Precise Neural Network Predictions from the NCSM

Robert Roth

Institut für Kernphysik - Theoriezentrum

Ab Initio Nuclear Structure Toolbox

Many-Body Solution

Diagonalization & Decoupling NCSM, IM-SRG, IM-NCSM,...

 $H |\Psi_n\rangle = E_n |\Psi_n\rangle$

Pre-Conditioning

Similarity RG Transform Basis Optimization

311

Post-Processing

Model-Space Extrapolation Uncertainty Quantification

Chiral EFT Inputs

Interactions & Currents NN, 3N, YN, YNN,...

Ab Initio Nuclear Structure Toolbox

Many-Body Solution

Diagonalization & Decoupling NCSM, IM-SRG, IM-NCSM,...

Pre-Conditioning

Similarity RG Transform Basis Optimization

$H |\Psi_n\rangle = E_n |\Psi_n\rangle$

Chiral EFT Inputs

Interactions & Currents NN, 3N, YN, YNN,...

Post-Processing

Model-Space Extrapolation Uncertainty Quantification

No-Core Shell Model

Barrett, Vary, Navrátil, Maris, Nogga, Roth,...

no-core shell model is universal and powerful ab initio approach for light nuclei (up to A≈25)

• solve eigenvalue problem of Hamiltonian represented in model space of HO Slater determinants truncated w.r.t. HO excitation energy $N_{max}\hbar\Omega$

$$\begin{pmatrix} \vdots \\ C_{l'}^{(n)} \\ \vdots \end{pmatrix} = E_n \begin{pmatrix} \vdots \\ C_{l'}^{(n)} \\ \vdots \end{pmatrix}$$

NCSM: Simplest Possible Case

 ground-state energy of ³H with SRG-evolved NN+3N interaction

NCSM: Simplest Possible Case

NCSM: Simplest Possible Case

- for mid-p-shell nuclei N_{max}=8,10 is computational limit
- can we still get an approximation of the converged observable via post-processing?

• try to model the N_{max} and $\hbar\Omega$ dependence and then extrapolate using...

heuristic extrapolation schemes

Maris, et al., PRC 79, 014308 (2009)

...typically based on exponential parametrizations ...combined with manual frequency selection/optimization ...works OK for energies, not suitable for other observables

> Coon et al., PRC 86, 054002 (2012) Furnstahl et al., PRC 86, 031301 (2012) More et al., PRC 87, 044326 (2013) Furnstahl et al., PRC 89, 044301 (2014)

effective-theory-based IR extrapolations

...difficult and expensive to obtain enough UV-converged data ...not really compatible with N_{max} -type many-body truncations ...hardly ever applied in production runs

> Negoita et al., PRC 99, 054308 (2019) Jiang et al., PRC 100, 054326 (2019)

artificial neural networks

...needs retraining of ANN for each interaction, nucleus, state ...requires lots of training data for specific application case ...ANNs are typically not that great for extrapolations

- simple exponential extrapolations might fail
- Nmax dependence is not exponential

- simple exponential extrapolations might fail
- Nmax dependence is not exponential

- simple exponential extrapolations might fail
- Nmax dependence is not exponential

Knöll, et al.; PLB 839, 137781 (2023); Wolfgruber, Knöll, Roth; arXiv:2310.05256 (2023)

as a practitioner, just seeing the **pattern of converging sequences** allows you to guesstimate the converged result

irrespective of nucleus, interaction,...

Knöll, et al.; PLB 839, 137781 (2023); Wolfgruber, Knöll, Roth; arXiv:2310.05256 (2023)

as a practitioner, just seeing the **pattern of converging sequences** allows you to guesstimate the converged result

irrespective of nucleus, interaction,...

Knöll, et al.; PLB 839, 137781 (2023); Wolfgruber, Knöll, Roth; arXiv:2310.05256 (2023)

Prediction

train **neural network** to identify the convergence patterns and to **predict the converged value** on this

basis

ANNs are great for pattern recognition

Knöll, et al.; PLB 839, 137781 (2023); Wolfgruber, Knöll, Roth; arXiv:2310.05256 (2023)

- create data **samples** of 4 consecutive N_{max} and 3 different $\hbar\Omega$
- feed 12 values of observable into dense, deep, feed-forward network
- output is a single value for the converged observable
- ANN has not information about actual interaction, nucleus, N_{max} , $\hbar\Omega$, etc.

Knöll, et al.; PLB 839, 137781 (2023); Wolfgruber, Knöll, Roth; arXiv:2310.05256 (2023)

- 3 hidden layers with (48,48,24) neurons using ReLU activation function
 → approx. 4200 weight/bias parameters
- hyper-parameter optimization yields this as robust topology
- use normalization of input data to eliminate nucleus-specific scales

Training Data, Samples, Normalization

- Iarge library of training data obtained in Jacobi-NCSM calculations for
 - ²H, ³H, ⁴He
 - 9 different NN+3N interactions (non-local, 3 orders, 3 cutoffs)
 - 5 different SRG flow parameter $(\alpha = 0, 0.02, 0.04, 0.08, 0.16 \text{ fm}^4)$
 - approx. 350000 unique samples
- sample-wise normalization of training and evaluation data to eliminate nucleus-specific scale
- universality visible at the level normalized samples

Training Data, Samples, Normalization

Wolfgruber, Knöll, Roth; arXiv:2310.05256 (2023)

- Iarge library of training data obtained in Jacobi-NCSM calculations for
 - ²H, ³H, ⁴He
 - 9 different NN+3N interactions (non-local, 3 orders, 3 cutoffs)
 - 5 different SRG flow parameter $(\alpha = 0, 0.02, 0.04, 0.08, 0.16 \text{ fm}^4)$
 - approx. 350000 unique samples
- sample-wise normalization of training and evaluation data to eliminate nucleus-specific scale
- universality visible at the level normalized samples

Training Data, Samples, Normalization

Wolfgruber, Knöll, Roth; arXiv:2310.05256 (2023)

- Iarge library of training data obtained in Jacobi-NCSM calculations for
 - ²H, ³H, ⁴He
 - 9 different NN+3N interactions (non-local, 3 orders, 3 cutoffs)
 - 5 different SRG flow parameter $(\alpha = 0, 0.02, 0.04, 0.08, 0.16 \text{ fm}^4)$
 - approx. 350000 unique samples
- sample-wise normalization of training and evaluation data to eliminate nucleus-specific scale
- universality visible at the level normalized samples

Statistical Evaluation

- obtain multiple predictions of converged observable from
 - different samples constructed from evaluation data
 - several ANN realizations from separate, randomly initialized training runs
- distribution of predictions provides statistically meaningful estimate for model-space uncertainty
- typically close to Gaussian distribution, use mean and standard deviation

TECHN

Examples

Ground-State Energies

- training yields standard set of 1000 energy-ANNs that is used for all evaluations of energies
- application to NCSM data obtained with different NN+3N interaction not seen in training
- separate samples by largest
 N_{max}=8,10,12 to assess robustness and consistency of predictions
- predictions always agree with exact result within 1σ

Difference Observables

- use the same standard set of 1000 energy-ANNs to predict excited-state energies and excitation energies
- for each sample use ANN to predict converged ground-state and excited state energy
- sample-wise difference yields excitation energy
- construct distribution by looping over all samples and ANNs
- for difference quantities correlations in the convergence patterns are taken into account

Excitation Energies

- full access to ground-state and excitation energies based on one set of energy-ANNs
- robust and consistent predictions for p-shell spectra
- no need for separate excited state to excitation energy ANNs

Root-Mean-Square Radii

- training yields standard set of 1000 radius-ANNs that is used for all evaluations of radii
- much more difficult and varied convergence patterns
- still robust and consistent predictions that almost always agree with exact result within 1σ

Boron Isotopes

Boron Isotopes

- nice example of mid-p-shell isotopic chain with interesting spectroscopy
- proton-dripline nucleus ⁸B is one of few proton-halo candidates
- precision measurements of proton-radius differences by atomic laser spectroscopy via isotope shift (Nörtershäuser et al.)
 - precision measurement of ¹¹B-¹⁰B radius difference exists; improved measurement at COALA beamline at TUDa later this year
 - planned experiment on ⁸B-^{10,11}B radius difference at ANL

⁸B: Ground-State Energy

LENPIC SMSI NN @ N2LO

 $\Lambda = 450/500 \text{ MeV}$ $\alpha = 0.08 \text{ fm}^4$

all NCSM runs by Pieter Maris

3N @ N2LO

⁸B: Ground-State Energy

LENPIC SMSI NN @ N4LO+

 $\begin{array}{l} \Lambda \,=\, 450/500 \ \text{MeV} \\ \alpha \,=\, 0.08 \ \text{fm}^4 \end{array}$

all NCSM runs by Pieter Maris

3N @ N2LO

⁸B: Ground-State Energy

MBO Non-Local NN @ N3LO 3N @ N3LO

 $\begin{array}{l} \Lambda = \,450/500 \,\, \text{MeV} \\ \alpha = \,0.08 \,\, \text{fm}^4 \end{array}$

¹⁰B: Ground-State Energy

LENPIC SMSI NN @ N2LO 3N @ N2LO

 $\begin{array}{l} \Lambda = \,450/500 \,\, \text{MeV} \\ \alpha = \,0.08 \,\, \text{fm}^4 \end{array}$

¹⁰B: Ground-State Energy

LENPIC SMSI NN @ N4LO+ 3N @ N2LO

 $\begin{array}{l} \Lambda = \,450/500 \,\, \text{MeV} \\ \alpha = \,0.08 \,\, \text{fm}^4 \end{array}$

¹⁰B: Ground-State Energy

MBO Non-Local NN @ N3LO 3N @ N3LO

 $\begin{array}{l} \Lambda = \,450/500 \,\, \text{MeV} \\ \alpha = \,0.08 \,\, \text{fm}^4 \end{array}$

LENPIC SMSI NN @ N2LO

3N @ N2LO

 $\Lambda = 450 \text{ MeV}$ $\alpha = 0.08 \text{ fm}^4$

LENPIC SMSI

NN @ N4LO+ 3N @ N2LO

 $\Lambda = 450 \text{ MeV}$ $\alpha = 0.08 \text{ fm}^4$

NN @ N4LO+ 3N @ N2LO

 $\Lambda = 500 \text{ MeV}$ $\alpha = 0.08 \text{ fm}^4$

MBO Non-Local NN @ N3LO

3N @ N3LO

 $\Lambda = 500 \text{ MeV}$ $\alpha = 0.08 \text{ fm}^4$

LENPIC SMSI

NN @ N2LO 3N @ N2LO

 $\Lambda = 450 \text{ MeV}$ $\alpha = 0.08 \text{ fm}^4$

LENPIC SMSI

NN @ N4LO+ 3N @ N2LO

 $\Lambda = 450 \text{ MeV}$ $\alpha = 0.08 \text{ fm}^4$

LENPIC SMSI

NN @ N4LO+ **3N @ N2LO**

 $\Lambda = 500 \text{ MeV}$ $\alpha = 0.08 \text{ fm}^4$

MBO Non-Local

NN @ N3LO 3N @ N3LO

 $\Lambda = 500 \text{ MeV}$ $\alpha = 0.08 \text{ fm}^4$

Work in Progress

Boron Radii

- extract two-dimensional confidence regions for pairs of observables, e.g., R_{p,rms}(¹⁰B) vs. R_{p,rms}(¹¹B) or R_{p,rms}(⁸B) vs. R_{n,rms}(⁸B)
- include chiral order-by-order uncertainty via Bayesian scheme built on ANN distributions
- extend to other observables and other halo systems

Artificial Neural Networks

- use synthetic nuclei in training process
- use flow-parameter variation as input dimension for ANN
- extension to electromagnetic observables, particularly E2 moments and transition strengths
- develop transformer networks to represent and exploit correlations among observables