Scattering processes on the lattice

Serdar Elhatisari

Gaziantep S\&T University HISKP - Universität Bonn

The $7^{\text {th }}$ Meeting of the Low Energy Nuclear Physics International Collaboration (LENPIC)

Bonn, Germany
March 11-13, 2024

Ab initio nuclear theory

The aim is to predict the properties of nuclear systems from microscopic nuclear forces

source://people.physics.anu.edu.au/ ecs103/chart3d/

Why ab-initio nuclear reactions: nucleosynthesis processes

$\square{ }^{4} \mathrm{He}$: fuels the nucleosynthesis of the heavier elements.
\square The reaction cross section must be determined within the energy range of $0.15-3.4 \mathrm{MeV}$, and obtaining the reaction rate accurately is essential for stellar evolution models.
\square Direct measurements at the 300 keV , corresponding to helium-burning temperatures, are impossible due to the presence of the Coulomb barrier between nuclei.
\square Therefore, the inaccessible reaction rate depends on extrapolating experimental data obtained at higher energies, leading to significant uncertainties in stellar evolution models.

deBoer et al., Rēv. Mođ. Phys言 89, 0350073/31

Progresses and challenges in ab initio scattering and reactions

\square QMC calculations of $n-{ }^{4} \mathrm{He}$ scattering. Nollett, Pieper, Wiringa, Carlson, \& Hale, PRL 99, 022502 (2007).
\square Ab initio many-body calculations of $n-{ }^{3} \mathrm{H}, n-{ }^{4} \mathrm{He}, p-{ }^{3}, 4 \mathrm{He}$, and $n-{ }^{10} \mathrm{Be}$ scattering.
Quaglioni \& Navratil, PRL 101, 092501 (2008).
\square Ab initio many-body calculations of the ${ }^{3} \mathrm{H}(d, n)^{4} \mathrm{He},{ }^{3} \mathrm{He}(d, p)^{4} \mathrm{He}$ fusion. Navratil \& Quaglioni, PRL 108, 042503 (2012).
\square Elastic proton scattering of medium mass nuclei from CC theory. Hagen \& Michel PRC 86, 021602 (2012).
\square Coupling the lorentz integral transform (LIT) and the CC Methods. Orlandini, G. et al. , Few Body Syst. 55, 907â911 (2014).
\square Ab Initio Prediction of the ${ }^{4} \mathrm{He}(d, \gamma)^{6} \mathrm{Li}$ Big Bang Radiative Capture. Hebborn, Hupin, Kravvaris, Quaglioni, Navratil \& Gysbers, PRL 129, 042503 (2022).
\square Ab initio investigations of $A=8$ nuclei.
Navratil, Kravvaris et al., J.Phys.Conf.Ser. 2586 (2023) 1, 012062 Kravvaris and Volya, PRC 100, 034321 (2019)

Progresses and challenges in ab initio scattering and reactions

Ab initio calculations of scattering and reactions are limited by the computational scaling with the number of nucleons in the target and projectile (clusters).

In general, for most of the many-body approaches it remains a challenge to address important processes relevant for stellar astrophysics.
\square Scattering of alpha particles: ${ }^{4} \mathrm{He}+{ }^{4} \mathrm{He} \rightarrow{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}$
\square Triple- alpha reaction:
\square Alpha capture:

$$
\begin{aligned}
& { }^{4} \mathrm{He}+{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He} \rightarrow{ }^{12} \mathrm{C}+\gamma \\
& { }^{4} \mathrm{He}+{ }^{12} \mathrm{C} \rightarrow{ }^{16} \mathrm{O}+\gamma \\
& { }^{4} \mathrm{He}+{ }^{16} \mathrm{O} \rightarrow{ }^{20} \mathrm{Ne}+\gamma
\end{aligned}
$$

Outline

- Introduction
- Lattice effective field theory
- Scattering on the lattice
- Adiabatic projection method
- Recent progress in LEFT
- Summary

Lattice effective field theory

\square Lattice effective field theory is a powerful numerical method formulated in the framework of chiral effective field theory.

Lattice effective field theory

\square construct an initial/final state of nucleons, $\left|\psi_{I}\right\rangle$, as a Slater determinant of free-particle standing waves on the lattice.
\square evolve nucleons forward in Euclidean time, $e^{-H_{\mathrm{LO}} \tau}\left|\psi_{I}\right\rangle$, where $\tau=L_{t} a_{t}$.
\square The evolution in Euclidean time automatically incorporates the induced deformation, polarization and clustering.

Auxiliary field Monte Carlo

Euclidean Time

Use a Gaussian integral identity

$$
\exp \left[-\frac{C}{2}\left(N^{\dagger} N\right)^{2}\right]=\sqrt{\frac{1}{2 \pi}} \int d s \exp \left[-\frac{s^{2}}{2}+\sqrt{-C} s\left(N^{\dagger} N\right)\right]
$$

s is an auxiliary field coupled to the particle density. Each nucleon evolves as if a single particle in a fluctuating background of pion fields and auxiliary fields.

Lattice Monte Carlo calculations

Projection Monte Carlo uses a given initial state, $\left|\psi_{I}\right\rangle$, to evaluate a product of a string of transfer matrices \hat{M}.

$$
Z\left(L_{t}\right)=\left\langle\psi_{I}\right| \hat{M}\left(L_{t}-1\right) \hat{M}\left(L_{t}-2\right) \ldots \hat{M}(1) \hat{M}(0)\left|\psi_{I}\right\rangle
$$

In the limit of large Euclidean time the evolution operator $e^{-H_{\mathrm{LO}} \tau}$ suppress the signal beyond the low-lying states, and the ground state energy can be extracted by

$$
\lim _{L_{t} \rightarrow \infty} \frac{Z\left(L_{t}+1\right)}{Z\left(L_{t}\right)}=e^{-E_{0} a_{t}}
$$

$$
\lim _{L_{t} \rightarrow \infty} \frac{\left\langle\psi_{I}\right| \hat{M}^{L_{t} / 2} H_{L O} \hat{M}^{L_{t} / 2}\left|\psi_{I}\right\rangle}{\left\langle\psi_{I}\right| \hat{M}^{L_{t}}\left|\psi_{I}\right\rangle}=E_{0}
$$

Scattering on the lattice

 PWA
N3LO (Luescher)
N3LO (Spherical wall)

$p \cot \delta_{0}(p)=\frac{1}{\pi L}\left[\sum_{\vec{n}}^{\Lambda} \frac{\theta\left(\Lambda^{2}-\vec{n}^{2}\right)}{\vec{n}^{2}-(L p / 2 \pi)^{2}}-4 \pi \Lambda\right]$

Lüscher's finite volume method:

Lüscher, Comm. Math. Phys. 105 (1986) 153; NPB 354 (1991) 531

Spherical wall method:
$R_{\ell}^{(p)}(r)=N_{\ell}(p) \times\left\{\begin{array}{l}\cot \delta_{\ell}(p) j_{\ell}(p r)-n_{\ell}(p r) \\ \cot \delta_{\ell}(p) F_{\ell}(p r)+G_{\ell}(p r)\end{array}\right.$
Nucl. Phys. A 424, 47-59 (1984), Eur. Phys. J. A 34, 185-196 (2007).

Scattering on the lattice

Neutron-alpha scattering at N3LO

SE and Meißner, [in progress].

Adiabatic projection method

The method constructs a low energy effective theory for the clusters by using initial states, $\left|\psi_{I}^{R}\right\rangle$ and $\left|\psi_{I}^{R^{\prime}}\right\rangle$, parameterized by the relative spatial separation between clusters, and project them in Euclidean time to get dressed cluster states, $\left|\psi_{I}^{R}\right\rangle_{\tau}=e^{-H \tau}\left|\psi_{I}^{R}\right\rangle$.

Hamiltonian matrix

$$
\left[H_{\tau}\right]_{R, R^{\prime}}^{J, J_{z}}={ }_{\tau}^{J, J_{z}}\left\langle\psi_{I}^{R}\right| H\left|\psi_{I}^{R^{\prime}}\right\rangle_{\tau}^{J, J_{z}}
$$

$$
\left[H_{\tau}^{a}\right]_{\vec{R}, \vec{R}^{\prime}}^{J_{J}, J_{z}}=\left[N_{\tau}^{-1 / 2} H_{\tau} N_{\tau}^{-1 / 2}\right]_{\vec{R} \vec{R}^{\prime}}^{J, J_{z}}
$$

Norm matrix

$$
\left[N_{\tau}\right]_{R, R^{\prime}}^{J, J_{z}}={ }_{\tau}^{J, J_{z}}\left\langle\psi_{I}^{R} \mid \psi_{I}^{R^{\prime}}\right\rangle_{\tau}^{J_{\tau} J_{z}}
$$

Ab-initio alpha-alpha scattering N2LO

Afzal, Ahmad, Ali, Rev. Mod. Phys. 41, 247, (1969).
SE, Lee, Rupak, Epelbaum, Krebs, Lähde, Luu, \& Meißner. Nature 528, 111-114 (2015).

Ab-initio alpha-alpha scattering in the Multiverse

Alpha-alpha scattering phase shifts under variations of the fundamental parameters of the Standard Model.

$$
\left.\frac{\partial E_{\alpha \alpha}}{\partial M_{\pi}}\right|_{M_{\pi}^{\mathrm{ph}}}=\left.\frac{\partial E_{\alpha \alpha}\left(\tilde{M}_{\pi}, m_{N}\left(M_{\pi}\right), \tilde{g}_{\pi N}\left(M_{\pi}\right), C_{0}\left(M_{\pi}\right), C_{I}\left(M_{\pi}\right)\right)}{\partial M_{\pi}}\right|_{M_{\pi}^{\mathrm{ph}}}
$$

Afzal, Ahmad, Ali, Rev. Mod. Phys. 41, 247, (1969).
SE, Lähde, Lee, Meißner, Vonk. JHEP $\underline{\underline{\theta}} 2(2022)$ 00115/31

Chiral interactions at N3LO - 2NFs + 3NFs

Work	Constraints	Predictions
NCSM, Barrett et al., Nogga et al.	BE of ${ }^{3} \mathrm{H}$ and ${ }^{4} \mathrm{He}$	Spectrum of ${ }^{6} \mathrm{Li}$ and ${ }^{7} \mathrm{Li}$
NCSM, Navratil et al.	${ }^{3} \mathrm{H},{ }^{6} \mathrm{Li},{ }^{10} \mathrm{~B},{ }^{12} \mathrm{C}$	${ }^{4} \mathrm{He},{ }^{6} \mathrm{Li},{ }^{10,11} \mathrm{~B},{ }^{12,13} \mathrm{C}$
NCSM, Maris et al., Roth et al.	BE of ${ }^{3} \mathrm{H}$ and ${ }^{3} \mathrm{H} \beta$ decay	Structures of $A=7,8 .{ }^{4} \mathrm{He},{ }^{6} \mathrm{Li},{ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$
CC, Hagen et al.	BE of ${ }^{3} \mathrm{H}$ and ${ }^{3} \mathrm{H} \beta$ decay	EoS of nucleonic matter
BMBPT, Tichai et al.	BE of ${ }^{3} \mathrm{H}$ and ${ }^{3} \mathrm{H} \beta$ decay	BE of ${ }^{16-26} \mathrm{O},{ }^{36-60} \mathrm{Ca}$ and ${ }^{50-78} \mathrm{Ni}$
IT-NCSM, Roth et al.	BE of ${ }^{3} \mathrm{H}$ and ${ }^{4} \mathrm{He}$, and ${ }^{3} \mathrm{H} \beta$ decay	BE of ${ }^{4} \mathrm{He},{ }^{16} \mathrm{O},{ }^{40} \mathrm{Ca}$
CC, Roth et al.	BE of ${ }^{3} \mathrm{H}$ and ${ }^{4} \mathrm{He}$, and ${ }^{3} \mathrm{H} \beta$ decay	BE of ${ }^{16,24} \mathrm{O},{ }^{40,48} \mathrm{Ca}$
SCGF, Cipollone et al.	BE of ${ }^{3} \mathrm{H}$ and ${ }^{4} \mathrm{He}$, and ${ }^{3} \mathrm{H} \beta$ decay	BE of ${ }^{13,27} \mathrm{~N},{ }^{14,28} \mathrm{O}$ and ${ }^{15,29} \mathrm{~F}$
AFDMC, Lynn et al.	BE of ${ }^{3} \mathrm{H}$ and $\mathrm{n}-{ }^{4} \mathrm{He} \mathrm{P}$-wave phase shifts	EoS of nucleonic matter
MBPT, Bogner et al., Hebeler et al., Drischler et al., Wienholtz et al., Simonis et al.	$\mathrm{BE}{ }^{3} \mathrm{H}$ and R_{C} of ${ }^{4} \mathrm{He}$	symmetric and asymmetric NM, BE of ${ }^{48-58} \mathrm{Ca}$, spectrum of sdshell nuclei with $8 \leq Z, N \leq 20, \mathrm{BE}$ and R_{C} of open- and closedshell nuclei up to $A=78$
NCCI, Epelbaum et al., Maris et al.	BE of ${ }^{3} H$, nd spin-doublet scattering length and the $p d$ differential cross section	the spectrum of light nuclei with $A=3-16$, elastic $n d$ scattering and in the deuteron breakup reactions, properties of the $A=3,4$ nuclei, and for spectra of p -shell nuclei up to $A=16, \mathrm{BE}$ and R_{C} of the oxygen and calcium isotope chains
CC, Carlsson et al., Ekström et al., Hagen et al.	$\begin{aligned} & \mathrm{BE} \text { of }{ }^{3} \mathrm{H}, \quad 3,4 \mathrm{He}, \quad{ }^{14} \mathrm{Li} \text { and } \\ & 16,22,24,25 \mathrm{O} \end{aligned}$	R_{C} and BE of nuclei up to ${ }^{40} \mathrm{Ca}$, symmetric nuclear matter, neutron skin of ${ }^{48} \mathrm{Ca}$, structure of ${ }^{78} \mathrm{Ni}$
NCSM, IM-SRC, IM-NCSM, Hüther et al.	BE of ${ }^{3} \mathrm{H}$ and ${ }^{16} \mathrm{O}$	R_{C} and BE of ${ }^{4} \mathrm{He},{ }^{14-26} \mathrm{O},{ }^{36-52} \mathrm{Ca}$ and ${ }^{48-78} \mathrm{Ni}$, the spectrum of ${ }^{7} \mathrm{Li},{ }^{8} \mathrm{Be},{ }^{9} \mathrm{Be}$ and ${ }^{10} \mathrm{~B}$
CC, Jiang et al.	properties of $A \leq 4$	properties of nuclei from $A=16-132$

Ab initio nuclear theory: recent progress in NLEFT

Ab initio nuclear theory: recent progress in NLEFT

SE et al. [NLEFT collaboration] arXiv:2210.17488

Ab initio nuclear theory: recent progress in NLEFT

SE et al. [NLEFT collaboration] arXiv:2210.17488

Ab initio nuclear theory: recent progress in NLEFT

Ab initio nuclear theory: recent progress in NLEFT

[NLEFT collaboration] in progress

Ab initio nuclear theory: recent progress in NLEFT

[NLEFT collaboration] in progress

Spin doublet S-wave neutron-deuteron scattering at N3LO

SE, Hildenbrand and Meißner, [in progress].

Triton $-\beta$ decay at N3LO

$$
\left(1+\delta_{R}\right) t_{1 / 2} f_{V}=\frac{K / G_{V}^{2}}{\langle\mathbf{F}\rangle^{2}+\frac{f_{A}}{f_{V}} g_{A}^{2}\langle\mathbf{G T}\rangle^{2}}
$$

$\langle\mathbf{F}\rangle=\sum_{n=1}^{3}\left\langle{ }^{3} \mathrm{He}\left\|\tau_{n,+}\right\|^{3} \mathrm{H}\right\rangle=0.9998$
$\langle\mathbf{G} \mathbf{T}\rangle=\sum_{n=1}^{3}\left\langle{ }^{3} \mathrm{He}\left\|\sigma_{n} \tau_{n,+}\right\|{ }^{3} \mathrm{H}\right\rangle=1.6474(23)$.
$\langle\mathbf{G T}\rangle_{\text {N3LO }}=1.661(35)$.

L	$\langle\mathbf{F}\rangle$			$\langle\mathbf{G T}\rangle$		
(fm)	LO	NLO	N 3 LO	LO	NLO	N 3 LO
	$(2 \mathrm{~N})$	$(2 \mathrm{~N})$	$(2 \mathrm{~N}+3 \mathrm{~N})$	$(2 \mathrm{~N})$	$(2 \mathrm{~N})$	$(2 \mathrm{~N}+3 \mathrm{~N})$
6.60	0.99984	0.99997	0.99997	1.7115	1.6937	1.6927
7.92	0.99969	0.99989	0.99991	1.7099	1.6917	1.6891
9.24	0.99967	0.99977	0.99980	1.7107	1.6842	1.6805
10.6	0.99973	0.99956	0.99961	1.7125	1.6808	1.6764
11.9	0.99980	0.99940	0.99947	1.7135	1.6764	1.6718

SE, Hildenbrand and Meißner, [in progress].

Neutron-alpha scattering at N3LO

SE, Hildenbrand and Meißner, [in progress].
G. M. Hale, Private Communication, [R-matrix].

Alpha-carbon scattering at N3LO

Ab initio alpha-carbon scattering at N3LO

SE, Hildenbrand, Meißner, ... NLEFT [in progress].

Ab initio alpha-carbon scattering at N3LO

SE, Hildenbrand, Meißner, ... NLEFT [in progress].

Summary

\square Nuclear forces in the framework of chiral effective field theory are well-established, and it is very important time for ab initio methods to make predictions in manynucleon system using these forces.
\square A recently developed method so called the wave function matching provides a rapid convergence in perturbation theory for many-body nuclear physics. Using this new method now we are able to calculate the nuclear binding energies, neutron matter, symmetric nuclear matter and charge radii of nuclei simultaneously in very good agreements with the experimental results.
\square With the recently developed N3LO lattice action and powerful numerical methods, we are ready to perform the first ab initio calculation of alpha-carbon scattering, "holy grail" of nuclear astrophysics.

Thanks!

Three-nucleon forces

$$
a=1.32 \mathrm{fm} \text { and } p_{\max }=\pi / a=471 \mathrm{MeV}
$$

Lattice EFT: (Euclidean time) projection Monte Carlo

Transfer matrix operator formalism $\quad \hat{M}=: \exp \left(-H_{\mathrm{LO}} a_{t}\right):$

$$
\text { Microscopic Hamiltonian } \quad H_{\mathrm{LO}}=H_{\text {free }}+V_{\mathrm{LO}}
$$

$$
\mathrm{Z}\left(L_{t}\right)=\operatorname{Tr}\left(\hat{M}^{L_{t}}\right)=\int_{\text {Creutz, Found. Phys. } 30 \text { (2000) 487. }} D c D c^{*} \exp \left[-S\left(c, c^{*}\right)\right]
$$

The exact equivalence of several different lattice formulations.
Lee, PRC 78:024001, (2008); Prog.Part.Nucl.Phys., 63:117-154 (2009)

