field simulations

Rethinking thermalization of MCMC
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Thank you for your attention!
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Improvements over purely stochastic approach
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SNF scaling in β
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SNF scaling in β
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Non-equilibrium evolutions in the boundary conditions

Based on work with Claudio Bonanno and Davide Vadacchino

▶ CP(N − 1) model in 2d [JHEP 04 (2024) 126, 2402.06561]

Promising results: τint ∼ 105 tamed to effectively a few thousands + length of non-equilibrium evolutions scales with
defect size

▶ SU(3) in 4d: poster at Lattice2024

▶ Parameter controlling the BC is switched linearly until PBC

▶ Test in 4d SU(3) at β = 6.4: scaling with defect and
calibration of algorithm for larger βs

▶ no ML (yet)

▶ 304 lattices at β = 6.4 (L = 1.4fm) with a L3d defect
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Switching BC in SU(3): scaling with the defect size
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Switching BC in SU(3): topology
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Switching BC in SU(3): autocorrelations
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Switching BC in SU(3): efficiency
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Switching BC in SU(3): work histograms
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The Second Law of Thermodynamics

Clausius inequality for an (isothermal) transformation from state A to state B

Q

T
≤ ∆S

If we use {
Q = ∆E − W (First Law)

F
def
= E − ST

the Second Law becomes
W ≥ ∆F

where the equality holds for reversible processes.

Moving from thermodynamics to statistical mechanics we know that actually

⟨W ⟩f ≥ ∆F = FB − FA

for a given ”forward” process f from A to B
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A connection to traditional reweighting

A typical reweighting procedure is meant to sample a distribution p using a (close enough) distribution q0. It can be
written as

⟨O⟩RW =
⟨O(ϕ) exp(−∆S)⟩q0
⟨exp(−∆S)⟩q0

It is just Jarzynski’s equality for nstep = 1, see the work

W =

nstep−1∑
n=0

{
Sc(n+1) [ϕn]− Sc(n) [ϕn]

}
= ∆S(ϕ0)

with ϕ0 sampled from q0

▶ It’s important to note that there is no issue with the fact that ∆S itself can be large

▶ The real issue is that the distribution of ∆S (and in general of W ) can lead to an extremely poor estimate of ∆F →
highly inefficient sampling

▶ The exponential average can be tricky when very far from equilibrium!
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SNFs for ϕ4 at various volumes

Training length: 104 epochs for all volumes. Slowly-improving regime reached fast
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SNFs for ϕ4 at various volumes

SNFs with nsb = nab as a possible recipe for efficient scaling
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Taking cues from the SU(3) e.o.s.

Large-scale application: computation of the SU(3) equation of state [Caselle et al.; 2018]

Goal: extract the pressure with Jarzynski’s equality

p(T )

T 4
−

p(T0)

T 4
0

=

(
Nt

Ns

)3

log⟨e−WSU(Nc ) ⟩f

evolution in βg (inverse coupling) → changes lattice spacing a → changes temperature T = 1/(aNt)

Prior: thermalized Markov chain at a certain β
(0)
g

For systems with many d.o.f. (i.e. large volumes), JE works when N is large, i.e. evolution is slow (and expensive)
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SU(3) e.o.s. with Jarzynski’s equality
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The CPN−1 model with a defect

Improved action

S
(r)
L = −2NβL

∑
x,µ

{
k
(n)
µ (x)c1ℜ

[
Ūµ(x)z̄(x + µ̂)z(x)

]
+ k

(n)
µ (x + µ̂)k

(n)
µ (x)c2ℜ

[
Ūµ(x + µ̂)Ūµ(x)z̄(x + 2µ̂)z(x)

]}
with z(x) a vector of N complex numbers with z̄(x)z(x) = 1 and Uµ(x) ∈ U(1)

c1 = 4/3 and c2 = −1/12 are Symanzik-improvement coefficients

The k
(n)
µ (x) regulate the boundary conditions along a given defect D

k
(n)
µ (x) ≡

{
c(n) x ∈ D ∧ µ = 0 ;

1 otherwise.

at a given step n of the out-of-equilibrium evolution protocol c(n)
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Topological susceptibility for various protocols for N = 21, βL = 0.7, V = 1142 (roughly similar numerical effort)

Note that with OBC → τint(χ) ∼ 50
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Black band is from parallel tempering [Bonanno et al.; 2019] → with × ∼ 100 numerical cost
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