Evgeny Epelbaum, Ruhr University Bochum

The 7th Meeting of the LENPIC Collaboration (LENPIC2024) HISKP Bonn, March 11-13, 2024

Tritium β-decay with LENPIC interactions

In collaboration with: J. Golak, D. Ramírez Jiménez, S. Heihoff, H. Krebs, P. Reinert, R. Skibiński, K. Topolnicki, H. Witała

- Motivation and introduction
- Axial currents in χ EFT: The status
- Regularized axial currents at N²LO
- Calculations and benchmarks
- Summary and outlook

Bundesministerium für Bildung und Forschung

Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen

Motivation

- Well-known relationship between axial currents and 3NF
- The GT ME is uncorrelated with the ³H BE

 \Rightarrow ³H β -decay can be used to fix c_D

• 2-body axial currents are claimed to improve the description of the GT ME in nuclei

 \Rightarrow Study ³H β -decay using LENPIC interactions: Convergence? A reliable determination of c_D?

Phenomenology of ³H β-decay

[see e.g., Hardy, Towner, PRL 94 (2005) 092502]

Is calculable from the GT and F MEs that read (in the 1-body limit):

 $\langle \mathbf{F} \rangle = \langle {}^{3}\text{He} \Big| \Big| \sum_{i} \tau_{i,+} \Big| \Big| {}^{3}\text{H} \rangle \leftarrow \text{would be 1 in the isospin limit. For 2NF@N4LO+} combined with 3NF@N2LO: } \langle \mathbf{F} \rangle = 1.0001 \dots 1.0013$

 $\langle \boldsymbol{GT} \rangle = \frac{1}{\sqrt{3}} \langle {}^{3}\mathrm{He} || \sum_{i} \vec{\sigma}_{i} \tau_{i,+} || {}^{3}\mathrm{H} \rangle \leftarrow \text{controls the } {}^{3}\mathrm{H} \text{ life time}$

Using the experimental values $(1 + \delta_R)tf_V = 1134.6 \pm 3.1$ s [Simpson, PRC 35 (1987) 752] and $g_A = 1.2756 \pm 0.0013$ [PDG20], one finds the empirical value for the GT ME:

 $\langle \boldsymbol{GT} \rangle_{\text{emp}} = 0.9484 \pm 0.0019$

This ME is what we are going to calculate in chiral EFT.

One-body contributions to the GT ME

- Because of the kinematics of the ³H β-decay, no pion-pole contributions need to be considered
- Similarly to the e.m. currents, 1-body axial currents are expressible in terms of FFs:

$$\begin{split} \mathbf{A}_{1\mathrm{N}}^{0} &= -\frac{G_{A}(-\vec{k}^{2})}{2m} \boldsymbol{\tau}_{i} \vec{k}_{i} \cdot \vec{\sigma}_{i} + \frac{G_{P}(-\vec{k}^{2})}{8m^{2}} \boldsymbol{\tau}_{i} k_{0} \vec{k} \cdot \vec{\sigma}_{i} = -\frac{g_{A}}{2m} \boldsymbol{\tau}_{i} \vec{k}_{i} \cdot \vec{\sigma}_{i} + \dots \quad \text{Krebs, EE, Meißner, Annals Phys. 378 (2017) 317} \\ \vec{A}_{1\mathrm{N}} &= -\frac{G_{A}(-\vec{k}^{2})}{2} \boldsymbol{\tau}_{i} \vec{\sigma}_{i} + \frac{G_{P}(-\vec{k}^{2})}{8m^{2}} \boldsymbol{\tau}_{i} \vec{k} \vec{k} \cdot \vec{\sigma}_{i} + \underbrace{\vec{A}_{1\mathrm{N}:\,1/m,\mathrm{UT}'}^{(Q)}}_{\text{pion-pole contribution}} + \vec{A}_{1\mathrm{N}:\,1/m^{2}}^{(Q)} = -\frac{g_{A}}{2} \boldsymbol{\tau}_{i} \vec{\sigma}_{i} + \dots \quad \text{Krebs, EE, Meißner, Annals Phys. 378 (2017) 317} \\ \vec{A}_{1\mathrm{N}} &= -\frac{G_{A}(-\vec{k}^{2})}{2} \boldsymbol{\tau}_{i} \vec{\sigma}_{i} + \frac{G_{P}(-\vec{k}^{2})}{8m^{2}} \boldsymbol{\tau}_{i} \vec{k} \vec{k} \cdot \vec{\sigma}_{i} + \underbrace{\vec{A}_{1\mathrm{N}:\,1/m,\mathrm{UT}'}^{(Q)}}_{\text{pion-pole contribution}} + \vec{A}_{1\mathrm{N}:\,1/m^{2}}^{(Q)} = -\frac{g_{A}}{2} \boldsymbol{\tau}_{i} \vec{\sigma}_{i} + \dots \quad \text{Krebs, EE, Meißner, Annals Phys. 378 (2017) 317} \\ \vec{A}_{1\mathrm{N}} = -\frac{G_{A}(-\vec{k}^{2})}{2} \boldsymbol{\tau}_{i} \vec{\sigma}_{i} + \underbrace{G_{P}(-\vec{k}^{2})}_{8m^{2}} \boldsymbol{\tau}_{i} \vec{k} \vec{k} \cdot \vec{\sigma}_{i} + \underbrace{\vec{A}_{1\mathrm{N}:\,1/m,\mathrm{UT}'}^{(Q)}}_{\text{pion-pole contribution}} + \vec{A}_{1\mathrm{N}:\,1/m^{2}}^{(Q)} = -\frac{g_{A}}{2} \boldsymbol{\tau}_{i} \vec{\sigma}_{i} + \dots \quad \text{Krebs, EE, Meißner, Annals Phys. 378 (2017) 317} \\ \vec{A}_{1\mathrm{N}} = -\frac{G_{A}(-\vec{k}^{2})}{2} \boldsymbol{\tau}_{i} \vec{\sigma}_{i} + \underbrace{G_{P}(-\vec{k}^{2})}_{8m^{2}} \boldsymbol{\tau}_{i} \vec{k} \vec{k} \cdot \vec{\sigma}_{i} + \underbrace{\vec{A}_{1\mathrm{N}:\,1/m,\mathrm{UT}'}^{(Q)}}_{1\mathrm{N}:\,1/m^{2}} = -\frac{g_{A}}{2} \boldsymbol{\tau}_{i} \vec{\sigma}_{i} + \underbrace{\vec{A}_{1\mathrm{N}:\,1/m^{2}}_{1\mathrm{N}:\,1/m^{2}}}_{1\mathrm{N}:\,1/m^{2}} = -\frac{g_{A}}{2} \boldsymbol{\tau}_{i} \vec{\sigma}_{i} + \underbrace{\vec{A}_{1\mathrm{N}:\,1/m^{2}}_{1\mathrm{N}:\,1/m^{2}}}_{1\mathrm{N}:\,1/m^{2}} = -\frac{g_{A}}{2} \boldsymbol{\tau}_{i} \vec{\sigma}_{i} + \underbrace{\vec{A}_{1\mathrm{N}:\,1/m^{2}}_{1\mathrm{N}:\,1/m^{2}}}_{1\mathrm{N}:\,1/m^{2}} = -\frac{g_{A}}{2} \boldsymbol{\tau}_{i} \vec{\sigma}_{i} + \underbrace{\vec{A}_{1\mathrm{N}:\,1/m^{2}}_{1\mathrm{N}:\,1/m^{2}}}_{1\mathrm{N}:\,1/m^{2}}_{1\mathrm{$$

• The GT matrix element $\times 10^2$ calculated without MECs using the SMS 2NFs

	$\Lambda = 400~{\rm MeV}$	$\Lambda = 450~{\rm MeV}$	$\Lambda = 500~{\rm MeV}$	$\Lambda = 550~{\rm MeV}$
2NF at LO	96.73	96.15	95.45	94.64
2NF at NLO	94.52	93.99	93.52	93.04
$2NF$ at N^2LO	93.88	93.08	92.28	91.44
$2NF$ at $N^{3}LO$	93.63	93.12	92.64	92.23
$2NF$ at N^4LO	93.83	93.32	92.83	92.44
$2NF \text{ at } N^4 LO^+$	93.78	93.23	92.73	92.31

To compare, one finds 92.24 for AV18 and 93.63 (93.22) for EM N³LO 500 (600)

To recall: $\langle \boldsymbol{GT} \rangle_{\mathrm{emp}} = 0.9484 \pm 0.0019$

Two-body currents

Un-regularized expressions for the current density:

$$\begin{split} \vec{A}_{2\mathrm{N}:1\pi}^{(Q^0)} &= \frac{g_A}{2F_{\pi}^2} \frac{\vec{\sigma}_1 \cdot \vec{q}_1}{q_1^2 + M_{\pi}^2} \Big\{ \boldsymbol{\tau}_1 \Big[-4c_1 M_{\pi}^2 \frac{\vec{k}}{k^2 + M_{\pi}^2} + 2c_3 \Big(\vec{q}_1 - \frac{\vec{k} \cdot \vec{k}}{k^2 + M_{\pi}^2} \Big) \Big] + c_4 \, \boldsymbol{\tau}_1 \times \boldsymbol{\tau}_2 \Big(\vec{q}_1 \times \vec{\sigma}_2 - \frac{\vec{k} \cdot \vec{k} \cdot \vec{q} \times \vec{\sigma}_2}{k^2 + M_{\pi}^2} \Big) \\ &- \frac{\kappa_v}{4m} \, \boldsymbol{\tau}_1 \times \boldsymbol{\tau}_2 \, \vec{k} \times \vec{\sigma}_2 \Big\} - \frac{1}{4} D \, \boldsymbol{\tau}_1 \Big(\vec{\sigma}_1 - \frac{\vec{k} \cdot \vec{\sigma}_1 \cdot \vec{k}}{k^2 + M_{\pi}^2} \Big) + 1 \leftrightarrow 2 \,, \end{split}$$

does not contribute for k = 0 too

pion poles do not contribute...

Two-body currents: Regularization

SMS regularization of the current (only terms that survive for k = 0 are shown):

$$\vec{A}_{2N, \text{ reg.}}^{(Q^0)} = \frac{g_A}{2F_\pi^2} \frac{\vec{\sigma}_1 \cdot \vec{q}_1}{q_1^2 + M_\pi^2} e^{-\frac{q_1^2 + M_\pi^2}{\Lambda^2}} \left(2c_3 \tau_1 q_1 + c_4 \tau_1 \times \tau_2 \vec{q}_1 \times \vec{\sigma}_2 \right) - \frac{1}{4} D \tau_1 \vec{\sigma}_1 e^{-\frac{p^2 + p'^2}{\Lambda^2}} + \frac{g_A}{2F_\pi^2} C e^{-\frac{q_1^2 + M_\pi^2}{\Lambda^2}} \left(2c_3 \tau_1 \vec{\sigma}_1 + c_4 \tau_1 \times \tau_2 \vec{\sigma}_1 \times \vec{\sigma}_2 \right) + 1 \leftrightarrow 2.$$
subtraction $C = -\frac{\Lambda (\Lambda^2 - 2M_\pi^2) + 2\sqrt{\pi} M_\pi^3 e^{\frac{M_\pi^2}{\Lambda^2}} \operatorname{erfc}\left(\frac{M_\pi}{\Lambda}\right)}{3\Lambda^3}$

Consistent with the 3NF from Lenpic, PRC 103 (2021) 054001

$$\left| -\frac{1}{2} \right| \xrightarrow{1} \left| -\frac{1}{2} \right| \xrightarrow{1} \left| \frac{1}{2} \right| \xrightarrow{1} \left| \frac{1}{2$$

$$\begin{split} V_{\Lambda}^{3\mathrm{N}} &= \frac{g_{A}^{2}}{8F_{\pi}^{4}} e^{-\frac{\vec{q}_{1}^{2}+M_{\pi}^{2}}{\Lambda^{2}}} e^{-\frac{\vec{q}_{3}^{2}+M_{\pi}^{2}}{\Lambda^{2}}} \left\{ \frac{\vec{\sigma}_{1} \cdot \vec{q}_{1} \vec{\sigma}_{3} \cdot \vec{q}_{3}}{(\vec{q}_{1}^{2}+M_{\pi}^{2}) (\vec{q}_{3}^{2}+M_{\pi}^{2})} \left[\tau_{1} \cdot \tau_{3} (2c_{3} \vec{q}_{1} \cdot \vec{q}_{3}-4c_{1}M_{\pi}^{2}) + c_{4}\tau_{1} \times \tau_{3} \cdot \tau_{2} \vec{q}_{1} \times \vec{q}_{3} \cdot \vec{\sigma}_{2} \right] \\ &+ C \frac{\vec{\sigma}_{1} \cdot \vec{q}_{1}}{\vec{q}_{1}^{2}+M_{\pi}^{2}} \left(2c_{3} \tau_{1} \cdot \tau_{3} \vec{\sigma}_{3} \cdot \vec{q}_{1} + c_{4}\tau_{1} \times \tau_{3} \cdot \tau_{2} \vec{q}_{1} \times \vec{\sigma}_{3} \cdot \vec{\sigma}_{2} \right) \\ &+ C \frac{\vec{\sigma}_{3} \cdot \vec{q}_{3}}{\vec{q}_{3}^{2}+M_{\pi}^{2}} \left(2c_{3} \tau_{1} \cdot \tau_{3} \vec{\sigma}_{1} \cdot \vec{q}_{3} + c_{4}\tau_{1} \times \tau_{3} \cdot \tau_{2} \vec{\sigma}_{1} \times \vec{q}_{3} \cdot \vec{\sigma}_{2} \right) \\ &+ C^{2} \left(2c_{3} \tau_{1} \cdot \tau_{3} \vec{\sigma}_{1} \cdot \vec{\sigma}_{3} + c_{4}\tau_{1} \times \tau_{3} \cdot \tau_{2} \vec{\sigma}_{1} \times \vec{\sigma}_{3} \cdot \vec{\sigma}_{2} \right) \right\} \\ &- \frac{g_{A} D}{8F_{\pi}^{2}} \tau_{1} \cdot \tau_{3} e^{-\frac{\vec{p}_{12}^{2} + \vec{p}_{12}^{\prime 2}}{\Lambda^{2}}} e^{-\frac{\vec{a}_{3}^{2} + M_{\pi}^{2}}{\Lambda^{2}}} \left[\frac{\vec{\sigma}_{3} \cdot \vec{q}_{3}}{\vec{q}_{3}^{2} + M_{\pi}^{2}} \vec{\sigma}_{1} \cdot \vec{q}_{3} + C \vec{\sigma}_{1} \cdot \vec{\sigma}_{3} \right] + \frac{1}{2} E T_{12} e^{-\frac{\vec{p}_{12}^{2} + \vec{p}_{12}^{\prime 2}}{\Lambda^{2}}} e^{-\frac{3\vec{k}_{3}^{2} + 3\vec{k}_{3}^{\prime 2}}{4\Lambda^{2}}} + 5 \, \mathrm{perm} \end{split}$$

Two-body currents: LECs

³H beta decay: An interesting interplay of the LECs c_3 , c_4 and c_D (and c_E through the 3NF)

Technical performance and results

Technical performance:

- use 2NF@N⁴LO⁺ together with the 3NF@N²LO
- use the (shifted) N⁴LO values of c_i's (in GeV⁻¹): $c_1 = -1.23$, $c_3 = -4.65$, $c_4 = 3.28$
- tune c_D and c_E to the ³H BE and the nucleon-deuteron differential cross section at 70 MeV

	$\Lambda = 400~{\rm MeV}$	$\Lambda = 450~{\rm MeV}$	$\Lambda = 500~{\rm MeV}$	$\Lambda = 550 {\rm MeV}$
$c_D \ (c_E)$	3.328(-0.454)	0.892(-0.386)	-1.279(-0.382)	-3.626(-0.410)

- the ³H and ³He wave functions provided by the Bochum group
- partial-wave decomposition of the 2N current carried out by the Cracow group
- the GT ME calculated by the Cracow group

Calculated values of the GT matrix element

	$\Lambda = 400~{\rm MeV}$	$\Lambda = 450 \mathrm{MeV}$	$\Lambda = 500~{\rm MeV}$	$\Lambda = 550~{\rm MeV}$
$2NF at N^4LO^+$	93.78	93.23	92.73	92.31
$2NF at N^4LO^+ + 3NF$	93.87	93.33	92.86	92.50
$2NF \text{ at } N^4 LO^+ + 3NF + MEC$	103.41	101.19	99.63	98.37

- adding the 3NF has negligible effect on the GT ME
- strong overestimation of the GT ME (remember: $\langle GT
 angle_{
 m emp} = 0.9484 \pm 0.0019$)

Benchmarking

What can possibly go wrong?

Could be bugs in the implementation of MECs (factors of 2, units) \Rightarrow compare with Baroni et al.

Baroni et al. PRC 94 (2016) + 2 errata

Λ	500 MeV	600 MeV
LO	0.9363(0.9224)	$0.9322 \ (0.9224)$
N2LO	$-0.569(-0.844) \times 10^{-2}$	$-0.457(-0.844) \times 10^{-2}$
N3LO(OPE)	$0.825(1.304) \times 10^{-2}$	$0.043(7.517) \times 10^{-2}$
$N3LO^{\star}(OPE)$	$0.579(0.812) \times 10^{-1}$	$0.652(1.413) \times 10^{-1}$
EM	$N^{3}LO + 3NF$	AV18 + UIX

local cutoff for the 3-body current (no subtractions)

Assuming that (i) the 3NF has no impact and (ii) the relativistic corrections they include in the OPE MEC are small, one can extract their individual contributions of c₃, c₄:

$$10^{2} \times \langle GT \rangle_{c_{3}=1}^{\text{Baroni}} = -1.68 / -2.12 \text{ for } \Lambda = 500 / 600 \text{ MeV}$$

$$10^{2} \times \langle GT \rangle_{c_{4}=1}^{\text{Baroni}} = -0.80 / -1.19 \text{ for } \Lambda = 500 / 600 \text{ MeV}$$

$$10^{2} \times \langle GT \rangle_{c_{3}=1}^{\text{Baroni}} = -2.32 / -2.66 \text{ for } \Lambda = 500 / 600 \text{ MeV}$$

$$10^{2} \times \langle GT \rangle_{c_{4}=1}^{\text{Baroni}} = -1.08 / -0.18 \text{ for } \Lambda = 500 / 600 \text{ MeV}$$

$$using \text{ AV18 + UIX}$$

Without subtractions (C = 0), we obtain: $10^2 \times \langle GT \rangle_{c_3=1} = -1.53 / -2.06$ for $\Lambda = 400...550$ MeV $10^2 \times \langle GT \rangle_{c_4=1} = -1.50 / -0.51$ for $\Lambda = 400...550$ MeV

Benchmarking

To compare the cp-contribution, look at their more recent paper Baroni et al, PRC 98 (2018)

Here, one needs to be careful since in this calculation, the quoted c_D values include the admixture of the short-range part of the c_3 , c_4 terms $\delta c_D = 4.1313$ (similar to our subtractions).

Further, they use $\Lambda_{\chi} = 1$ GeV instead of $\Lambda_{\chi} = 700$ MeV in $D = c_D/(F_{\pi}^2 \Lambda_{\chi})$

	Ia	Ib	IIa	IIb
c_D	3.666	-2.061	1.278	-4.480
c_E	-1.638	-0.982	-1.029	-0.412
LO	0.9248	0.9237	0.9249	0.9259
$N2LO(\Delta)$	0.0401	0.0586	0.0406	0.0589
N2LO(RC)	-0.0055	-0.0063	-0.0059	-0.0077
N3LO(OPE)	0.0327	0.0457	0.0330	0.0462
N3LO(CT)	-0.0036	-0.0487	-0.0249	-0.0668
		K		
	$\Lambda = 493$ N	ЛеV	Λ	= 564 MeV

different Norfolk N3LO interaction models

Bringing their results to our convention yields:

 $10^2 \times \langle GT \rangle_{c_D=1}^{\text{Baroni}} = 1.26 / 1.27$ for their models Ia, Ila based on $\Lambda = 493 \text{ MeV}$ $10^2 \times \langle GT \rangle_{c_D=1}^{\text{Baroni}} = 1.12 / 1.13$ for their models IIb, Ib based on $\Lambda = 564 \text{ MeV}$

This is to be compared with our results:

 $10^2 \times \langle GT \rangle_{c_D=1} = 1.43...1.25$ for $\Lambda = 400...550$ MeV

Consistency check with subtractions

Another nontrivial consistency check is provided by switching off subtractions in the 3NF and MECs

	$\Lambda = 400~{\rm MeV}$	$\Lambda = 450~{\rm MeV}$	$\Lambda = 500~{\rm MeV}$	$\Lambda = 550~{\rm MeV}$
$\overline{c_D \left(c_E ight)}$	3.328(-0.454)	0.892(-0.386)	-1.279(-0.382)	-3.626(-0.410)
$c_D (c_E)$ using unsubtracted 3NF ($C = 0$)	5.208 (0.723)	2.756 (0.369)	0.520 (-0.014)	-2.025(-0.503)

With subtracti	ons:		c_3			
Λ =	400 MeV :	$10^2 \times \langle \boldsymbol{GT} \rangle =$	0.80 +	3.92	+4.75 =	9.47
Λ =	450 MeV :	$10^2 \times \langle \boldsymbol{GT} \rangle =$	1.57 +	4.95	+ 1.28 =	7.80
Λ =	500 MeV :	$10^2 \times \langle \boldsymbol{GT} \rangle =$	2.47 +	5.98	- 1.74 =	6.71
Λ =	550 MeV :	$10^2 \times \langle \boldsymbol{GT} \rangle =$	3.40 +	6.95	-4.54 =	5.81
Without subtra	actions:					
Λ =	400 MeV :	$10^2 \times \langle \boldsymbol{GT} \rangle =$	7.12 -	4.92 -	+ 7.44 =	9.64
Λ =	450 MeV :	$10^2 \times \langle \boldsymbol{GT} \rangle =$	8.15 -	4.24	+ 3.94 =	7.85
Λ =	500 MeV :	$10^2 \times \langle \boldsymbol{GT} \rangle =$	8.96 -	3.07	+ 0.71 =	6.60
Λ =	550 MeV :	$10^2 \times \langle \boldsymbol{GT} \rangle =$	9.59 -	1.67	-2.53 =	5.39

differences consistent with higher-order effects

Effective c_i's?

Can the problem be related to inadequate values of the ci's?

Effective c_i's?

The N⁴LO result for the 2π -exchange 3NF can be approximately reproduced using effective values:

 $c_1 = -0.37$, $c_3 = -2.71$, $c_4 = 1.44$ (tbc with the original ones: $c_1 = -1.23$, $c_3 = -4.65$, $c_4 = 3.28$)

	$\Lambda = 400~{\rm MeV}$	$\Lambda = 450~{\rm MeV}$	$\Lambda = 500 \ {\rm MeV}$	$\Lambda = 550 \text{ MeV}$
$c_D (c_E)$	3.328(-0.454)	0.892(-0.386)	-1.279(-0.382)	-3.626(-0.410)
$c_D (c_E)$ using effective values c_i^{eff} in the 3NF	5.479(-0.538)	3.643(-0.498)	2.346(-0.547)	1.208(-0.670)

Effective c_i 's:			<i>C</i> ₃	<i>C</i> ₄	c_D	
Λ =	400 MeV:	$10^2 \times \langle \boldsymbol{GT} \rangle =$	0.45 +	1.69 +	7.91 =	10.05
Λ =	450 MeV :	$10^2 \times \langle \boldsymbol{GT} \rangle =$	0.90 +	2.14 +	5.29 =	8.33
Λ =	500 MeV :	$10^2 \times \langle \boldsymbol{GT} \rangle =$	1.43 +	2.59 +	3.26 =	7.27
Λ =	550 MeV :	$10^2 \times \langle \boldsymbol{GT} \rangle =$	1.99 +	3.01 +	1.55 =	6.55
Original c_i 's:						
Λ =	400 MeV:	$10^2 \times \langle \boldsymbol{GT} \rangle =$	0.80 +	3.92 +	4.75 =	9.47
Λ =	450 MeV :	$10^2 \times \langle \boldsymbol{GT} \rangle =$	1.57 +	4.95 +	1.28 =	7.80
Λ =	500 MeV :	$10^2 \times \langle \boldsymbol{GT} \rangle =$	2.47 +	5.98 -	1.74 =	6.71
Λ =	550 MeV :	$10^2 \times \langle \boldsymbol{GT} \rangle =$	3.40 +	6.95 -	4.54 =	5.81

Remarkably, the total result is almost unchanged (naturally explained within π -less EFT...)

Off-shell NN contact interactions at N³LO

The over-prediction of the GT ME at N²LO seems robust \Rightarrow large N³LO corrections?

One particular type of N³LO "corrections" emerges from 3 off-shell NN contact interactions (${}^{1}S_{0}$, ${}^{3}S_{1}$, ${}^{3}S_{1}$ - ${}^{3}D_{1}$)

E.g.:
$$\langle p', {}^{1}S_{0} | V_{\text{cont}} | p, {}^{1}S_{0} \rangle = \underbrace{\tilde{C}_{1S0}}_{\text{tuned to the scatt. length}} + \underbrace{C_{1S0}(p'^{2} + p^{2})}_{\text{tuned to the effective range}} + \underbrace{D_{1S0}p^{2}p'^{2} + D_{1S0}^{\text{off}}(p'^{2} - p^{2})^{2}}_{\text{tuned to the first shape parameter}}$$

- can be eliminated using a suitable UT (SMS choice), at the cost of an enhancement of some of the (linear combinations of) short range 3NF & currents from N⁴LO to N³LO
- alternatively, fix the 3 NN off-shell LECs from data other than NN scattering (these LECs become completely redundant at N⁴LO) ← talk by Sven Heihoff
- ⇒ Extended the SMS N⁴LO⁺ potential ($D_i^{\text{off}} = 0$) with 26 potentials with $D_S^{\text{off}} = \{-3,0,3\}, D_{\epsilon 1}^{\text{off}} = \{-1,0,1\}$:
 - on-shift equivalent: $\chi^2_{datum} = 1.010...1.014$
 - but the ³H BE varies by ~ 1.5 MeV (without 3NFs)

repeating the calcs., we find: $\langle \mathbf{GT} \rangle_{1N} = 87.40...94.19$ (!)

It seems one needs a *large and negative* contribution to the GT ME at N³LO in order to bring the predictions for ³H β -decay in agreement with the experimental datum.

It seems one needs a *large and negative* contribution to the GT ME at N³LO in order to bring the predictions for ³H β -decay in agreement with the experimental datum.

- 1N relativistic corrections help a bit, but not much (i.e., $\delta \langle GT \rangle_{relat.} \sim -0.5...-1$)

It seems one needs a *large and negative* contribution to the GT ME at N³LO in order to bring the predictions for ³H β -decay in agreement with the experimental datum.

- 1N relativistic corrections help a bit, but not much (i.e., $\delta \langle GT \rangle_{relat.} \sim -0.5...-1$)
- (some) 3N currents were considered by Baroni et al. to be tiny

Λ	$500 { m MeV}$	$600 { m MeV}$
LO	0.9363(0.9224)	$0.9322 \ (0.9224)$
N2LO	$-0.569(-0.844) \times 10^{-2}$	$-0.457(-0.844) \times 10^{-2}$
N3LO(OPE)	$0.825(1.304) \times 10^{-2}$	$0.043(7.517) \times 10^{-2}$
$N3LO^{\star}(OPE)$	$0.579(0.812)\!\times\!10^{-1}$	$0.652(1.413) \times 10^{-1}$
N3LO(CT)	$-0.586(-0.721) \times 10^{-3}$	$-0.717 (-0.644) \times 10^{-3}$
N4LO(OPE)	$-0.697(-0.964)\!\times\!10^{-2}$	$-0.867(-1.216)\!\times\!10^{-2}$
N4LO(MPE)	$-0.430(-0.565) \times 10^{-1}$	$-0.532(-0.775) \times 10^{-1}$
N4LO(3Ba)	$-0.143(-0.183) \times 10^{-2}$	$-0.153(-0.205) \times 10^{-2}$

Baroni et al. PRC 94 (2016)

It seems one needs a *large and negative* contribution to the GT ME at N³LO in order to bring the predictions for ³H β -decay in agreement with the experimental datum.

- 1N relativistic corrections help a bit, but not much (i.e., $\delta \langle GT \rangle_{relat.} \sim -0.5...-1$)
- (some) 3N currents were considered by Baroni et al. to be tiny
- Baroni et al. claim to find a large and negative N³LO contribution stemming from TPE!

Λ	$500 { m MeV}$	$600 { m MeV}$
LO	0.9363(0.9224)	$0.9322 \ (0.9224)$
N2LO	$-0.569(-0.844) \times 10^{-2}$	$-0.457(-0.844) \times 10^{-2}$
N3LO(OPE)	$0.825(1.304) \times 10^{-2}$	$0.043(7.517) \times 10^{-2}$
$N3LO^{\star}(OPE)$	$0.579(0.812){\times}10^{-1}$	$0.652(1.413) \times 10^{-1}$
N3LO(CT)	$-0.586(-0.721) \times 10^{-3}$	$-0.717(-0.644) \times 10^{-3}$
N4LO(OPE)	$-0.697 (-0.964) \times 10^{-2}$	$-0.867(-1.216) \times 10^{-2}$
N4LO(MPE)	$-0.430(-0.565) \times 10^{-1}$	$-0.532(-0.775) \times 10^{-1}$
N4LO(3Ba)	$-0.143(-0.183) \times 10^{-2}$	$-0.153(-0.205) \times 10^{-2}$

Baroni et al. PRC 94 (2016)

Summary and conclusions

- The 1N contribution to the axial current gives ~ 98 % of $\langle GT \rangle_{emp}$; the remaining ~ 2 % have to be generated by MECs
- MECs first appear at N²LO ($\propto c_{3,4,D}$), but their individual contributions ~ 5...10% suggest that no precise description should be expected at N²LO
- Our N²LO parameter-free predictions for ⟨GT⟩ are too large by ~ 4...9 %
 ⇒ expect large and negative N³LO contribution from MECs. Indeed, large and negative contributions were claimed by Baroni et al.
- Our findings put into question some of the recent calculations...
- With the new regularization scheme, a complete and consistent N³LO analysis is in reach!

Thank you for your attention