

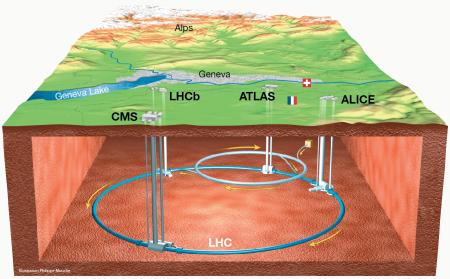
Development and Characterization of a Testing Stand for ITk Pixel Quad-Module Quality Control During Production

Master Thesis Colloquium Matthias Schüssler - 16.10.2023

Supervisor: Prof. J. Dingfelder

OUTLINE

- Introduction: LHC and ATLAS
- The ATLAS ITk Pixel Detector
- A Setup for Quad-Module Testing
- Module Testing and Quality Control
- Summary



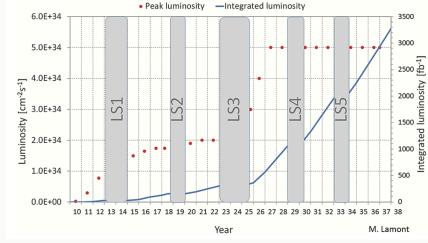
THE LARGE HADRON COLLIDER

Goal: Explore the Standard Model of particle physics and beyond

Symmetric circular collider located at CERN

- Accelerate protons and heavy ions
- Beam energy of up to 7 TeV for protons

P. Mouche / https://cds.cern.ch/record/1708847 / 2014


THE HIGH LUMINOSITY LHC

Goal: Study rare physics events with high precision

• Large number of events needed!

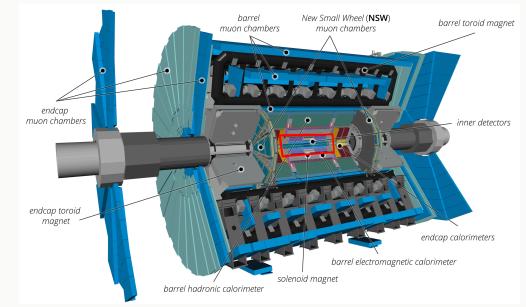
High Luminosity upgrade to LHC

- Increase luminosity by a factor of 5-7
- Design luminosity: 5 x 10³⁴ cm⁻² s⁻¹

Challenges for detectors at HL-LHC:

- Increased radiation levels -> radiation hard technology
- 10 times higher hit rate -> fast readout
- Up to 200 pile-up collisions -> high granularity

L. Rossi, O.Brüning / Introduction to the HL-LHC Project / 2015

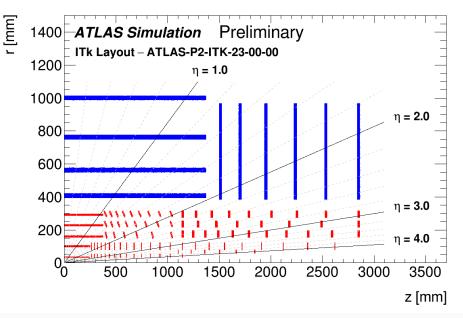

ATLAS EXPERIMENT

A Toroidal LHC Apparatus: ATLAS

• General purpose experiment at LHC

Detector subsystems:

- Barrel toroid magnet
- Muon chambers for muon identification
- Electromagnetic and hadronic calorimeters
- Solenoid magnet
- Inner Detector for tracking and vertexing


ATLAS / The ATLAS Experiment at the CERN Large Hadron Collider: A Description of the Detector Configuration for Run 3 / 2023

ATLAS INNER TRACKER

Upgrade for HL-LHC ➡ replace Inner Detector

- All-silicon ATLAS Inner Tracker (ITk)
- Outer strip detector
 - 4 barrel layers and 6 end-caps
- Inner pixel detector
 - 5 barrel layers and several end-caps
 - Consists of \sim 9000 pixel modules
 - ➡ 5x modules than in old ATLAS ID
 - ➡ Serial powering
 - Streamlined production and testing!

ATLAS / https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/ITK-2020-002/ / 2020

THE ATLAS ITK PIXEL DETECTOR

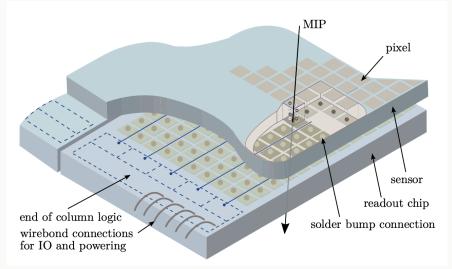
HYBRID PIXEL DETECTORS

Connected via

Every detector has 2 functional blocks

Signal generation and signal processing

Hybrid pixel detector \Rightarrow components are separate

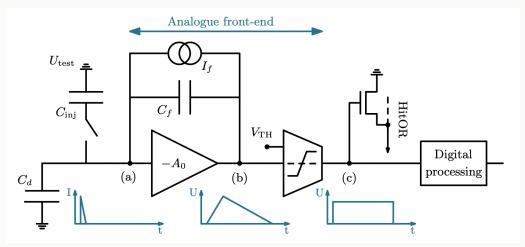

- Signal generation ➡ Pixel sensor 】
- Signal processing ⇒ Readout chip ∫ bump-bonding

Advantage:

Optimise production of each component

Disadvantages:

- Expensive and difficult interconnection process
 - Needs testing!
- More inactive material

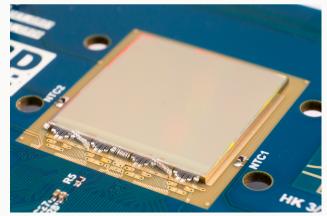

David-Leon Pohl / 3D-Silicon and Passive CMOS Sensors for Pixel Detectors in High Radiation Environments / 2020

ANALOG READOUT CHAIN

Goal: Fast signal digitisation

- Preamplifier
 - Integrate collected charge
 - Amplify signal
 - ➡ Voltage proportional to collected charge
- Discriminator
 - Compare signal to a voltage threshold
 - Output a signal high when threshold is crossed

Y. Dieter / Development and Characterisation of Passive CMOS Sensors for Pixel Detectors in High Radiation Environments / 2022



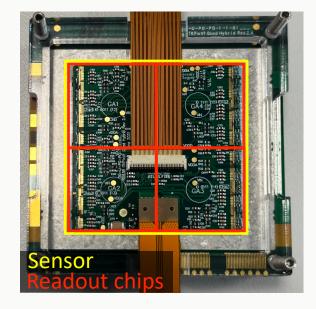
THE ITkPix READOUT CHIP

- 65 nm CMOS technology
- 400 x 384 pixels grouped in 8 x 8 pixel cores
 - Pixel size: 50 μm x 50 μm

Important features:

- 2 SLDO regulators for serial powering
- Analog and digital injection circuit => chip calibration and testing
- Configurable analog multiplexer (MUX) for readout of internal voltages
- NTC and diode based temperature sensors

RD53 Collaboration / RD53B users guide / 2021

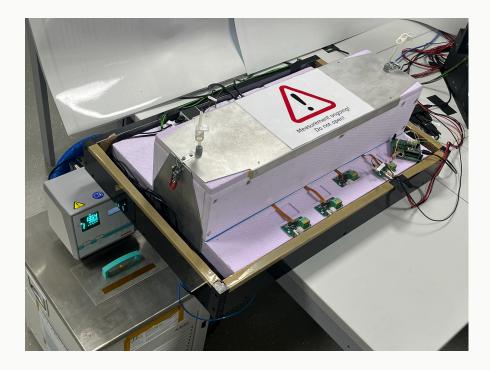

ITkPix QUAD-MODULE

Module: Unit consisting of a sensor tile and multiple readout chips

- Sensor
 - Pixelated 4 cm x 4 cm silicon sensor tile
 - Sensor thickness of 150 μm
- Readout chip
 - 4 readout chips per sensor ⇒ quad-module
- Module flex
 - Common connection of all 4 readout chips to periphery
 - Connected to the chips by wire-bonds
 - Houses a module NTC for temperature measurements

1000 ITkPix quad-modules will be assembled and tested in Bonn

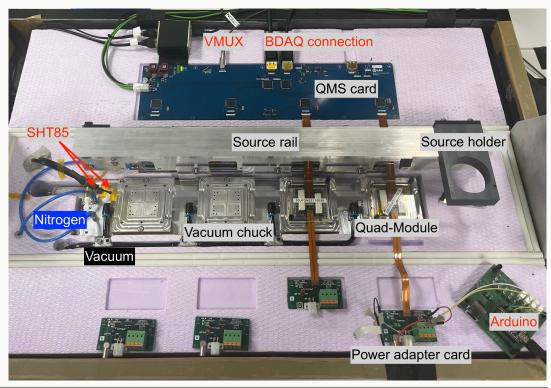
Production rate: 10-12 modules/week


A SETUP FOR QUAD-MODULE TESTING

ASSEMBLED MODULE TESTING IN BONN

Goal: Testing of 12 modules per week during production

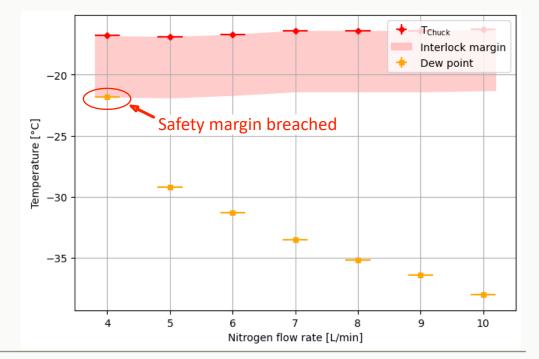
- Electrical test of the readout chip
- Testing at 20°C and 15°C using the same setup
- Automated testing
 - Parallel testing of 4 modules
 - Automated control of environmental conditions



TESTING SETUP

Goal: Parallel testing of 4 modules

- Modules placed on aluminium cooling block
 - Held in place using vacuum
 - Cooled using a water-ethanol mixture
- Nitrogen used to control humidity
 - Temperature and humidity are tracked with two SHT85 sensors
- Rail for measurements with sources
- QMS card for readout of all 4 modules


COMMISSIONING OF THE COLD BOX

Goal: Verify that measurements at 20°C and - 15°C are possible with 4 modules installed

- **Dew point**: Temperature at which humidity in the air condensates
 - damage to modules possible
 - ➡ maintain 5°C safety margin

Measure temperature and humidity to establish minimum nitrogen flow

➡ At -15°C: > 4 L/min required

DETECTOR CONTROL SYSTEM (DCS)

Goal: Monitor environmental conditions during measurements

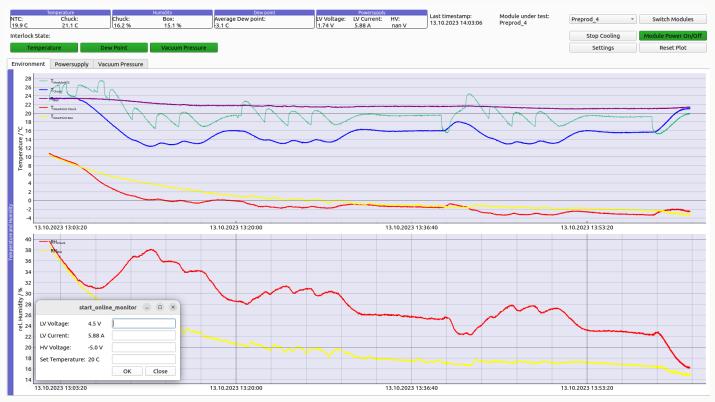
➡ Detector Control System (DCS) developed

Monitored Parameters:

- Environmental:
 - Ambient temperature (SHT 85)
 - Cooling block temperature (SHT 85)
 - Ambient humidity (SHT 85)
 - Humidity at cooling block (SHT 85)
 - Ambient dew point (calculated)
 - Dew point at chuck (calculated)
 - Vacuum pressure (Arduino)

- Module under test:
 - Module temperature (NTC)
 - Input voltage (Powersupply)
 - Input current (Powersupply)
 - Input bias voltage (HV Powersupply)
 - Leakage current (HV Powersupply)

DETECTOR CONTROL SYSTEM (DCS)


Goal: Safeguard against hazardous environmental conditions

- Continuously monitor data from DCS
- ➡ Take action if critical situation arises

Temperature	T _{NTC} > T _{max}	Turn off HV/LV
Humidity	T _{CHUCK} < 2°C+T _{DEW} T _{NTC} < 2°C+T _{DEW}	Warm up to room temperature
Humidity	T _{CHUCK} < 5°C+T _{DEW} T _{NTC} < 5°C+T _{DEW}	Increase chiller temperature +2°C
Pressure	Vacuum below threshold	Send warning

DETECTOR CONTROL SYSTEM (DCS)

MODULE TESTING AND QUALITY CONTROL

ELECTRICAL QC ROUTINE

Goal: Test electrical functionality of components

- Non DAQ tests:
 - Efuse
 - ADC calibration
 - VDDA/VDDD trim
 - Temperature sensor readout
 - Analog read back
 - SLDO test
 - Measure Injection Capacitance
 - VCal Calibration

Routine is implemented ➡ results for 2 modules cross-verified by tests performed in Siegen

- Pixel failure analysis
 - Minimum Health Test
 - Tuning to 1500e threshold
 - Pixel Failure Test

ELECTRICAL QC ROUTINE

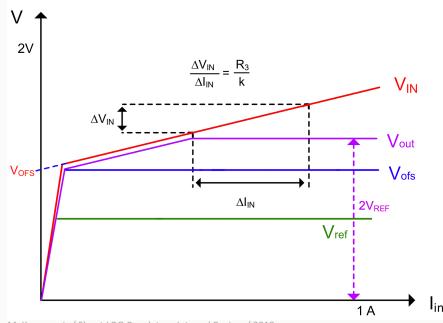
Goal: Test electrical functionality of components

- Non DAQ tests:
 - Efuse
 - ADC calibration
 - VDDA/VDDD trim
 - Temperature sensor readout
 - Analog read back

- SLDO test

- Measure Injection Capacitance
- VCal Calibration

Routine is implemented ➡ results for 2 modules cross-verified by tests performed in Siegen


- Pixel failure analysis
 - Minimum Health Test
 - Tuning to 1500e threshold
 - Pixel Failure Test

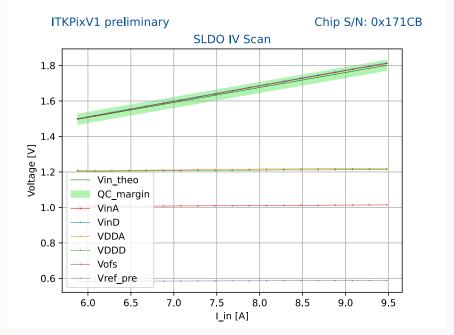
NON DAQ TESTS - SLDO

SLDO

- Convert supply current to constant voltage
 - Shunt excess current
- Linear behaviour of input voltage
 - Allows for parallel operation of all chips on each module

M. Karagounis / Shunt-LDO Regulator - Internal Review / 2019

QC criteria: Input voltage is linear and follows prediction



NON DAQ TESTS - SLDO

SLDO

- Set input current to 9.48 A
- Ramp down input current to the nominal input current of 5.88 A in 0.2 A steps
 - Readout voltages
 - VINA, VIND, VDDA, VDDD, Vofs, Vref
 - Readout currents
 - IInA, IInD, IShuntA, IShuntD, Iref

QC criteria: Input voltage is linear and follows prediction

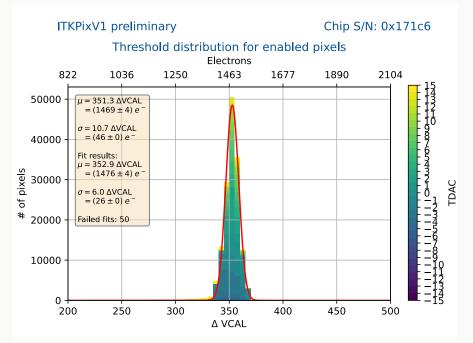
ELECTRICAL QC ROUTINE

Goal: Test electrical functionality of components

- Non DAQ tests:
 - Efuse
 - ADC calibration
 - VDDA/VDDD trim
 - Temperature sensor readout
 - Analog read back
 - SLDO test
 - Measure Injection Capacitance
 - VCal Calibration

Routine is implemented ➡ results for 2 modules cross-verified by tests performed in Siegen

- Pixel failure analysis
 - Minimum Health Test
 - Tuning to 1500e threshold
 - Pixel Failure Test



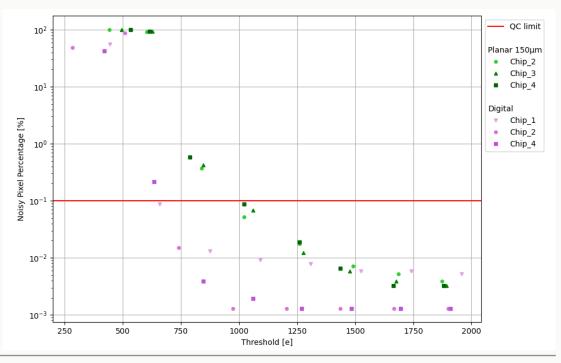
PIXEL FAILURE ANALYSIS

Goal: Test functionality of the readout chain

- Minimum Health Test:
 - Quickly identify defective chips
 - Digital injection scan, analog injection scan, threshold scan
- Tuning:
 - Set the discriminator to a 1500e charge threshold
- Pixel Failure Test
 - Identify and deactivate defective pixels
 - Digital injection scan, analog injection scan, threshold scan, noise occupancy scan

QC criteria: Rate of pixel failures < 0.1 %

TUNING PERFORMANCE

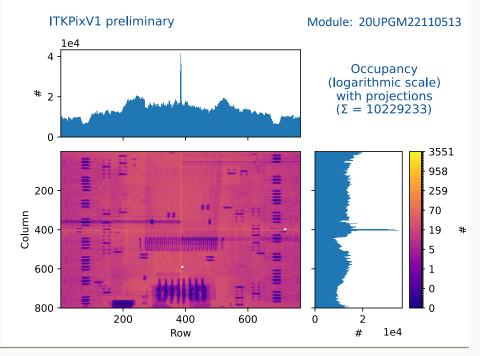

Goal: Establish optimal tuning threshold for ITkPix modules with a 150 μm planar sensor

Procedure:

- Tune chip to a threshold
- Perform Pixel Failure Test

Minimum tuning threshold:

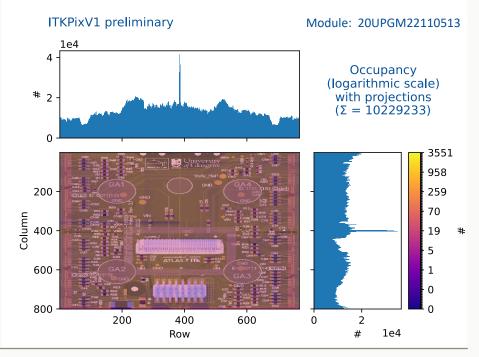
- ➡ 700 e for digital module
- 1 000 e with 150 μm planar sensor



SOURCE MEASUREMENTS

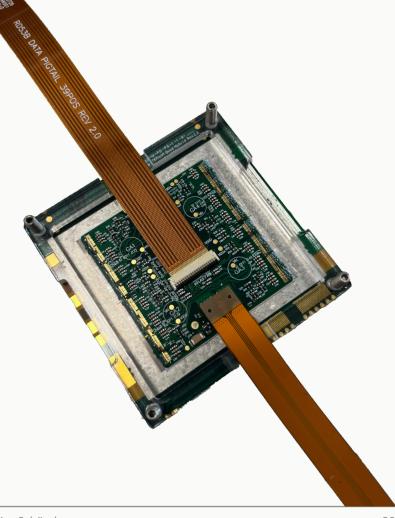
Goal: Identify defective bonds between sensor pixels and readout chip

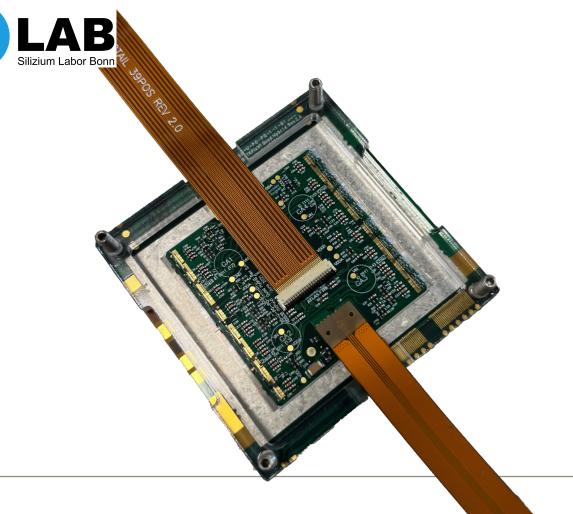
- A radioactive source (Cd109) is used to generate signals
 - Need enough hits in each pixel to assure clear identification
- Optimisation:
 - Distance of source from module
 - Scan time



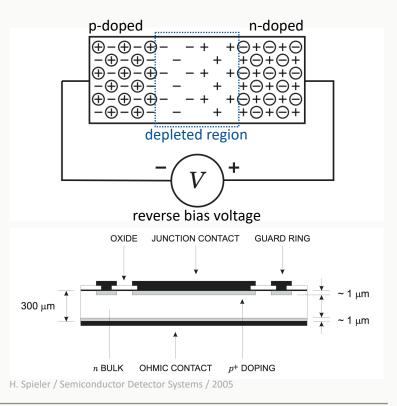
SOURCE MEASUREMENTS

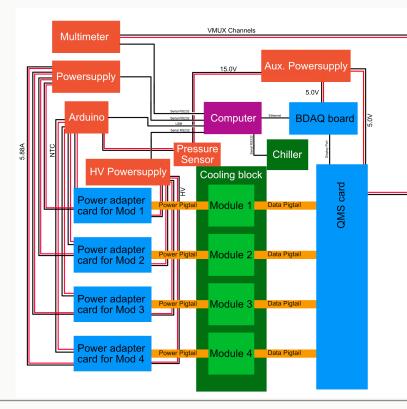
Goal: Identify defective bonds between sensor pixels and readout chip

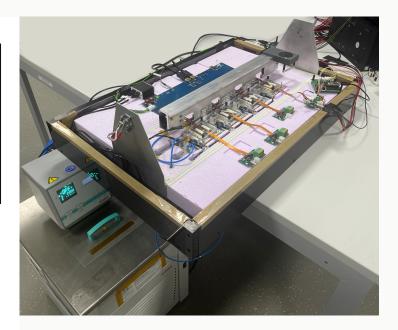

- A radioactive source (Cd109) is used to generate signals
 - Need enough hits in each pixel to assure clear identification
- Optimisation:
 - Distance of source from module
 - Scan time



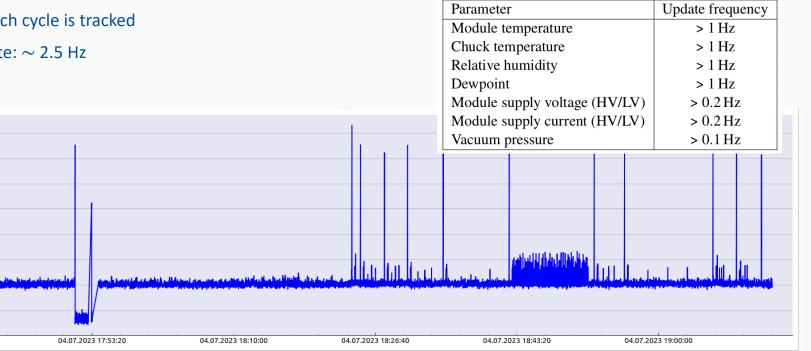
- Setup of module testing site:
 - Test setup is commissioned
 - ready for full testing with 4 modules
 - DCS is operational and meets ATLAS testing requirements
 - DCS reacts to prevent hazardous conditions
- Electrical module QC
 - Necessary tests are implemented in readout software
 - Complete routine was performed on several modules
 - Source measurements are possible


BACKUP


P-IN-N SILICON SENSOR


- pn-junction of a semiconductor as detection region
 - Operate in reverse bias -> depleted region forms
- Heavy particles loose energy by ionisation
 - ➡ electron-hole pairs are formed
 - ➡ charge measured at electrode
- p-in-n sensor: n-doped bulk with p-doped electrode
 - Advantage: Simple production
 - ➡ single sided process

TESTING SETUP



DCS READOUT RATE

- All parameters are updated synchronously in a measurement cycle ۲
- Time for each cycle is tracked
- Readout rate: ~ 2.5 Hz •

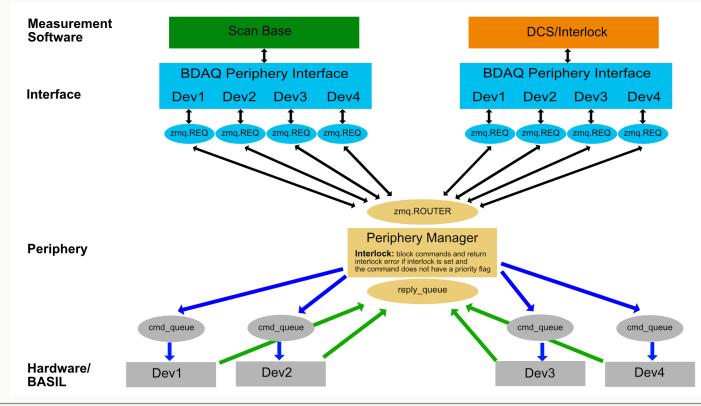
Required readout rates

А

1.6

1.4 1.2

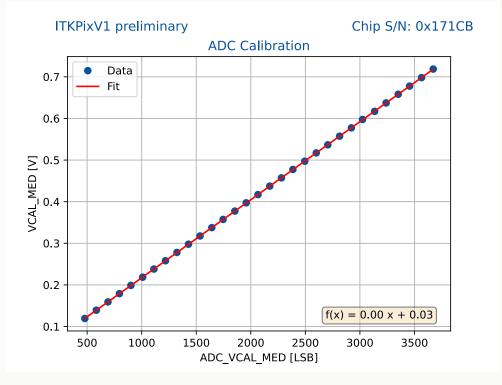
Readout Time / s 0.8 0.6 0.4 0.2



Goal: Unify hardware access to avoid conflicts

- Provide virtualised hardware access to measurement processes
- Prioritise critical commands, e.g. interlock actions
- Keep device access parallel for different devices -> readout rate

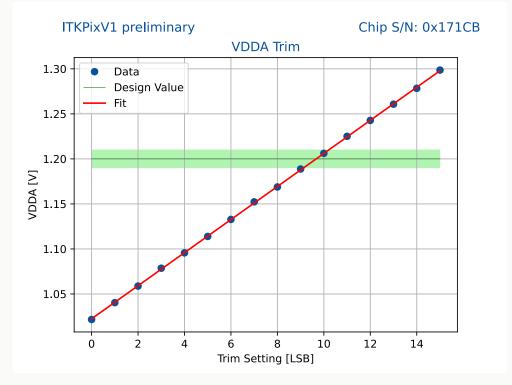
PERIPHERY ACCESS



NON DAQ TESTS - ADC CALIBRATION

Procedure

- Use the DAC for V_{CAL_MED} to generate a voltage
- Measure using the internal ADC
- Measure with an external multimeter
- Repeat for voltage steps over the entire operational range

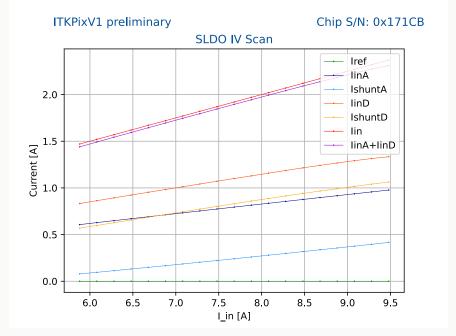


NON DAQ TESTS - VDDA/D

Trim VDDA/VDDD to 1.2 V

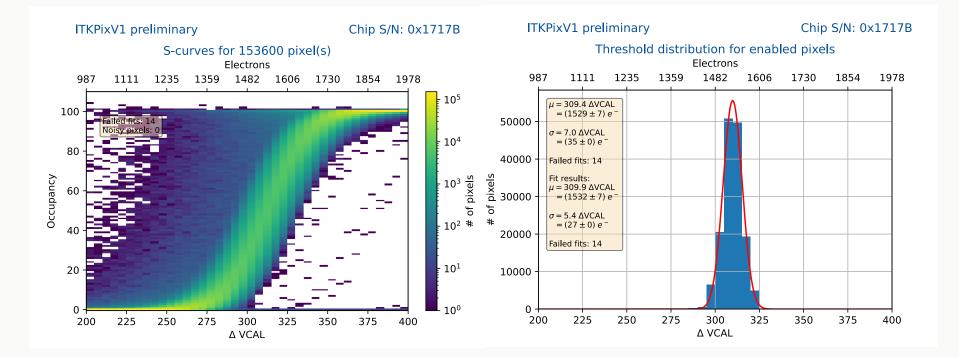
- Set all possible trim register settings
 - 4 bit registers -> 16 values
- Measure voltage with external multimeter

QC criteria: Voltage after trim is (1.20±0.02) V

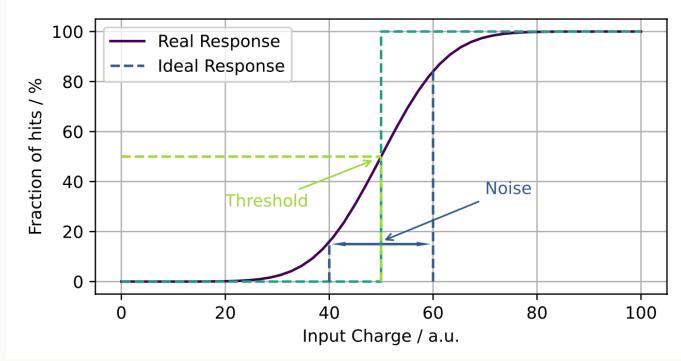


NON DAQ TESTS - SLDO

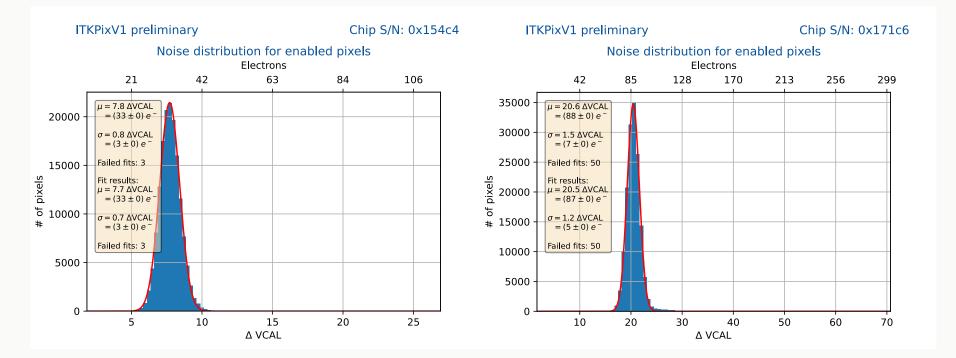
SLDO


- Set input current to 9.48 A
- Ramp down input current to the nominal input current of 5.88 A in 0.2 A steps
 - Readout voltages
 - VINA, VIND, VDDA, VDDD, Vofs, Vref
 - Readout currents
 - IInA, IInD, IShuntA, IShuntD, Iref

QC criteria: Input voltage is linear and follows prediction



THRESHOLD SCAN


THRESHOLD INVESTIGATION - NOISE

F. Hinterkeuser / Evaluation of a Serial Powering Scheme and its Building Blocks for the ATLAS ITk Pixel Detector / 2022

THRESHOLD INVESTIGATION - NOISE

