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Flows: what are they for?

Flows are “bridges” between different distributions/theories/actions

f

Sy (U) > U
W)= < —— ()=

f—l

Exact bridge between 7 and g
Choose 1, but flow induces g
For sampling applications: variationally optimize f so g = p o< e P

— Approximate bridge between r and p
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Requirements for exactness samples from model
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Requirements for exactness SamIO'egZ from model
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Model quality: ESS =




(Approximate) direct sampling with flows

Apply f to Haar uniform to get model g, tune f soq = p « g ~Starget
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Reweight from g —

w(U) =pU) /qU)
<0>p = <W0>q

But: can choose whatever
base distribution we want



Challenge: volume scaling

Locality: system factorizes into patches ~ &
— For a fixed model under transfter Vy — V, p

ESS(V) =~ ESS(V,)"/"o
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Challenge: volume scaling

Locality: system factorizes into patches ~ &
— For a fixed model under transfter Vy — V,

ESS(V) =~ ESS(V,)V/Vo

ForQCD,V ~ L*so L - 2L means V — 16V

— Need precise (at V) models!

Caveats:

* Sometimes training directly at V' beats transferring
* Obstacle to thermodynamic limit (V — oo, & fixed),
but not to continuum limit (§ = oo, V /€4 fixed)
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Overview
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Basic idea:
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Overview

2 oo raativat

Basic idea: don’t flow as far

Use cases:
1. Accelerating traditional sampling algorithms
2. Correlated ensembles (to improve derivative observables)
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“Residual flows” [2305.02402]

used as components in exact sampling and inference schemes. Ongoing work yields increasingly ~ O D E ﬂ Ow + varia b I € pa rtlt lonti ng
expressive flows on gauge fields, but it remains an open question how flows can improve lattice - tra Cta b I e / | n expe ns |Ve exa Ct Ja CcoO b | an

QCD at state-of-the-art scales. We discuss and demonstrate two applications of flows in replica

Normalizing flows are machine-learned maps between different lattice theories which can be

exchange (parallel tempering) sampling, aimed at improving topological mixing, which are viable Fe atures:
with iterative improvements upon presently available flows. G au g ee q u iV a r| a nt ﬂ OWS
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https://arxiv.org/abs/2404.11674
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Part 1: Accelerating sampling [2404.11674]

Generalize traditional algos:
* AIS — SNFs

AlS = Annealed Importance Sampling SNF = Stochastic Normalizing Flow

e SMC — CRAFT

SMC = Sequential Monte Carlo / Particle Filter =~ CRAFT = Continuous Repeated Annealed Flow Transport

* REX = T-REX (L-REX)

REX = Replica EXchange / Parallel Tempering T-REX = Transformed REX
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Part 1: Accelerating sampling [2404.11674]

Generalize traditional algos:
* AIS — SNFs

AlS = Annealed Importance Sampling SNF = Stochastic Normalizing Flow

e SMC — CRAFT

SMC = Sequential Monte Carlo / Particle Filter =~ CRAFT = Continuous Repeated Annealed Flow Transport

* REX = T-REX (L-REX)

REX = Replica EXchange / Parallel Tempering T-REX = Transformed REX

How to “go shorter”:
1. Bridge to nearby theory w/ faster sampling
2. Add small, unphysical “defect” designed to improve sampling


https://arxiv.org/abs/2404.11674

Sketch: Markov chain Monte Carlo sampling

Sample by evolving the state of a
Markov chain

Time average & Ensemble average
(If ergodic!)

Standard for QCD: HMC
Hybrid/Hamiltonian Monte Carlo
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Topological freezing

Problem: gauge field distribution is multimodal
Must sample different topological sectors
Exponentially slow tunnelingasa — 0

Topological charge

Q~JFF

Dan Hackett - 2024 Oct 21

11



Topological freezing

Problem: gauge field distribution is multimodal

Must sample different topological sectors
Exponentially slow tunnelingasa — 0

Topological charge

Q~JFF

yneling even
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TOpOloglcal free2| ng Example: SU(3) Wilson pure gauge on 12

Problem: gauge field distribution is multimodal
Must sample different topological sectors
Exponentially slow tunnelingasa — 0

Can result in effective loss of ergodicity [2202.1172]
— Apparent convergence to wrong answers at achievable sample sizes

,B=5.95 HB |B=6.00 HB IB=6.05 HB
IE 5
—

{
>
4 Faster mixing ' T Slower mixing
0 10|00 20IOO 30|00 40|00 50000 10|00 20|00 30|00 40|00 50000 10|00 20|00 30|00 40|00 5000
>
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Application 1: Transformed Replica EXchange (T-REX)

(REX a,k,a, pa ra||e| tempering) [Invernizzi Kramer Clemente Noé 2210.14104]

Simultaneously sample chains for different targets

Flow and propose swap

MC update for
theory O

>

Theory O

MC update for
theory 1

>

Theory 1

: U, U,
Pacc = min [1: ZEEU;% zigug ]f(UO)]f—l (Ul)]
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How REX can accelerate topological mixing

Swapping allows system to
temporarily evolve in “easier”
theory where modes are less
separated

~ Temporary bridge between
modes in “harder” theory
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How REX can accelerate topological mixing

Swapping allows system to
temporarily evolve in “easier”
theory where modes are less
separated

~ Temporary bridge between
modes in “harder” theory
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L Swapto Swap back to

easier theory

7

harder:theory
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Demo: T-REX

Three target §s on 12*

Two different flows
595 < 6
6 < 6.05
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Swap AR ~ 15%

Swap AR ~ 20%

1 step =5 HB + 2 OR, propose swaps every 5 steps

B=5.95 T-REX 1B =6.00 T-REX B=6.05T REX

B=5.95 HB B=6.00 HB B=6.05 HB

0 1600 20b0 30b0 40b0 50000 ldOO ZdOO 3600 40b0 50000 1600 2060 30b0 40b0
Swap AR~ 0 Swap AR~ 0

5000
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Demo: T-REX

Three target ,85 on 124 Swap AR ~ 15% Swap AR ~ 20%

Two different flows — 5 95 T.REX |8 = 6.00 T-REX |8=16.05 T REX
595 « 6 I 1 1 I II'IlII I I 1
6 < 6.05 TAC ~ 95 . H“ TAC i 225 l\}H\L
o _ ] 1 Il ]

i Ny m
| 1”' H\! ']
-4 4
.JB=5.95 HB 1B=6.00 HB |B=6.05 HB
Tar: “autocorrelation time” h
AC | le AN | ] o 'h
Sampling cost X T, o of ~ 50 : : le Tac ~ 70
] | | _ I |
ESS ~ —* 2 1l
1+2 T4c —4 1 _ ]
0 10|00 20|00 30|00 40|00 50000 10|00 20|00 30|00 40|00 50000 10|00 20|00 30|00 4OIOO 5000
Swap AR~ 0 Swap AR~ 0

= +
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Demo: T-REX

Three target ,85 on 124 Swap AR ~ 15% Swap AR ~ 20%

Two different flows — 5 95 T.REX |8 = 6.00 T-REX |8=16.05 T REX
595 < 6 I 1 1 Il II'IlII I I 1
6 & 6.05 TAC ~ 95 : H“ TAC i 225 l\}H\L
_2 ] _ ] (NN | ™ m m

l‘lllw ”VII ‘I ‘ ]
L4 Only break-even,
no speed-up (yet!)
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T,c: “autocorrelation time” h 3T~ ~ 210
AC ' le Mob ' | Al I’I
Sampling cost X 74, © o I 50 : | IITI Tac ~ 70

. | _ _ 0 |
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Parallel Tempering on Boundary Conditions (PTBC)

[Hasenbusch 1706.04443]
[Bonnano Bonati D’Elia 2012.14000]

Open Boundary Conditions (OBC) are
known to accelerate topology, but
harder to do physics with

HB

l

Idea: introduce localized defect HB

,Bdefect < ,Btarget
“Poke a hole in the boundary”

Remove defect w/ REX

HB

l

I,EI
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Propose
swaps

A
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Defect Repair Replica EXchange (DR-REX)

Train flow to repair defect
(Or, multiple flows for several steps of partial repair)

Defect has localized physical effects

— Flow can act only on a subvolume
Frozen context

Pros: |
Volume-independent computational cost |
Volume-independent model quality |

Con(?):
Requires conditional flow




Demo: DR-REX

Target: B = 6.3 on 16*
23 OBC defect

Two flows to repair
g =0-3-6.3

Flows act on 8% subvolume

Similar swap AR w/o flows
requires 7-8 chains
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Swap AR ~ 23%

Swap AR ~ 28%

| DR-REX By=0 | DR-REX By=3 | DR-REX Bg=PBenv =6.3
| PTBC By4=0 | PTBC By4=3 | PTBC By =Beny =6.3
L1 | I | Ll
| | I

0 2000

4000

6000 0 2000

Swap AR < 107>

4000

6000

0 2000 4000 6000

Swap AR 3 107°

1 step =1 HB + 5 OR, propose swaps every 10 steps
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Swap AR ~ 23%

Swap AR ~ 28%
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Demo: DR-REX

Target: B = 6.3 on 16*
23 OBC defect

Two flows to repair
id=0—->3-6.3

Flows act on 8% subvolume

Similar swap AR w/o flows
requires 7-8 chains

Swap AR ~ 23%

Swap AR ~ 28%

| DR-REX By=0

|

DR-REX By=3

TAC ~ 1000
|

H e~ Mg

TAC ~ 1000/3

1

Need more defect for advantage!

| PTBC 24— 0

|

|

DR_REX Bd = Benv = 6-3

“mmnmmn
WU

A\

i 0] r~enyv

—L
T

0 2000

4000

6000 0 2000 4000 6000

Swap AR < 107>

0 2000 4000 6000

Swap AR 3 107°

1 step =1 HB + 5 OR, propose swaps every 10 steps



See also [Bacchio 2305.07932]

Part 2: Correlated ensembles [2401.10874]

Flow an ensemble
— {U} and {f (U)} are correlated U ~r

This is useful! -
O

0]


https://arxiv.org/abs/2401.10874

See also [Bacchio 2305.07932]

Part 2: Correlated ensembles [2401.10874]

Flow an ensemble
— {U}and {f (U)} are correlated i ~r T’ {f_(y)} ~ q

This is useful!

p — ] \
O L { D\
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L \
O — 0 y

N /7
~ -
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https://arxiv.org/abs/2401.10874

See also [Bacchio 2305.07932]

Part 2: Correlated ensembles [2401.10874]

Flow an ensemble

— {U}and {f(U)} are correlated {U} ~r = {f(U)} ~

f
. | P
This is useful! / . \ / O |:|\‘
| % :
v o / \ U -7 T ) 4
. 50— — 0. )
e.g. for noise cancellation in differences D
(0)p, — (0)
= (W0)q, —(0),

= (w(f)o(f)-owW),_.
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Derivative observables

Improve (0),, — (0), in derivatives w/r/t action parameters:
d(0) 1

FTIRET [€0) 155 — ]
Applications:
» Constraints on extrapolations to continuum/chiral/... limits
* Feynman-Hellmann S->S+10 % o~ (h|O|h)
=0

. _ oM
e.g.: nucleon-pion sigma term o,y = my(N|qq|N) = m, #
q

e.g.: gluon momentum fraction (x), = %(h(O)ITOO(O)Ih(O)) for hadron h

— _20m — 3 lr_p2 2
(x)g = 3m6),,1=0Where5S_ /'12[ E“ + B~]



Demo: Pion (x), w/ flowed Feynman-Hellmann

[QCDSF-UKQCD 1205.6410]

Spatial-temporal anisotropy: 65 = —ANE [Zipti — Di<j Pi']

latt _ _ 2 om ~ _ 21 — '
(xylatt = 2 —- [m(1) — m(0)]
Parameters: o
835x16 B =6 K =0.132(quenched) 0530
Flows: N 0.5751
\
l\ , ESS =~ 0.84 0.570 -
vt _7
1=0 1= +0.01 05651
0.560 -

Compute m(4) from (w C*P*),

A
.

heatbath ensembles
€ reweighting
flowed ensembles

0.01

0

0.01




Demo: Pion (x), w/ flowed Feynman-Hellmann
[QCDSF-UKQCD 1205.6410]
Spatial-temporal anisotropy: S = —/INE [ZiPtl- — Di<j Pl--]

(eylatt = - 220 o 2 Z1m(2) — m(0))]

g 3m 01 | 3= 3m A
Parameters: M indep ensembles
3 . 1.9 A € reweighting
3°X16 IB =6 Kk =0.132 (quenched) ' [ flowed ensembles
1.0 1
Flows: N .
" \\ Es 08
g , BSS~084 &
/ S__7 |
A=0 A =20.01 04 A
0.2 -

Compute m(A) from (w CZpt)q hod
metno



Demo: Pion (x), w/ flowed Feynman-Hellmann
[QCDSF-UKQCD 1205.6410]
Spatial-temporal anisotropy: S = —ANE [ZiPtl- — Di<j Pl--]

(eylatt = - 220 o 2 Z1m(2) — m(0))]

g 3m 01 | 3= 3m A
1.4 4
Parameters: indep ensembles
3 . 1.9 A € reweighting
3°X16 IB =6 Kk =0.132 (quenched) ' [ flowed ensembles
1.0 1
Flows: % : N

)

<

> 0.871 ~N 7
\ X
/\ / ESS = (0.84 S 1ol \
~ / '
A=0 1=10.01 0.4- Z%

0.2 1

Compute m(A) from (w CZpt)q hod
metno



Demo: More derivative observables

Able to demonstrate significant variance reductions in several observable classes

Ny =2 QCD
Pure Gauge
Feyman-Hellmann

A

AMHTHHIIN

b |

dW2><2 dW4x4

102 -
1
o 1 ¥4
= _
i)
8}
-
o
L 10!
D]
)
-
.3
.
QY]
>
10Y .
dW1x1
dk
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dk dk

dQ? dto.10 t0.3| <
dk dr to.35 | cont

ST
—+
—+
S
E

observable

eynman-Hellmann
observables
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WIP: extend to QCD
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2.5

2.0

1.51

1.0+

0.51

0.01

Q  ereweighting
1 flow

o Q@
O
O )
O
n 3] dT]
,% C % % + o O [
0 2 A 6 8 10 12
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Conclusions

Volume scaling motivates hybrid approaches

* Opportunities for useful applications before full generative
modeling possible

* “Hybrid approach” another way of incorporating a priori physics
into the flow?
This talk:
* Accelerate sampling w/ REX methods
e Correlated ensembles (for derivative observables)

Many other possibilities!

Some other ideas:
* Learn defects to accelerate sampling?



