#### (Puzzling) QCD effects in semileptonic $\overline{B} \rightarrow D^{(*)} \ell \overline{\nu}$ decays

#### Nico Gubernari

Based on arXiv: 1908.09398 arXiv: 1912.09335 arXiv: 24xx.xxxx in collaboration with Marzia Bordone, Martin Jung, and Danny van Dyk Particle Physics Seminar University of Bonn 25-Jan-2024





## Talk outline

#### Introduction

#### Theoretical framework

- hadronic matrix elements
- form factors

#### Form factor calculations

- lattice QCD (LQCD)
- light-cone sum rules (LCSRs)

#### Form factor parametrizations

- z expansion
- unitarity bounds and BGL
- HQET parametrization
- $(B \rightarrow D^{**} \text{ form factors})$

Summary and outlook



# Introduction

## The beauty in flavour physics



In the SM 6 quark flavours and 6 lepton flavours

**flavour physics**: investigate the properties, the transitions, and the spectrum of the different quark and lepton flavours

2

transitions between different (flavours) mediated by  $W^{\pm}$ 

# C

#### why is the *b* quark interesting?

- third generation quark
- heaviest fermion that forms bound states  $(m_b \gg \Lambda_{
  m QCD})$
- lighter than the *t* quark
  - $\Rightarrow$  decays in quarks of another generation
  - $\Rightarrow$  CKM suppressed decay

#### $b \rightarrow c \ell \nu$ decays

why study  $b \rightarrow c \ell \nu$  transitions?

- 1. extract  $|V_{cb}|$  fundamental parameter of the SM
  - using inclusive  $B \rightarrow X_c \ell \nu$  decays
  - using exclusive  $B \to D\ell\nu$  or  $B \to D^*\ell\nu$  decays
  - $\Rightarrow |V_{ub}| |V_{cb}|$  puzzle
- 2. probe the SM and constrain new physics
  - do the SM predictions agree with the corresponding measurements?
  - possible deviations form a coherent pattern?

focus of this talk: theory predictions for  $B \to D \ell \nu$  and  $B \to D^* \ell \nu$  (and  $B \to D^{**} \ell \nu$ ) decays



#### Optimised observables and LFU

test the lepton flavour universality to test the SM

lepton flavour universality (LFU) = the 3 lepton generations have the same couplings to the gauge bosons

violations of LFU  $\Rightarrow$  new physics

define observables smartly to reduce theory uncertainties and cancel  $V_{cb}$ 

observables to test LFU

$$\frac{R(D^{(*)})}{\Gamma(B \to D^{(*)}\ell\nu)} = \frac{\Gamma(B \to D^{(*)}\ell\nu)}{\Gamma(B \to D^{(*)}\ell\nu)}$$

3.3  $\sigma$  tension between the SM and data



# Theoretical framework

## Flavour changing currents

flavour changing charged currents (FCCC) occur at tree level (mediated by  $W^{\pm}$ ) in the SM

 $b \rightarrow c \ell \nu$  very frequent transitions ( $\Gamma(B \rightarrow X_c \ell \nu \simeq 11\%)$ )

**flavour changing neutral currents (FCNC)** absent at tree level in the SM FCNC are loop, GIM and CKM **suppressed in the SM** 

integrate out DOF heavier than the *b* ↓ weak effective field theory





#### Hadronic matrix elements

study *B*-meson decays to test the  $b \rightarrow c\ell \nu$  transitions factorise decay amplitude (neglecting QED corrections)

charged currents:  $\langle \overline{D}^{(*)} \ell \nu_{\ell} | \mathcal{O}_{eff} | B \rangle = \langle \ell \nu_{\ell} | \mathcal{O}_{lep} | 0 \rangle \langle D^{(*)} | \mathcal{O}_{had} | B \rangle$ neutral currents:  $\langle K^{(*)} \ell^+ \ell^- | \mathcal{O}_{eff} | B \rangle = \langle \ell \ell | \mathcal{O}_{lep} | 0 \rangle \langle K^{(*)} | \mathcal{O}_{had} | B \rangle + \text{non-fact.}$ 

leptonic matrix elements: perturbative objects, high accuracy QED corrections mostly unknown but small (~1%)

hadronic matrix elements: non-perturbative QCD effects, usually large uncertainties (~10%)

(local) hadronic matrix elements are crucial to obtain precise predictions for  $b \rightarrow c \ell \nu$  decays



#### Definition of the form factors

form factors (FFs) parametrize exclusive hadronic matrix elements

 $\langle D(k) | \bar{c} \gamma_{\mu} b | B(q+k) \rangle = 2 k_{\mu} f_{+}(q^{2}) + q_{\mu} (f_{+}(q^{2}) + f_{-}(q^{2}))$ 

$$\left\langle D(k) \left| \bar{c} \, \sigma_{\mu\nu} q^{\nu} b \right| B(q+k) \right\rangle = \frac{i f_T(q^2)}{m_B + m_P} \left( q^2 (2k+q)_\mu - (m_B^2 - m_P^2) q_\mu \right)$$

decomposition follows from Lorentz invariance

FFs are functions of the momentum transferred  $q^2$ ( $q^2$  is the dilepton mass squared)

2(+1) independent  $B \rightarrow D$  FFs 4(+3) independent  $B \rightarrow D^*$  FFs



# Form factors calculations

#### Methods to compute FFs

non-perturbative techniques are needed to compute FFs

1. Lattice QCD (LQCD)

more efficient usually at high  $q^2$ 

2. Light-cone sum rules (LCSRs) only applicable at low  $q^2$ 

complementary approaches to calculate FFs



## Lattice QCD in a nutshell

**LQCD** = evaluating path integrals numerically

observable = 
$$\int \prod_{i} d\phi_i$$
 (correlator)

to perform the calculation approximations are needed

- 1. nonzero lattice spacing
- 2. finite volume
- 3. Euclidian space time

#### Pros

can be used potentially for any  $q^2$  first principles calculations

reducible systematic uncertainties

#### Cons

nonlocal matrix elements, unstable states, are still work in progress

computationally very expensive



9

finite volume



#### Pros

compute hadronic matrix elements not accessible yet with LQCD

effective at small  $q^2$ (complementary to LQCD)

#### Cons

need universal non-perturbative inputs (*B*-meson distribution amplitudes)

non-reducible systematic uncertainties

in the long run LQCD will dominate the theoretical predictions (smaller and reducible syst unc.)

# State of the art $B_{(s)} \rightarrow D_{(s)}^{(*)}$ FFs

•  $B \rightarrow D$ 

LQCD calculations available at high  $q^2$ [FNAL/MILC 2015] [HPQCD 2015]

•  $B \rightarrow D^*$ 

LQCD calculations available at high  $q^2$ [FNAL/MILC 2021] [JLQCD 2023] in the whole semileptonic region of  $q^2$ [HPQCD 2023]

- B<sub>s</sub> → D<sub>s</sub>
   LQCD calculations available
   in the whole semileptonic region of q<sup>2</sup>
   [HPQCD 2019]
- B<sub>s</sub> → D<sup>\*</sup><sub>s</sub>
   LQCD calculations available
   in the whole semileptonic region of q<sup>2</sup>
   [HPQCD 2021] [HPQCD 2023]

LCSRs available for the four processes at low  $q^2$ 

how to **combine** different calculations for the same channel? how to obtain result in the **whole** semileptonic region if not available from LQCD?

# Form factor parametrization

#### Parametrization for FFs

when LQCD data are available only at high  $q^2$  obtain FFs in the whole semileptonic region by either

- extrapolating LQCD calculations to low  $q^2$
- or **combining LQCD** and **LCSRs**

FFs are analytic functions of  $q^2$  except for branch cut for  $q^2 > t_+ = (M_B + M_{D^{(*)}})^2$ 

fit results to a **z** parametrization = Taylor series (standard approach) [Boyd/Grinstein/Lebed 1997] [Bourrely/Caprini/Lellouch 2008] [Bharucha/Straub/Zwicky 2015] [...]

$$FF \propto \sum_{n=0}^{\infty} \alpha_n^{FF} z^k$$

$$\sqrt{t_+ - q^2} - \sqrt{t_-}$$

$$z(q^2) = \frac{\sqrt{t_+} q}{\sqrt{t_+} - q^2} + \sqrt{t_+}$$



12

## Combine LQCD and LCSRs with naïve z param.

combine LQCD and LCSRs to obtain the FF values in the whole semileptonic region

good agreement between LQCD and LCSRs calculations

use only first 3 terms in the *z* parametrization

issues of the naïve z parametrization

- errors blow up when extrapolating
- what is the "right" truncation order?
- what is the **truncation error**?



[NG/Kokulu/van Dyk 2018]

13

## Unitarity bounds

## obtain constraints analyticity and unitarity $\Rightarrow$ unitarity bounds

BGL parametrization: [Boyd/Grinstein/Lebed 1994]

 $FF(z) = \frac{1}{\mathcal{B}(z)\phi(z)} \sum_{n=0}^{\infty} \alpha_n^{FF} z^k$ 

determine the truncation error

two different ways to apply use the bounds:

- 1. "standard" BGL fit
- 2. dispersive matrix method

two methods substantially equivalent

$$\sum_{FF} \sum_{n=0}^{\infty} \left| \alpha_n^{FF} \right|^2 < 1$$



$$w(q^2) = \frac{m_B^2 + m_{D^{(*)}}^2 - q^2}{2m_B m_{D^{(*)}}}$$

## Combined fit with unitarity bounds

combine all  $B \rightarrow D^*$  FFs results using unitarity bound [FNAL/MILC 2021] [JLQCD 2023][HPQCD 2023]

good fit can be obtained [Martinelli/Simula/Vittorio 2023]

calculate

 $R(D^*) = 0.266 \pm 0.009$ 

tension with  $R(D^*)$  measurement reduced from 2.2  $\sigma$  to 1.2 $\sigma$ 

extract  $|V_{cb}|$  by comparing with recent Belle (II) data

$$|V_{cb}| \cdot 10^3 = 40.16 \pm 0.53$$

reduced tension with inclusive determination to 2.5  $\sigma$ 



<sup>[</sup>Martinelli/Simula/Vittorio 2023]

15

# and they lived happily ever after...



#### A closer look to lattice QCD for $B \to D^*$

compute the differential width using  $B \rightarrow D^*$  FF from LQCD

extract  $|V_{cb}|$  bin by bin by comparing with available experimental data [Belle (II) 2018 and 2023]

shape ( $q^2$  dependence) discrepancy between data and lattice QCD

- systematic issue in (some) LQCD results
- New Physics in  $B \rightarrow D^* \{e, \mu\} v$

no issues in  $B \rightarrow D\ell \nu$  decays

 $|V_{cb}|$  extraction with FNAL/MILC FFs



[Martinelli/Simula/Vittorio 2023]

16

#### How to proceed?

- ? can the theory predictions from the current LQCD results be **trusted**?
- ? does it make sense to extract  $|V_{cb}|$  if theory and experimental shapes disagree?
- ? are the different  $B \rightarrow D^{(*)}$  LQCD calculations consistent among each other?
- ? is there a way to check whether the LQCD results have **issues**?



Heavy quark expansion for form factors

### HQE for the $B \rightarrow D^{(*)}$ FFs

use heavy-quark expansion (HQE), i.e. that  $m_b, m_c \gg \Lambda_{\rm QCD}$ , to relate  $B \rightarrow D^{(*)}$  FFs

$$FF^{B \to D^{(*)}}(q^2) = \xi(q^2) \left( c_0 + c_1 \frac{\alpha_s}{\pi} \right) + c_2 \frac{1}{m_b} L_i(q^2) + c_3 \frac{1}{m_c} L_i(q^2) + c_4 \frac{1}{m_c^2} l_i(q^2)$$

essential to include  $\Lambda_{\rm QCD}^2/m_c^2$  corrections (CLN not sufficient) [Bordone/Jung/van Dyk 2019]

all the  $B \rightarrow D^{(*)}$  FFs can be expressed in terms of 10 lsgur-Wise functions (1 leading, 3 subleading, 6 subsubleading)

 $\Rightarrow$  relations between  $B \rightarrow D^{(*)}$  FFs

LQCD calculations must fulfil these relations (within errors)

alternative method to include  $1/m_c^2$  corrections proposed in Bernlochner F. et al. (2022)

### Our HQE parametrization

expand in z the Isgur-Wise functions

- leading power  $\xi(q^2) = \sum_{n=0}^{N} \xi^{(n)} z^n (q^2)$
- subleading  $L_i(q^2) = \sum_{n=0}^{M} L_i^{(m)} z^m (q^2)$
- subsubleading  $l_i(q^2) = \sum_{n=0}^{\mathbf{K}} l_i^{(k)} z^k(q^2)$

#### N/M/K parametrization

3/2/1 parametrization is the minimal order to achieve a good description [Bordone/Jung/van Dyk 2019]

rewrite the BGL unitarity bounds in terms of Isgur-Wise parameters

$$\sum_{FF} \sum_{n=0}^{\infty} |\alpha_n^{FF}|^2 \equiv \sum_{FF} \sum_{n=0}^{\infty} |\alpha_n^{FF}(\xi^{(n)}, L_i^{(m)}, l_i^{(k)})|^2 < 1$$

weak bound  $\Rightarrow$  strong bound

## Some (concerning) comparison

tension between experimental measurements (BGL) and FNAL/MILC 2021 (HPQCD 2023)

tension between HQE fit 2019  $(1/m_c^2)$ and FNAL/MILC 2021 (HPQCD 2023)

solid pheno analyses need stable inputs

discussion about different approaches (parametrizations) is useless if inputs are faulty

until LQCD results are well understood theory predictions ( $R(D^{(*)})$ ) and  $|V_{cb}|$  extractions cannot be trusted



[credit: Martin Jung – LHCb impl. 2022]

## Preliminary HQE fit (FF results)

21



## Preliminary HQE fit (bounds)

unitarity bound is (suspiciously) almost saturated by LQCD results.  $\Rightarrow$  essential for the analysis also observed by Martinelli et al.

unitarity bounds not only control the truncation error but also check the consistency of LQCD results



A few words on  $B_s \rightarrow D_s^{(*)}$ 

different Isgur-Wise functions

$$FF^{B\to D^{(*)}}(q^2) = \xi^{\mathbf{s}}(q^2) \left( c_0 + c_1 \frac{\alpha_s}{\pi} \right) + c_2 \frac{1}{m_b} L_i^{\mathbf{s}}(q^2) + c_3 \frac{1}{m_c} L_i^{\mathbf{s}}(q^2) + c_4 \frac{1}{m_c^2} l_i^{\mathbf{s}}(q^2)$$

contribute to the same unitarity bound  $\Rightarrow$  extract more precisely  $B \rightarrow D^{(*)}$  FFs

$$\sum_{FF} \sum_{n=0}^{\infty} \left| \alpha_n^{FF(B \to D^{(*)})} \right|^2 + \sum_{FF} \sum_{n=0}^{\infty} \left| \alpha_n^{FF(B_s \to D_s^{(*)})} \right|^2 < 1$$

 $B_s \rightarrow D_s^{(*)}$  FFs easier to compute than  $B \rightarrow D^{(*)}$  for LQCD

fewer experimental results (only LHCb), Belle II does produce  $B_s$  mesons (for the moment being)

#### Next steps

- 1. combine analysis of  $B_s \rightarrow D_s^{(*)}$  and  $B_s \rightarrow D_s^{(*)}$  FFs
- 2. predict observables (branching ratios, angular observables,  $R(D^{(*)})$ )
- 3. compare with experimental data (Belle and Belle II 2023)
- 4. extract  $|V_{cb}|$ ?



# $B \rightarrow D^{**}$ form factors

#### D\*\* mesons

| Meson                   | j             | $\int J^P$ | Mass [MeV]       | Width [MeV]    |
|-------------------------|---------------|------------|------------------|----------------|
| $D_0^*(2300)$           | $\frac{1}{2}$ | 0+         | $2343 \pm 10$    | $229 \pm 16$   |
| $D_1(2430) \equiv D_1'$ | $\frac{1}{2}$ | 1+         | $2412 \pm 9$     | $314 \pm 29$   |
| $D_1(2420) \equiv D_1$  | $\frac{3}{2}$ | 1+         | $2422.1 \pm 0.6$ | $31.3 \pm 1.9$ |
| $D_2^*(2460)$           | $\frac{3}{2}$ | $2^+$      | $2461.1 \pm 0.8$ | $47.3 \pm 0.8$ |





- alternative way to study  $b \rightarrow c\ell \nu$  transitions  $(R(D^{**}) \text{ ratios, } |V_{cb}| \text{ etc.})$
- **background** in  $B \rightarrow D^* \ell \nu$ measurements
- understand the gap inclusive vs. sum of exclusive  $B \rightarrow X_c \ell \nu$

#### State of the art $B \rightarrow D^{**}$ FFs

calcultions of  $B \rightarrow D^{**}$  FFs using **sum rules and HQET** for both the **b** and **c** quarks [Colangelo/De Fazio/...]

data driven determination of the  $B \rightarrow D^{**}$  Isgur-Wise functions [Bernlochner/Ligeti/...]

no LQCD calculation available

LCSRs

- $B \rightarrow D_2^*$  FFs [Aliev et al 2019]
- $B \rightarrow D_1$  and  $B \rightarrow D'_1$  FFs (first calculation with finite  $m_c$ ) [NG/Khodjamirian/Mandal/Mannel 2022]
- $B \rightarrow D_0^*$  FFs [NG/Khodjamirian/Mandal/Mannel 2023]

## $B \rightarrow D_0^* \; \mathrm{FFs}$

#### two scenarios [Du et al. 2017]:

- 1. single broad resonance  $D_0^*(2300)$
- 2. two scalar resonances  $D_0^*(2105)$  and  $D_0^*(2451)$

calculate all  $B \rightarrow D_0^*$  FFs in both scenarios using standard LCSR approach

calculate also branching ratio and LFU ratio

scenario 1:  $R(D_0^*) = 0.11^{+0.03}_{-0.01}$ scenario 2:  $R(D_0^*) = 0.16^{+0.04}_{-0.01}$ 

calculate also  $B_s \rightarrow D^*_{0s}(2317)$  FFs

| Scena | rio                                | Meson                      | Mass [MeV]        | Width [MeV]  |
|-------|------------------------------------|----------------------------|-------------------|--------------|
| 1     |                                    | $D_0^* \equiv D_0^*(2300)$ | $2343 \pm 10$     | $229 \pm 16$ |
| 2     | $D_0^* \equiv D_0^*(2105)$         | $2105_{+6}^{-8}$           | $204^{+20}_{-22}$ |              |
|       | $D_0^{*\prime} \equiv D_0^*(2451)$ | $2451_{+35}^{-26}$         | $268^{+14}_{-16}$ |              |



# New LCSRs for $B \rightarrow D_1^{(\prime)}$ FFs

define a correlator and study spectral density

$$\Pi(k,q) = i \int d^4x \, e^{ikx} \langle 0|T\{J_{int}(x), J_{weak}(0)\}|B(k+q)\rangle$$

usual LCSRs (e.g.  $B \rightarrow D$ ) one ground state  $\rho(M^2)$  $\rho(M^2)$ continuum continuum  $M^2$ 

two states ( $D_1$  and  $D'_1$ ) with similar masses and  $I^P = 1^+$  (cannot be disentangled using a standard LCSRs)

 $M^2$ 

define new type of LCSRs to deal with states with similar masses

28

Numerical results for  $B \rightarrow D_1^{(\prime)}$  FFs

new method yields a **twofold ambiguity** (could be resolved with more experimental data or LQCD results)



<sup>[</sup>NG/Khodjamirian/Mandal/Mannel 2022]

# Summary and conclusion

## Summary and conclusion

- amazing progress by recent LQCD calculations (but a few concerns for  $B \rightarrow D^*$  FFs)
- combine theory inputs using z parametrization  $\Rightarrow$  control the truncation error using unitarity bounds
- HQET gives additional and precious constraints
- puzzle in the non-zero recoil  $B \rightarrow D^*$  FFs from LQCD ([FNAL/MILC 2021] [HPQCD 2023])  $\Rightarrow$  understand these results otherwise theory predictions ( $R(D^{(*)})$ ) and  $|V_{cb}|$  extractions cannot be trusted
- $B \rightarrow D^{**} \ell \nu$  decays interesting and promising alternative channel to test  $b \rightarrow c \ell \nu$  transitions

