Three-Nucleon Forces at N3LO in chiral EFT

Hermann Krebs
Ruhr-Universität Bochum

The 7th Meeting of the Low Energy Nuclear Physics International Collaboration (LENPIC2024) HISKP Bonn
March 11, 2024

In collaboration with Evgeny Epelbaum

Outline

- Path-integral approach for derivation of nuclear forces
- Symmetry preserving regularization
- Status report on construction of 3 N interactions

Path-Integral Framework for Derivation of Nuclear Forces

HK, Epelbaum, arXiv:2311.10893

Why a new Framework?

Difficulties in formulation of regularized chiral EFT

- Regularization should preserve chiral and gauge symmetries

Regularization should not affect long-range pion physics

Pion-propagator in Euclidean space: $q^{2}=q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}$

$$
\frac{1}{q^{2}+M_{\pi}^{2}} \rightarrow \frac{\exp \left(-\frac{q^{2}+M_{\pi}^{2}}{\Lambda^{2}}\right)}{q^{2}+M_{\pi}^{2}}=\frac{1}{q^{2}+M_{\pi}^{2}}-\frac{1}{\Lambda^{2}}+\frac{q^{2}+M_{\pi}^{2}}{2 \Lambda^{4}}+\ldots
$$

all $1 / \Lambda$-corrections are short-range interactions
q_{0} - dependence in exponential requires second and higher order time-derivatives in pion field in the chiral Lagrangian
\rightarrow Canonical quantization of the regularized theory becomes difficult (Ostrogradski - approach, Constrains, ...)

Canonical vs Path-Integral Quantization

Canonical Quantization of QFT

Hamiltonian \& Hilbert space
Creation/annihilation operators
Time-ordered perturbation theory

Path-Integral Quantization of QFT
Lagrangian \& action
Summation over all classical paths
Loop expansion \& Feynman rules

- Path-Integral approach is a natural choice in pionic and single-nucleon sector

Gasser, Leutwyler, Annals Phys. 158 (1984) 142;
Bernard, Kaiser, Kambor, Meißner, Nucl. Phys. B 388 (1992) 315

- In two - and more - nucleon sector Weinberg used canonical quantization language Weinberg Nucl. Phys. B 362 (1991) 3

In using old-fashioned perturbation theory we must work with the Hamiltonian rather than the Lagrangian. The application of the usual rules of canonical quantization to the leading terms in (1) and (9) yields the total

Can we choose a formulation where we can work with the Lagrangian?

Path-Integral over Nucleons and Pions

We start with generating functional:

$$
Z\left[\eta^{\dagger}, \eta\right]=\int\left[D N^{\dagger}\right][D N][D \pi] \exp \left(i \int d^{4} x\left(\mathscr{L}+\eta^{\dagger}(x) N(x)+N^{\dagger}(x) \eta(x)\right)\right)
$$

Yukawa toy-model:

$$
\mathscr{L}=N^{\dagger}\left(i \frac{\partial}{\partial x_{0}}+\frac{\vec{\nabla}^{2}}{2 m}+\frac{g}{2 F} \vec{\sigma} \cdot \vec{\nabla} \pi \cdot \tau\right) N+\frac{1}{2}\left(\partial_{\mu} \pi \cdot \partial^{\mu} \pi-M^{2} \pi^{2}\right)
$$

- Perform a Gaussian path-integral over the pion fields

$$
\begin{gathered}
Z\left[\eta^{\dagger}, \eta\right]=\int\left[D N^{\dagger}\right][D N] \exp \left(i S_{N}+i \int d^{4} x\left(\eta^{\dagger}(x) N(x)+N^{\dagger}(x) \eta(x)\right)\right) \\
S_{N}=\int d^{4} x N^{\dagger}(x)\left(i \frac{\partial}{\partial x_{0}}+\frac{\vec{\nabla}^{2}}{2 m}\right) N(x)-V_{N N} \longleftarrow \begin{array}{l}
\text { Non-instant one-pion-exchange } \\
\text { interaction }
\end{array} \\
V_{N N}=-\frac{g^{2}}{8 F^{2}} \int d^{4} x d^{4} y \vec{\nabla}_{x} \cdot\left[N^{\dagger}(x) \vec{\sigma} \tau\right] N(x) \Delta_{F}(x-y) \vec{\nabla}_{y} \cdot\left[N^{\dagger}(y) \vec{\sigma} \tau\right] N(y)
\end{gathered}
$$

with non-instant pion propagator: $\quad \Delta_{F}(x)=\int \frac{d^{4} q}{(2 \pi)^{4}} \frac{e^{-i q \cdot x}}{q^{2}-M^{2}+i \epsilon}$

Instant Interactions from Path-Integral

To transform $V_{N N}$ into an instant form we rewrite a pion propagator

$$
\frac{1}{q_{0}^{2}-\omega_{q}^{2}}=-\frac{1}{\omega_{q}^{2}}+\frac{1}{q_{0}^{2}-\omega_{q}^{2}}+\frac{1}{\omega_{q}^{2}}=-\frac{1}{\omega_{q}^{2}}+q_{0}^{2} \frac{1}{\omega_{q}^{2}} \frac{1}{q_{0}^{2}-\omega_{q}^{2}}, \quad \omega_{q}=\sqrt{\vec{q}^{2}+M^{2}}
$$

In coordinate space this corresponds to $\Delta_{F}(x)=\Delta_{S}(x)-\frac{\partial^{2}}{\partial x_{0}^{2}} \Delta_{F S}(x)$ with
$\Delta_{S}(x)=-\int \frac{d^{4} q}{(2 \pi)^{4}} \frac{e^{-i q \cdot x}}{\omega_{q}^{2}}=-\delta\left(x_{0}\right) \int \frac{d^{3} q}{(2 \pi)^{3}} \frac{e^{i q \cdot \vec{x}}}{\omega_{q}^{2}}, \quad \Delta_{F S}(x)=\int \frac{d^{4} q}{(2 \pi)^{4}} \frac{e^{-i q \cdot x}}{\omega_{q}^{2}\left(q_{0}^{2}-\omega_{q}^{2}\right)}$

- The decomposition $\Delta_{F}(x)=\Delta_{S}(x)-\frac{\partial^{2}}{\partial x_{0}^{2}} \Delta_{F S}(x)$ can be generalized $G(x)=\int \frac{d^{4} q}{(2 \pi)^{4}} e^{-i q \cdot x} \tilde{G}\left(q_{0}^{2}, q^{2}\right)$ and $\tilde{G}\left(q_{0}^{2}, q^{2}\right)$ is differentiable at $q_{0}=0$
Defining $G_{S}(x)=\int \frac{d^{4} q}{(2 \pi)^{4}} e^{-i q \cdot x} \tilde{G}\left(0, q^{2}\right)$ and $G_{F S}(x)=\int \frac{d^{4} q}{(2 \pi)^{4}} e^{-i q \cdot x} \frac{\tilde{G}\left(q_{0}^{2}, q^{2}\right)-\tilde{G}\left(0, q^{2}\right)}{q_{0}^{2}}$

$$
\rightarrow G(x)=G_{S}(x)-\frac{\partial^{2}}{\partial x_{0}^{2}} G_{F S}(x)
$$

Instant Interactions from Path-Integral

Perform an instant decomposition of the pion propagator $\Delta_{F}(x)=\Delta_{S}(x)-\frac{\partial^{2}}{\partial x_{0}^{2}} \Delta_{F S}(x)$
$V_{N N}=-\frac{g^{2}}{8 F^{2}} \int d^{4} x d^{4} y \vec{\nabla}_{x} \cdot\left[N^{\dagger}(x) \vec{\sigma} \tau\right] N(x) \Delta_{F}(x-y) \vec{\nabla}_{y} \cdot\left[N^{\dagger}(y) \vec{\sigma} \tau\right] N(y)$
$\Rightarrow V_{N N}=V_{O P E}+V_{F S}$
$V_{O P E}=-\frac{g^{2}}{8 F^{2}} \int d^{4} x d^{4} y \vec{\nabla}_{x} \cdot\left[N^{\dagger}(x) \vec{\sigma} \tau\right] N(x) \Delta_{S}(x-y) \vec{\nabla}_{y} \cdot\left[N^{\dagger}(y) \vec{\sigma} \tau\right] N(y) \quad$ is instant
$V_{F S}=\frac{g^{2}}{8 F^{2}} \int d^{4} x d^{4} y \vec{\nabla}_{x} \cdot\left[N^{\dagger}(x) \vec{\sigma} \tau\right] N(x) \frac{\partial^{2}}{\partial x_{0}^{2}} \Delta_{F S}(x-y) \vec{\nabla}_{y} \cdot\left[N^{\dagger}(y) \vec{\sigma} \tau\right] N(y) \quad$ is non-instant
$V_{F S}$ is time-derivative dependent and thus can be eliminated by a non-polynomial field redefinition

$$
\begin{aligned}
& N(x) \rightarrow N^{\prime}(x)=N(x)+i \frac{g^{2}}{8 F^{2}} \int d^{4} y[\vec{\sigma} \tau N(x)] \cdot\left[\vec{\nabla}_{x} \frac{\partial}{\partial x_{0}} \Delta_{F S}(x-y)\right] \vec{\nabla}_{y} \cdot\left[N^{\dagger}(y) \vec{\sigma} \tau N(y)\right] \\
& N^{\dagger}(x) \rightarrow N^{\prime \dagger}(x)=N^{\dagger}(x)-i \frac{g^{2}}{8 F^{2}} \int d^{4} y \vec{\nabla}_{y} \cdot\left[N^{\dagger}(y) \vec{\sigma} \tau N(y)\right]\left[\vec{\nabla}_{y} \frac{\partial}{\partial y_{0}} \Delta_{F S}(y-x)\right] \cdot\left[N^{\dagger}(x) \vec{\sigma} \tau\right]
\end{aligned}
$$

Instant Interactions from Path-Integral

Non-local field transformations remove time-derivative dependent two-nucleon interactions but generate time-derivative dependent three-nucleon interactions.

These contributions can be eliminated by similar field transformations

$$
\begin{aligned}
Z\left[\eta^{\dagger}, \eta\right] & =\int\left[D N^{\prime \dagger}\right]\left[D N^{\prime}\right] \operatorname{det}\left(\frac{\delta\left(N^{\prime \dagger}, N^{\prime}\right)}{\delta\left(N^{\dagger}, N\right)}\right) \exp \left(i S_{N\left(N^{\dagger}, N^{\prime}\right)}+i \int d^{4} x\left(\eta^{\dagger}(x) N\left(N^{\prime \dagger}, N^{\prime}\right)(x)+N\left(N^{\prime \dagger}, N^{\prime}\right)^{\dagger}(x) \eta(x)\right)\right) \\
& \simeq \int\left[D N^{\prime \dagger}\right]\left[D N^{\prime}\right] \operatorname{det}\left(\frac{\delta\left(N^{\prime \dagger}, N^{\prime}\right)}{\delta\left(N^{\dagger}, N\right)}\right) \exp \left(i S_{N\left(N^{\dagger}, N^{\prime}\right)}+i \int d^{4} x\left(\eta^{\dagger}(x) N^{\prime}(x)+N^{\prime \dagger}(x) \eta(x)\right)\right)
\end{aligned}
$$

Equivalence theorem: nucleon pole-structure is unaffected by the field-transf.

$$
\begin{gathered}
S_{N\left(N^{\prime \dagger}, N^{\prime}\right)}=\int d^{4} x N^{\prime \dagger}(x)\left(i \frac{\partial}{\partial x_{0}}+\frac{\vec{\nabla}^{2}}{2 m}\right) N^{\prime}(x)-V_{O P E}+\mathcal{O}\left(g^{4}\right) \\
V_{O P E}=-\frac{g^{2}}{8 F^{2}} \int d^{4} x d^{4} y \vec{\nabla}_{x} \cdot\left[N^{\prime \dagger}(x) \vec{\sigma} \tau\right] N^{\prime}(x) \Delta_{S}(x-y) \vec{\nabla}_{y} \cdot\left[N^{\prime \dagger}(y) \vec{\sigma} \tau\right] N^{\prime}(y) \\
\text { Instant one-pion-exchange interaction }
\end{gathered}
$$

Generalization to Chiral EFT

We start with generating functional:

$$
Z\left[\eta^{\dagger}, \eta\right]=\int\left[D N^{\dagger}\right][D N][D \pi] \exp \left(i \int d^{4} x\left(\mathscr{L}_{\pi}+\mathscr{L}_{\pi N}+\mathscr{L}_{N N}+\mathscr{L}_{N N N}+\eta^{\dagger}(x) N(x)+N^{\dagger}(x) \eta(x)\right)\right)
$$

- Integrate over pion fields via loop-expansion of the action
\rightarrow expansion of the action around the classical pion solution
- Perform instant decomposition of the remaining interactions between nucleons
- Perform nucleon-field redefinitions to eliminate non-instant part of the interaction
- Calculate functional determinant to get one-loop corrections to few-nucleon forces

UT \& FT path-integral approach lead to the same chiral EFT nuclear forces up to N4LO

Fazit: Path-integral formulation of nuclear forces is as powerful as UT technique,

 however it allows consideration of a wider class of theories
Symmetry Preserving Regulator

HK, Epelbaum, arXiv:2312.13932

Gradient-Flow Equation (GFE)

Yang-Mills gradient flow in QCD: Lüscher, JHEP 04 (2013) 123

$$
\partial_{\tau} B_{\mu}=D_{\nu} G_{\nu \mu} \text { with }\left.B_{\mu}\right|_{\tau=0}=A_{\mu} \& G_{\mu \nu}=\partial_{\mu} B_{\nu}-\partial_{\nu} B_{\mu}+\left[B_{\mu}, B_{\nu}\right]
$$

B_{μ} is a regularized gluon field
. Apply this idea to ChPT: HK, Epelbaum, arXiv:2312.13932
(Proposed in various talks by D. Kaplan for nuclear forces)
Introduce a smoothed pion field W with $\left.W\right|_{\tau=0}=U$ satisfying GFE

$$
\partial_{\tau} W=i w \operatorname{EOM}(\tau) w \text { with } w=\sqrt{W} \text { and } \operatorname{EOM}(\tau)=\left[D_{\mu}, w_{\mu}\right]+\frac{i}{2} \chi_{-}-\frac{i}{4} \operatorname{Tr}\left(\chi_{-}\right)
$$

$$
w_{\mu}=i\left(w^{\dagger}\left(\partial_{\mu}-i r_{\mu}\right) w-w\left(\partial_{\mu}-i l_{\mu}\right) w^{\dagger}\right), \quad \chi_{-}=w^{\dagger} \chi w^{\dagger}-w \chi^{\dagger} w, \quad \chi=2 B(s+i p)
$$

Note: The shape of regularization is dictated by the choice of the right-hand side of GFE
Our choice is motivated by a Gaussian regularization of one-pion-exchange in NN

Properties under Chiral Transformation

Replace all pion fields in pion-nucleon Lagrangians $\mathscr{L}_{\pi N}^{(1)}, \ldots, \mathscr{L}_{\pi N}^{(4)}: U \rightarrow W$

$$
\mathscr{L}_{\pi N}^{(1)}=N^{\dagger}\left(D^{0}+g u \cdot S\right) N \rightarrow N^{\dagger}\left(D_{w}^{0}+g w \cdot S\right) N
$$

Chiral transformation: by induction, one can show

$$
U \rightarrow R U L^{\dagger} \rightarrow W \rightarrow R W L^{\dagger}
$$

- Regularized pion fields transform under τ - independent transformations
- Nucleon fields transform in τ-dependent way

$$
N \rightarrow K N, \quad K=\sqrt{L U^{\dagger} R^{\dagger}} R \sqrt{U} \quad \rightarrow \quad N \rightarrow K_{\tau} N, \quad K_{\tau}=\sqrt{L W^{\dagger} R^{\dagger}} R \sqrt{W}
$$

Gradient-Flow Equation

Analytic solution is possible of $1 / F$ - expanded gradient flow equation:

$$
W=1+i \tau \cdot \phi\left(1-\alpha \phi^{2}\right)-\frac{\phi^{2}}{2}\left[1+\left(\frac{1}{4}-2 \alpha\right) \phi^{2}\right]+\mathcal{O}\left(\phi^{5}\right), \quad \phi_{b}=\sum_{n=0}^{\infty} \frac{1}{F^{n}} \phi_{b}^{(n)}
$$

In the absence of external sources we have

$$
\begin{aligned}
{\left[\partial_{\tau}-\left(\partial_{\mu}^{x} \partial_{\mu}^{x}-M^{2}\right)\right] \phi_{b}^{(1)}(x, \tau) } & =0, \quad \phi_{b}^{(1)}(x, 0)=\pi_{b}(x) \\
{\left[\partial_{\tau}-\left(\partial_{\mu}^{x} \partial_{\mu}^{x}-M^{2}\right)\right] \phi_{b}^{(3)}(x, \tau) } & =(1-2 \alpha) \partial_{\mu} \phi^{(1)} \cdot \partial_{\mu} \phi^{(1)} \phi_{b}^{(1)}-4 \alpha \partial_{\mu} \phi^{(1)} \cdot \phi^{(1)} \partial_{\mu} \phi_{b}^{(1)} \\
& +\frac{M^{2}}{2}(1-4 \alpha) \phi^{(1)} \cdot \phi^{(1)} \phi_{b}^{(1)}, \quad \phi_{b}^{(3)}(x, 0)=0
\end{aligned}
$$

Iterative solution in momentum space: $\tilde{\phi}^{(n)}(q, \tau)=\int d^{4} x e^{i q \cdot x} \phi_{b}^{(n)}(x, \tau)$
$\tilde{\phi}_{b}^{(1)}(q)=e^{-\tau\left(q^{2}+M^{2}\right)} \tilde{\pi}_{b}(q)$
$\tilde{\phi}_{b}^{(3)}(q)=\int \frac{d^{4} q_{1}}{(2 \pi)^{4}} \frac{d^{4} q_{2}}{(2 \pi)^{4}} \frac{d^{4} q_{3}}{(2 \pi)^{4}}(2 \pi)^{4} \delta\left(q-q_{1}-q_{2}-q_{3}\right) \int_{0}^{\tau} d s e^{-(\tau-s)\left(q^{2}+M^{2}\right)} e^{-s \sum_{j=1}^{3}\left(q_{j}^{2}+M^{2}\right)}$

$$
\times\left[4 \alpha q_{1} \cdot q_{3}-(1-2 \alpha) q_{1} \cdot q_{2}+\frac{M^{2}}{2}(1-4 \alpha)\right] \tilde{\pi}\left(q_{1}\right) \cdot \tilde{\pi}\left(q_{2}\right) \tilde{\pi}_{b}\left(q_{3}\right)
$$

Integration over momenta of pion fields with Gaussian prefactor introduces smearing

Iterative solution in Coordinate Space

Light-shaded area visualizes smearing in Euclidean space of size $\sim \sqrt{2 \tau}$
Solid line stands for Green-function:

$$
\begin{gathered}
{\left[\partial_{\tau}-\left(\partial_{\mu}^{x} \partial_{\mu}^{x}-M^{2}\right)\right] G(x-y, \tau-s)=\delta(x-y) \delta(\tau-s)} \\
G(x, \tau)=\theta(\tau) \int \frac{d^{4} q}{(2 \pi)^{4}} e^{-\tau\left(q^{2}+M^{2}\right)} e^{-i q \cdot x}
\end{gathered}
$$

$$
\begin{aligned}
\phi_{b}^{(1)}(x, \tau) & =\int_{b} d^{4} y G(x-y, \tau) \pi_{b}(y) \\
\phi_{b}^{(3)}(x, \tau) & =\int_{0}^{\tau} d s \int d^{4} y G(x-y, \tau-s)\left[(1-2 \alpha) \partial_{\mu} \phi^{(1)}(y, s) \cdot \partial_{\mu} \phi^{(1)}(y, s) \phi_{b}^{(1)}(y, s)\right. \\
& \left.-4 \alpha \partial_{\mu} \phi^{(1)}(y, s) \cdot \phi^{(1)}(y, s) \partial_{\mu} \phi_{b}^{(1)}(y, s)+\frac{M^{2}}{2} \phi^{(1)}(y, s) \cdot \phi^{(1)}(y, s) \phi_{b}^{(1)}(y, s)\right]
\end{aligned}
$$

Regularization for Nuclear Forces

To regularize long-range part of the nuclear forces and currents

- Leave pionic Lagrangians $\mathscr{L}_{\pi}^{(2)} \& \mathscr{L}_{\pi}^{(4)}$ unregularized (essential)
- Replace all pion fields in pion-nucleon Lagrangians $\mathscr{L}_{\pi N}^{(1)}, \ldots, \mathscr{L}_{\pi N}^{(4)}: U \rightarrow W$

Status Report on 3NF

Status Report on 3 N at $\mathrm{N}^{3} \mathrm{LO}$

- We calculated all long- and short-range contributions to 3NF \& 4NF at N3LO

3NF's are given in terms of integrals over Schwinger parameters

$$
V_{3 N}^{2 \pi-1 \pi}=\tau_{1} \cdot \tau_{2} \times \tau_{3} \vec{q}_{1} \cdot \vec{\sigma}_{1} \times \vec{\sigma}_{2} \vec{q}_{3} \cdot \vec{\sigma}_{3} \frac{e^{-\frac{q_{3}^{2}+M_{\pi}^{2}}{\Lambda^{2}}}}{q_{3}^{2}+M_{\pi}^{2}}\left(-\frac{g_{A}^{4}}{F_{\pi}^{6}} \frac{q_{1}}{2048 \pi} \int_{0}^{\infty} d \lambda \operatorname{erf}\left(\frac{q_{1} \lambda}{2 \Lambda \sqrt{2+\lambda}}\right) \frac{\exp \left(-\frac{q_{1}^{2}+4 M_{\pi}^{2}}{4 \Lambda^{2}}(2+\lambda)\right)}{2+\lambda}+\ldots\right)+\ldots
$$

Dimension of integrals over Schwinger parameters depends on topology

Space	P-0		
Momentum	2	1	3
Coordinate	4	1	0

Subtraction Scheme

Choice of the short-range scheme

- NN case: local part of NN force vanishes if distance between nucleons vanishes
\rightarrow leads to natural size of LECs
- 3 N case: vanishing of the local part of 3NF is topology dependent

Vanishing of 3NF for any $r_{i j}=0$ would require inclusion of two-pion-contact terms

Appear first at $\mathrm{N}^{5} \mathrm{LO}$ and are expected to be small

Selected Profile Functions

By construction: subtracted \& unsubtracted forces differ in the short-range region At $\Lambda \rightarrow \infty$ regularized 3NF reproduce dim. reg. results from Bernard et al. PRC77 (08)

Short-Range Part on 3NF at N3LO

- Non-locality introduces additional momenta
- To get a finite $3 N F$ in $\Lambda \rightarrow \infty$ limit we have to perform 5 additional field-transformations which include second power of the pion propagator
\rightarrow more extensive calculation
Short-range parts are given in terms of 1-dim integrals over Schwinger parameters

Selected structure \& configuration c :

$$
\hat{q}_{1} \cdot \vec{\sigma}_{2} \hat{q}_{1} \cdot \vec{\sigma}_{3} \tau_{1} \cdot \tau_{3} C_{S} \int_{0}^{\infty} d \lambda f(\lambda ; \mathrm{c})
$$

c includes momenta in MeV \& cosines of angles:

$$
\begin{array}{|c|c|c|c|c|c|c|c|c|c|}
\hline q_{1} & k_{1} & q_{23} & k_{23} & \hat{q}_{1} \cdot \hat{k}_{1} & \hat{q}_{1} \cdot \hat{q}_{23} \hat{q}_{1} \cdot \hat{k}_{23} \hat{k}_{1} \cdot \hat{q}_{23} & \hat{k}_{1} \cdot \hat{k}_{23} & \hat{q}_{23} \cdot \hat{k}_{23} \\
\hline 1 & \frac{1}{2} & 3 & 2 & -\frac{1}{6} & \frac{1}{2} & \frac{1}{5} & \frac{1}{7} & -\frac{1}{9} & \frac{1}{8} \\
\hline
\end{array}
$$

Short-Range Part on 3NF at N3LO

- Immaginary part of the 3NF due non-local angular-dependent regulator

Configuration c includes momenta $q_{1}, k_{1}, k_{23}, q_{23}$ in $\mathrm{MeV} \&$ cosines of angles:

q_{1}	k_{1}	k_{23}	q_{23}	$\hat{q}_{1} \cdot \hat{k}_{1}$	$\hat{q}_{1} \cdot \hat{q}_{23}$	$\hat{q}_{1} \cdot \hat{k}_{23}$	$\hat{k}_{1} \cdot \hat{q}_{23} \hat{k}_{1} \cdot \hat{k}_{23}$	$\hat{q}_{23} \cdot \hat{k}_{23}$
150	160	170	180	$-\frac{1}{6}$	$\frac{1}{2}$	$\frac{1}{5}$	$\frac{1}{7}$	$-\frac{1}{9}$

Homework

- Relativistic corrections due to new 5 short-range field transformations

TPE topology includes pion-nucleon amplitude as a subprocess
Pion-nucleon amplitude with gradient-flow regulator depends on c_{i} 's
Fit c_{i} 's to pion-nucleon sub-threshold coefficients which are determined from Roy-Steiner equation

Calculation of pion-nucleon scattering with gradient-flow regulator required

- Partial wave decomposition (PWD): K. Hebeler, A. Nogga \& R. Skibinski PWD is computationally more expensive, due to higher dimension of integrals over Schwinger parameters

Summary

- Path-integral approach for derivation of nuclear forces
- Gradient flow regularization preserves chiral symmetry
- Long- \& short-range part of 3NF at N3LO is calculated

Outlook

- Pion-nucleon scattering with gradient-flow regulator
- Partial wave decomposition
- Symmetry preserving regularized nuclear currents

One-Loop Corrections to Interaction

One loop corrections to NN \& NNN interaction come from functional determinant

$$
\operatorname{det}\left(\frac{\delta\left(N^{\prime \dagger}, N^{\prime}\right)}{\delta\left(N^{\dagger}, N\right)}\right)=\exp \left(\operatorname{Tr} \log \frac{\delta\left(N^{\prime \dagger}, N^{\prime}\right)}{\delta\left(N^{\dagger}, N\right)}\right)
$$

Due to non-local structure of field transformations $\operatorname{det}\left(\frac{\delta\left(N^{\prime \dagger}, N^{\prime}\right)}{\delta\left(N^{\dagger}, N\right)}\right) \neq 1$

$$
S_{N\left(N^{\dagger}, N^{\prime}\right)}=\int d^{4} x N^{\prime \dagger}(x)\left(i \frac{\partial}{\partial x_{0}}+\frac{\vec{\nabla}^{2}}{2 m}+\frac{3 g^{2} M^{3}}{32 \pi F^{2}}\right) N^{\prime}(x)-V_{O P E}+\mathcal{O}\left(g^{4}\right)
$$

Nucleon mass-shift Langacker, Pagels, PRD 10 (1974) 2904; Gasser, Zepeda, NPB 174 (1980) 445 is reproduced from functional determinant

Note: The Z-factor of the nucleon is equal to one. This is due to the replacement $\eta^{\dagger} N+N^{\dagger} \eta \rightarrow \eta^{\dagger} N^{\prime}+N^{\prime \dagger} \eta$ in the generating functional $Z\left[\eta^{\dagger}, \eta\right]$

The original Z-factor of the nucleon is reproduced if we remove this replacement

$$
\left.Z=1-\frac{9 M^{2} g^{2}}{2 F^{2}}\left(\bar{\lambda}+\frac{1}{16 \pi^{2}}\left(\log \frac{M}{\mu}+\frac{1}{3}-\frac{\pi}{2} \frac{M}{\mu}\right)\right)\right)
$$

