

CHARACTERIZATION OF THE BI-PHASE CO2 COOLING SYSTEM MARTA FOR QUALITY CONTROL IN THE ITK PIXEL DETECTOR PRODUCTION

Bachelorcolloquium presented by Dominik Hauner, examined by Prof. Dr. Klaus Desch and Dr. Matthias Hamer 24.10.2023

- 1. The ITk pixel detector
- 2. Cooling systems
- 3. Characterization of MARTA
- 4. Summary and outlook

The ITk pixel detector

HIGH LUMINOSITY LHC

- HL-LHC will have 5 to 7 times the luminosity of the current LHC
- Increased radiation and data collection rates
- Replacement of multiple detectors needed

https://cds.cern.ch/record/1708847 (09.08.23)

THE ATLAS DETECTOR

- Largest multi purpose detector in the LHC
- ATLAS will be upgraded for use in the HL-LHC
- Replacement of current Inner
 Detector with new Inner Tracker
 detector

https://cds.cern.ch/record/1095924 (25.07.23), modified

NEW ITK DETECTOR

- All-silicon particle detector
- Improved radiation tolerance, data collection rates, resolution and pseudorapidity coverage
- Assembly and quality control of Local Supports for the Outer Barrel at the University of Bonn

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/ITK-2020-002/ (24.07.23), modified

ITK LOCAL SUPPORTS

Image credit: Alexandra Wald

ITK LOCAL SUPPORTS

Cooling systems

SINGLE-PHASE COOLING

- Fluid or gaseous coolant
- Energy from heat source increases the coolant temperature
- Coolant is cooled down in heat sink
- **Problem** for detectors: ENC $\propto T^2$

SINGLE-PHASE COOLING

- Fluid or gaseous coolant
- Energy from heat source increases the coolant temperature
- Coolant is cooled down in heat sink
- **Problem** for detectors: ENC $\propto T^2$

Advantage

Very simple and cheap

Disadvantage

Coolant temperature rises along heat source

BI-PHASE COOLING

- Energy from heat source causes coolant phase transition
- Coolant needs to be at saturation point
- Risk of dry-out

BI-PHASE COOLING

- Energy from heat source causes coolant phase transition
- Coolant needs to be at saturation point
- Risk of dry-out

Advantage

Disadvantage

Constant coolant temperature along heat source

source Difficult control of coolant temperature

- Accumulator holds bi-phase coolant
- In bi-phase: const. temperature = const. pressure
- Regulate temperature of accumulator thus pressure
- Negligible pressure drop along cooling pipe between accumulator and heat source
- ->Control of coolant **temperature at heat source**

- Accumulator holds bi-phase coolant
- In bi-phase: const. temperature = const. pressure
- Regulate temperature of accumulator thus pressure
- Negligible pressure drop along cooling pipe between accumulator and heat source
- ->Control of coolant **temperature at heat source**

Advantage	Disadvantage
'Remote control' of temperature in detector	Complex and difficult to maintain

2PACL IN DETAIL

B. Verlaat u.a., The ATLAS IBL CO2 cooling system, modified

https://cerncourier.com/a/co2-cooling-is-getting-hot-in-high-energy-physics/(19.10.23), modified

FROM 2PACL TO INTEGRATED-2PACL

B. Verlaat u.a., The ATLAS IBL CO2 cooling system, modified

FROM 2PACL TO INTEGRATED-2PACL

B. Verlaat u.a., *The ATLAS IBL CO2 cooling system*, modified

- Accumulator is cooled by the coolant itself
- Coolant temperature in detector only controlled by a heater in the accumulator
- Reduced efficiency and cooling power limited by chiller
- When max. cooling capacity is exceeded system heats up to new stable temperature

B. Verlaat u.a., The ATLAS IBL CO2 cooling system, modified

- Accumulator is cooled by the coolant itself
- Coolant temperature in detector only controlled by a heater in the accumulator
- Reduced efficiency and cooling power limited by chiller
- When max. cooling capacity is exceeded system heats up to new stable temperature

B. Verlaat u.a., The ATLAS IBL CO2 cooling system, modified

Advantage

Disadvantage

Simpler and cheaper, decreased risk of dry-out Limited cooling power and efficiency

24.10.2023

Characterization of MARTA

HOW TO OPERATE MARTA

Important parameters:

- Temperature set-point T_{set}
- Temperature feedback
- CO_2 -flow rate q_{CO2}
- CO₂-pump speed
- Pump delta pressure
- f_{pump} dP_{pump}

 $T_{\rm fbk}$

- Only CO₂-flow rate or -pump speed can be controlled at the same time
- dP_{pump} must be between 1 6 bar

HOW TO OPERATE MARTA

HOW TO OPERATE MARTA

UNIVERSITÄT BONN

SETUP FOR MEASURING THE COOLING POWER

COOLING POWER OF MARTA

- For every heat load there is a minimal stable T_{set}
- This creates a stable operating area
- Below this temperature the system simply heats up to the operating area

https://indico.cern.ch/event/590227/contributions/2614149/attachments/1487980/2311754 /MARTA_-_Monoblock_Approach_for_a_Refrigeration_Technical_Application.pdf (22.07.23)

COOLING POWER OF MARTA

- For every heat load there is a minimal stable T_{set}
- This creates a stable operating area
- Below this temperature the system simply heats up to the operating area

E.g. at 600 W heat load and T_{set} = -30 °C T_{fbk} will simply rise to -12 °C

https://indico.cern.ch/event/590227/contributions/2614149/attachments/1487980/2311754 /MARTA_-_Monoblock_Approach_for_a_Refrigeration_Technical_Application.pdf (22.07.23)

COOLING POWER OF MARTA

- For every heat load there is a minimal stable T_{set}
- This creates a stable operating area
- Below this temperature the system simply heats up to the operating area

E.g. at 600 W heat load and T_{set} = -30 °C T_{fbk} will simply rise to -12 °C

https://indico.cern.ch/event/590227/contributions/2614149/attachments/1487980/2311754 /MARTA_-_Monoblock_Approach_for_a_Refrigeration_Technical_Application.pdf (22.07.23)

EXAMPLE MEASUREMENT

- System cools down with no heat load
- Heat load is applied until heat-up
- Record T_{fbk} when thermal equilibrium is achieved
- Increase heat load, repeat

RESULTS FOR THE ITK-QC

RESULTS FOR THE ITK-QC

- Cooling power lower than anticipated
- At 400 W CO₂ temperature of below -15 °C possible
- Expected max. pixel module temperature below 10 °C

- Understanding the concept and operation of the cooling system in MARTA
- Characterization of MARTA
- Evaluation of cooling capabilities for ITk-QC
- Outlook:
 - Implementation of MARTA for the ITk-QC
 - Further investigation of MARTA edge case characteristics

Technical Design Report for the ATLAS Inner Tracker Strip Detector, Techn. Ber., CERN, 2017, url: <u>https://cds.cern.ch/record/2257755</u>

P. Barroca, Modelling CO2 cooling of the ATLAS ITk Pixel Detector, Diss., 2019, url: <u>https://cds.cern.ch/record/2703341</u>

B. Verlaat, M. Van Beuzekom und A. Van Lysebetten, *CO2 cooling for HEP experiments*, 2008, url: <u>https://cds.cern.ch/record/1158652</u>

Conversations with M. Hamer, F. Hinterkeuser, K. Padeken

Any questions?

Detailed differences between ITk and ID

- ITk is just better!
- Also pseudorapidity increase from 2.5 to 4
- ITk needs a lot more cooling

	ATLAS Pixel + IBL	ITk Pixel
Modules	2000	8500
Pixel Size	$50 \times 400 \mu\text{m}^2 \text{ or } 50 \times 250 \mu\text{m}^2$	$50 \times 50 \mu\text{m}^2$
Readout channels	80 million	5 billion
Active area	$1.7 \mathrm{m}^2$	$14 \mathrm{m}^2$
TID	2.5 MGy	10 MGy
Fluence	$10^{15} n_{eq}/cm$	$1.4^{16} n_{eq}/cm$
Trigger rate	100 kHz	1 MHz
FE data rate	160 Mb s	5.12 Gb s
Powering	parallel	serial
Cooling budget	15 kW	100 kW

F. Hinterkeuser, Evaluation of a Serial Powering Scheme and its Building Blocks for the ATLAS ITk Pixel Detector

Methods for finding the max. cooling capacity

Method	Resistor Temperature for the start of heat-up	T _{fbk} for the start of heat- up	Constant heat-up
Description	Find sudden increase in resistor temperature	Increase heat load untill heat-up is observed	Start system in heat- up, measure $T_{\rm fbk}$ for selected heat loads
Evaluation	Temperature measurement too inaccurate	Takes a long time to stepwise increse heat load and wait for heat-up	Quickly measure along the line of max. cooling power

Methods for finding the max. cooling capacity

Does room temperature effect cooling power?

only improved cooling capacity by 1.8(4) °C

UNIVERSITÄT BONN

Why is the q_{CO2} = 1.5 g/s operating range limited?

- Insufficient thermal connection between the resistors and the cooling pipe at higher temperature
- The heat transfer suddenly collapses
- Resistor quickly heats up out of safe operating temperature
- No safe measurement possible

