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Path-Integral Framework 
for Derivation of Nuclear Forces

HK, Epelbaum, arXiv:2311.10893



Why a new Framework?

Regularization should preserve chiral and gauge symmetries

Regularization should not affect long-range pion physics

all 1/Λ-corrections are short-range interactions
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Pion-propagator in Euclidean space: q2 = q2
0 + q2

1 + q2
2 + q2
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 - dependence in exponential requires second and higher order time-derivatives 
       in pion field in the chiral Lagrangian
q0

Canonical quantization of the regularized theory becomes difficult 
(Ostrogradski - approach, Constrains, …)

Difficulties in formulation of regularized chiral EFT



Canonical vs Path-Integral Quantization

Path-Integral approach is a natural choice in pionic and single-nucleon sector
Gasser, Leutwyler, Annals Phys. 158 (1984) 142; 
Bernard, Kaiser, Kambor, Meißner, Nucl. Phys. B 388 (1992) 315

In two - and more - nucleon sector Weinberg used canonical quantization language
Weinberg Nucl. Phys. B 362 (1991) 3 

To see the origin of these infrared divergences, consider the simple one-

loop graph shown in Figure I for nucleon-nucleon scattering at zero kinetic 

energy. Using the approximation (I) for the nucleon propagator, this gives a 

matrix element proportional to 

1 d'q (qo + i<ft(qo _ ;,)-t(q' + m;)-' P(q) 

where P(q) is a polynomial in the pion four-momentum q. This polynomial 

includes terms that are non-vanishing in the limit q0 ---+ 0, so the integral 

over q0 has an infrared divergence: 

1 dqo(qo + i<)-t(q"- i<ft . 

The contour of integration is pinched between the two poles at q0 = =fit:, and 

so cannot be distorted to avoid these singularities. In contrast, for the crossed 

ladder graph both poles are on the same side of the integration contour, while 

in one-nucleon processes there is only one pole, so in these cases there are no 

infrared divergences. 

Of course the infrared divergence in Figure 1 is not real; it only arises 

because we use the approximation (3) for the nucleon propagators. Including 

the term q2 in ( P + qf in the denominators of the nucleon propagators shifts 

the poles to q0 "' ± (q 2 /2mN- i<), so that the q0 integral has the finite value 

2mNi7r / ij2 • Equivalently, the infrared divergence forces us to include in the 

Lagrangian the nucleon kinetic energy term: 

C.,n = N\12 N /2mN . (9) 
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The important point is that although with these corrections the q0 integral 

is finite, it is not of the order I Ql- 1 called for by our power-counting rules, 

but is larger by a factor of order mN/It/1. The failure of perturbation theory 

that is manifested in nuclear binding is to be blamed on such large factors. 

Rather than try to keep track of these nearly infrared-divergent graphs, 

it is much more convenient to switch over to old-fashioned perturbation the-

ory, where the integrals are only over three-momenta, and the problem with 

our power counting is one of small energy denominators rather than nearly 

infrared divergent integrals over energies. Intermediate states that contain 

pions have energy denominators of order Q, while those containing only nu-

cleons have much smaller energy denominators, of order Q2 /mN. To avoid 

the small energy denominators, we define an effective potential as the sum of 

connected old-fashioned perturbation theory graphs for the T-matrix exclud-

ing those with pure-nucleon intermediate states. As shown in I, the number 

v of powers of Q in each term of perturbation theory for the effective po-

tential is again given by Eq. (7). In particular, the leading terms for the 

effective potential are given by tree graphs (i. e., L :::; 0), constructed from 

the simplest chiral-invariant interactions, satisfying Eq. (8). 

In using old· fashioned perturbation theory we must work with the Hamil-

tonian rather than the Lagrangian. The application of the usual rules of 

canonical quantization to the leading terms in (1) and (9) yields the total 

8 

Can we choose a formulation where we can work with the Lagrangian?

Canonical Quantization of QFT Path-Integral Quantization of QFT

Creation/annihilation operators

Hamiltonian & Hilbert space

Time-ordered perturbation theory

Lagrangian & action

Summation over all classical paths

Loop expansion & Feynman rules



Path-Integral over Nucleons and Pions
We start with generating functional:

ℒ = N†(i
∂

∂x0
+

⃗∇2

2m
+

g
2F

⃗σ ⋅ ⃗∇ π ⋅ τ)N +
1
2 (∂μπ ⋅ ∂μπ − M2π2)

Yukawa toy-model:

Perform a Gaussian path-integral over the pion fields

Z[η†, η] = ∫ [DN†][DN]exp(i SN + i ∫ d4x(η†(x)N(x) + N†(x)η(x)))

Z[η†, η] = ∫ [DN†][DN][Dπ]exp(i ∫ d4x(ℒ + η†(x)N(x) + N†(x)η(x)))

SN = ∫ d4x N†(x)(i
∂

∂x0
+

⃗∇2

2m )N(x) − VNN
Non-instant one-pion-exchange 
interaction 

VNN = −
g2

8F2 ∫ d4x d4y ⃗∇x ⋅ [N†(x) ⃗στ]N(x) ΔF(x − y) ⃗∇y ⋅ [N†(y) ⃗στ]N(y)

with non-instant pion propagator: ΔF(x) = ∫
d4q

(2π)4

e−i q⋅x

q2 − M2 + i ϵ



Instant Interactions from Path-Integral 
To transform        into an instant form we rewrite a pion propagatorVNN

1
q2

0 − ω2
q

= −
1

ω2
q

+
1

q2
0 − ω2

q
+

1
ω2

q
= −

1
ω2

q
+ q2

0
1

ω2
q

1
q2

0 − ω2
q

, ωq = ⃗q2 + M2

In coordinate space this corresponds to                                          withΔF(x) = ΔS(x) −
∂2

∂x2
0

ΔFS(x)

ΔS(x) = − ∫
d4q

(2π)4

e−i q⋅x

ω2
q

= − δ(x0)∫
d3q

(2π)3

ei ⃗q⋅ ⃗x

ω2
q

, ΔFS(x) = ∫
d4q

(2π)4

e−i q⋅x

ω2
q(q2

0 − ω2
q)

The decomposition                                          can be generalizedΔF(x) = ΔS(x) −
∂2

∂x2
0

ΔFS(x)

G(x) = ∫
d4q

(2π)4
e−i q⋅xG̃(q2

0 , q2) and               is differentiable at G̃(q2
0 , q2) q0 = 0

    Defining                                              andGS(x) = ∫
d4q

(2π)4
e−i q⋅xG̃(0,q2) GFS(x) = ∫

d4q
(2π)4

e−i q⋅x G̃(q2
0, q2) − G̃(0,q2)

q2
0

G(x) = GS(x) −
∂2

∂x2
0

GFS(x)



VNN = −
g2

8F2 ∫ d4x d4y ⃗∇x ⋅ [N†(x) ⃗στ]N(x) ΔF(x − y) ⃗∇y ⋅ [N†(y) ⃗στ]N(y)

Instant Interactions from Path-Integral 

is instant

Perform an instant decomposition of the pion propagator ΔF(x) = ΔS(x) −
∂2

∂x2
0

ΔFS(x)

VNN = VOPE + VFS

VOPE = −
g2

8F2 ∫ d4x d4y ⃗∇x ⋅ [N†(x) ⃗στ]N(x) ΔS(x − y) ⃗∇y ⋅ [N†(y) ⃗στ]N(y)

VFS =
g2

8F2 ∫ d4x d4y ⃗∇x ⋅ [N†(x) ⃗στ]N(x)
∂2

∂x2
0

ΔFS(x − y) ⃗∇y ⋅ [N†(y) ⃗στ]N(y) is non-instant

VFS        is time-derivative dependent and thus can be eliminated 
                by a non-polynomial field redefinition

N(x) → N′￼(x) = N(x) + i
g2

8F2 ∫ d4y [ ⃗στN(x)] ⋅ [ ⃗∇x
∂

∂x0
ΔFS(x − y)] ⃗∇y ⋅ [N†(y) ⃗στN(y)]

N†(x) → N′￼†(x) = N†(x) − i
g2

8F2 ∫ d4y ⃗∇y ⋅ [N†(y) ⃗στN(y)][ ⃗∇y
∂

∂y0
ΔFS(y − x)] ⋅ [N†(x) ⃗στ]



Instant Interactions from Path-Integral 

VOPE = −
g2

8F2 ∫ d4x d4y ⃗∇x ⋅ [N′￼†(x) ⃗στ]N′￼(x) ΔS(x − y) ⃗∇y ⋅ [N′￼†(y) ⃗στ]N′￼(y)

Non-local field transformations remove time-derivative dependent two-nucleon
interactions but generate time-derivative dependent three-nucleon interactions. 

These contributions can be eliminated by similar field transformations

Z[η†, η] = ∫ [DN′￼†][DN′￼] det (δ(N′￼†, N′￼)
δ(N†, N) )exp(i SN(N′￼†,N′￼) + i ∫ d4x(η†(x)N(N′￼†, N′￼)(x) + N(N′￼†, N′￼)†(x)η(x)))

≃ ∫ [DN′￼†][DN′￼] det (δ(N′￼†, N′￼)
δ(N†, N) )exp(i SN(N′￼†,N′￼) + i ∫ d4x(η†(x)N′￼(x) + N′￼†(x)η(x)))

Equivalence theorem: nucleon pole-structure is unaffected by the field-transf.

SN(N′￼†,N′￼) = ∫ d4x N′￼†(x)(i
∂

∂x0
+

⃗∇2

2m )N′￼(x) − VOPE + 𝒪(g4)

Instant one-pion-exchange interaction



Generalization to Chiral EFT
We start with generating functional:

Z[η†, η] = ∫ [DN†][DN][Dπ]exp(i ∫ d4x(ℒπ + ℒπN + ℒNN + ℒNNN + η†(x)N(x) + N†(x)η(x)))
Integrate over pion fields via loop-expansion of the action

expansion of the action around the classical pion solution

Perform instant decomposition of the remaining interactions between nucleons

Perform nucleon-field redefinitions to eliminate non-instant part of the interaction

Calculate functional determinant to get one-loop corrections to few-nucleon forces

Fazit: Path-integral formulation of nuclear forces is as powerful as UT technique,
           however it allows consideration of a wider class of theories 

UT & FT path-integral approach lead to the same chiral EFT nuclear forces up to N4LO 



Symmetry Preserving Regulator

HK, Epelbaum, arXiv:2312.13932



Gradient-Flow Equation (GFE)
Yang-Mills gradient flow in QCD: Lüscher, JHEP 04 (2013) 123

∂τBμ = DνGνμ with Bμ |τ=0 = Aμ & Gμν = ∂μBν − ∂νBμ + [Bμ, Bν]

 is a regularized gluon fieldBμ

Apply this idea to ChPT:
(Proposed in various talks by D. Kaplan for nuclear forces)

Introduce a smoothed pion field  with  satisfying GFEW W |τ=0 = U

 with  and ∂τW = i w EOM(τ) w w = W EOM(τ) = [Dμ, wμ] +
i
2

χ− −
i
4

Tr(χ−)

wμ = i(w†(∂μ − i rμ)w − w(∂μ − i lμ)w†), χ− = w†χw† − wχ†w, χ = 2B(s + ip)

Note: The shape of regularization is dictated by the choice of the right-hand side of GFE

Our choice is motivated by a Gaussian regularization of one-pion-exchange in NN

HK, Epelbaum, arXiv:2312.13932



Properties under Chiral Transformation

Chiral transformation: by induction, one can show 

U → RUL† W → RWL†

Replace all pion fields in pion-nucleon Lagrangians :ℒ(1)
πN, …, ℒ(4)

πN U → W

Regularized pion fields transform under  - independent transformationsτ

ℒ(1)
πN = N†(D0 + g u ⋅ S)N → N†(D0

w + g w ⋅ S)N

N → KN, K = LU†R†R U

Nucleon fields transform in  - dependent wayτ

N → KτN, Kτ = LW†R†R W



Gradient-Flow Equation

[∂τ − (∂x
μ∂x

μ − M2)]ϕ(1)
b (x, τ) = 0, ϕ(1)

b (x,0) = πb(x)

In the absence of external sources we have

[∂τ − (∂x
μ∂x

μ − M2)]ϕ(3)
b (x, τ) = (1 − 2α)∂μϕ(1) ⋅ ∂μϕ(1)ϕ(1)

b − 4α∂μϕ(1) ⋅ ϕ(1)∂μϕ(1)
b

+
M2

2
(1 − 4α)ϕ(1) ⋅ ϕ(1)ϕ(1)

b , ϕ(3)
b (x,0) = 0

Iterative solution in momentum space:

ϕ̃(1)
b (q) = e−τ(q2+M2)π̃b(q)

ϕ̃(n)(q, τ) = ∫ d4x eiq⋅xϕ(n)
b (x, τ)

ϕ̃(3)
b (q) = ∫

d4q1

(2π)4

d4q2

(2π)4

d4q3

(2π)4
(2π)4δ(q − q1 − q2 − q3)∫

τ

0
ds e−(τ−s)(q2+M2)e−s∑3

j=1 (q2
j +M2)

× [4α q1 ⋅ q3 − (1 − 2α)q1 ⋅ q2 +
M2

2
(1 − 4α)]π̃(q1) ⋅ π̃(q2)π̃b(q3)

Integration over momenta of pion fields with Gaussian prefactor introduces smearing

Analytic solution is possible of  - expanded gradient flow equation:1/F

W = 1 + iτ ⋅ ϕ(1 − αϕ2) −
ϕ2

2 [1 + (1
4

− 2α)ϕ2] + 𝒪(ϕ5), ϕb =
∞

∑
n=0

1
Fn

ϕ(n)
b



Iterative solution in Coordinate Space

Solid line stands for Green-function:
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FIG. 3: Schematic graphical representation of the solution of the gradient flow equation in coordinate space in the absence
of external sources. Solid dots denote a point xµ, ⌧ , while solid lines refer to the Green’s function defined in Eq. (4.32).
Light shaded areas visualize the smearing in Euclidean space-time, whose characteristic size is ⇠

p
2⌧ . Pion fields live on the

boundary with ⌧ = 0.

The boundary condition for �(3)(x, 0) can be derived by examining the matrix W (x, ⌧):

W = 1 +
i

F
⌧ · �(1)

�
1

2F 2
�(1)

· �(1) +
i

F 3

�
⌧ · �(3)

� ↵ ⌧ · �(1)�(1)
· �(1)� + O

✓
1

F 4

◆
, (4.44)

where we have used that �(2)(x, ⌧) = 0. Given that �(1)
b (x, 0) = ⇡b(x), we obtain

W
���
⌧=0

= 1 +
i

F
⌧ · ⇡ �

1

2F 2
⇡ · ⇡ +

i

F 3

⇣
⌧ · �(3)

���
⌧=0

� ↵ ⌧ · ⇡⇡ · ⇡
⌘

. (4.45)

Using W |⌧=0 = U and matching Eq. (4.45) to Eq. (3.12), we finally obtain the boundary condition �(3)(x, 0) = 0.
We then write the solution of Eq. (4.43) in the form

�(3)
b (x, ⌧) =

Z ⌧

0
ds

Z
d4y G(x � y, ⌧ � s)


(1 � 2↵)@µ�

(1)(y, s) · @µ�
(1)(y, s) �(1)

b (y, s)

� 4↵ @µ�
(1)(y, s) · �(1)(y, s) @µ�(1)

b (y, s) +
M2

2
(1 � 4↵)�(1)(y, s) · �(1)(y, s) �(1)

b (y, s)

�
. (4.46)

The corresponding momentum-space expression is given by

�̃(3)
b (q, ⌧) =

Z
d4q1

(2⇡)4
d4q2

(2⇡)4
d4q3

(2⇡)4
(2⇡)4�4(q � q1 � q2 � q3)

Z ⌧

0
ds e�(⌧�s)(q2+M2)e�s

P3
j=1(q

2
j+M2)

⇥


4↵ q1 · q3 � (1 � 2↵)q1 · q2 +

M2

2
(1 � 4↵)

�
⇡̃(q1) · ⇡̃(q2) ⇡̃b(q3) . (4.47)

By looking at the regulator

Z ⌧

0
ds e�(⌧�s)(q2+M2)e�s

P3
j=1(q

2
j+M2) =

e�⌧(q2+M2)
� e�⌧

P3
j=1(q

2
j+M2)

q2
1 + q2

2 + q2
3 � q2 + 2M2

, (4.48)

one observes that not every pion field gets regularized since the first Gaussian regulator in the right-hand side of
Eq. (4.48) only acts on the total pion momentum q = q1+q2+q3. However, as will be argued below, this regularization
is su�cient for our purposes. Notice further that the above expression is non-singular for all values of the momenta
qi and q.

The above considerations help to elucidate the general structure of the solution of the gradient flow equation �(x, ⌧),
which is schematically depicted in Fig. 3. Specifically, the field �(x, ⌧) is expressed in terms of an increasing number
of smeared pion fields that live on the boundary ⌧ = 0, with the extent of smearing being controlled by the parameterp

2⌧ . In the limit ⌧ ! 0, all multi-pion contributions to � get suppressed and the field � turns to the pion field ⇡.
After these preparations, we are now in the position to define our regularization scheme using the gradient flow

method. In the Goldstone boson sector, we employ the standard (i.e., unregularized) Lagrangian L⇡ = L
(2)
⇡ +L

(4)
⇡ +. . .,

Light-shaded area visualizes smearing in Euclidean space of size ∼ 2τ

ϕ(1)
b (x, τ) = ∫ d4y G(x − y, τ)πb(y)

[∂τ − (∂x
μ∂x

μ − M2)]G(x − y, τ − s) = δ(x − y)δ(τ − s)

ϕ(3)
b (x, τ) = ∫

τ

0
ds∫ d4y G(x − y, τ − s)[(1 − 2α)∂μϕ(1)(y, s) ⋅ ∂μϕ(1)(y, s)ϕ(1)

b (y, s)

− 4α ∂μϕ(1)(y, s) ⋅ ϕ(1)(y, s)∂μϕ(1)
b (y, s) +

M2

2
ϕ(1)(y, s) ⋅ ϕ(1)(y, s)ϕ(1)

b (y, s)]

G(x, τ) = θ(τ)∫
d4q

(2π)4
e−τ(q2+M2)e−i q⋅x



Regularization for Nuclear Forces
To regularize long-range part of the nuclear forces and currents

Leave pionic Lagrangians  unregularized (essential)ℒ(2)
π & ℒ(4)

π

Replace all pion fields in pion-nucleon Lagrangians :ℒ(1)
πN, …, ℒ(4)

πN U → W

ℒ(1)
πN = N†(D0 + g u ⋅ S)N → N†(D0

w + g w ⋅ S)N

∼ e−τ(q2+M2) ∼ e−2τ(q2+M2) 1
q2 + M2

For  this regulator reproduces SMS regularization of OPEτ =
1

2Λ2



Status Report on 3NF



Status Report on 3N at N3LO
We calculated all long- and short-range contributions to 3NF & 4NF at N3LO 
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3NF’s are given in terms of integrals over Schwinger parameters 

V2π−1π
3N = τ1 ⋅ τ2 × τ3 ⃗q1 ⋅ ⃗σ1 × ⃗σ2 ⃗q3 ⋅ ⃗σ3

e− q2
3 + M2π

Λ2

q2
3 + M2

π ( −
g4

A

F6
π

q1

2048π ∫
∞

0
dλ erfi( q1λ

2Λ 2 + λ )
exp( −

q2
1 + 4M2

π

4Λ2 (2 + λ))
2 + λ

+ …) + …

Dimension of integrals over Schwinger parameters depends on topology

Space

Momentum 2 1 3

Coordinate 4 1 0

a b c d e f
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Subtraction Scheme
Choice of the short-range scheme

NN case: local part of NN force vanishes if distance between nucleons vanishes

leads to natural size of LECs

3N case: vanishing of the local part of 3NF is topology dependent

a b c d e f
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1 2 3

 if  or = 0 r12 = 0 r23 = 0

a b c d e f
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1 2 3

 if = 0 r12 = 0

a b c d e f
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1 2 3

 if = 0 r12 = r23 = 0

Can be achieved by adjustment of D- and E-like terms:

Vanishing of 3NF for any  would require inclusion of two-pion-contact termsrij = 0

Appear first at N5LO and are expected to be small



Selected Profile Functions
V ring

3N = F1(r12, r23, r13) + … + τ2 ⋅ τ3 ⃗σ1 ⋅ ⃗σ2F5(r12, r23, r13) + … F5(r) = F5(r, r, r) [MeV]

F 5
(r

)

r [fm]r [fm]

By construction: subtracted & unsubtracted forces differ in the short-range region

At  regularized 3NF reproduce dim. reg. results fromΛ → ∞ Bernard et al. PRC77 (08)

F 5
(r

)
F 5

(r
)

F 5
(r

)

r [fm]r [fm]
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Short-Range Part on 3NF at N3LO

To get a finite 3NF in  limit we have to perform 5 additional
field-transformations which include second power of the pion propagator

Λ → ∞

Non-locality introduces additional momenta         

Short-range parts are given in terms of 1-dim integrals over Schwinger parameters 

more extensive calculation

Selected structure & configuration :c
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 includes momenta in MeV & cosines of angles:c
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Short-Range Part on 3NF at N3LO
Immaginary part of the 3NF due non-local angular-dependent regulator

k1 q23k23 ̂q1 ⋅ ̂k1 ̂q1 ⋅ ̂q23 ̂q1 ⋅ ̂k23 ̂k1 ⋅ ̂q23 ̂k1 ⋅ ̂k23 ̂q23 ⋅ ̂k23q1

150 170 180 −
1
6

1
2

1
5

1
7

−
1
9

1
8

λ

Re
f(

λ;
c)

[G
eV

−
5 ]

Λ = 450 MeV

λ

160

Configuration  includes momenta                     in MeV & cosines of angles:c

Im
f(

λ;
c)

[G
eV

−
5 ]

q1, k1, k23, q23



Homework

Fit ’s to pion-nucleon sub-threshold coefficients which are determined 
from Roy-Steiner equation

ci

Calculation of pion-nucleon scattering with gradient-flow regulator required

TPE topology includes pion-nucleon amplitude as a subprocess

PWD is computationally more expensive, due to higher dimension of integrals 
over Schwinger parameters

a b c d e f
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Partial wave decomposition (PWD): K. Hebeler, A. Nogga & R. Skibinski 

Pion-nucleon amplitude with gradient-flow regulator depends on ’s ci

Relativistic corrections due to new 5 short-range field transformations



Summary

Gradient flow regularization preserves chiral symmetry

Path-integral approach for derivation of nuclear forces

Long- & short-range part of 3NF at N3LO is calculated

Outlook

Partial wave decomposition
Symmetry preserving regularized nuclear currents

Pion-nucleon scattering with gradient-flow regulator



One-Loop Corrections to Interaction
One loop corrections to NN & NNN interaction come from functional determinant

det (δ(N′￼†, N′￼)
δ(N†, N) ) = exp(Tr log

δ(N′￼†, N′￼)
δ(N†, N) )

Due to non-local structure of field transformations det (δ(N′￼†, N′￼)
δ(N†, N) ) ≠ 1

SN(N′￼†,N′￼) = ∫ d4x N′￼†(x)(i
∂

∂x0
+

⃗∇2

2m
+

3g2M3

32πF2 )N′￼(x) − VOPE + 𝒪(g4)

Nucleon mass-shift 
is reproduced from functional determinant

Langacker, Pagels, PRD 10 (1974) 2904;  Gasser, Zepeda, NPB 174 (1980) 445

Note: The Z-factor of the nucleon is equal to one. This is due to the replacement 

η†N + N†η → η†N′￼+ N′￼†η in the generating functional Z[η†, η]

The original Z-factor of the nucleon is reproduced if we remove this replacement

Z = 1 −
9M2g2

2F2 (λ̄ +
1

16π2 (log
M
μ

+
1
3

−
π
2

M
μ

)))


