

Signatures of toponium formation in LHC run 2 data

Benjamin Fuks

LPTHE / Sorbonne Université

Signatures of toponium formation in LHC run 2 data

[In collaboration with Kaoru Hagiwara, Kai Ma & Ya-Juan Zhang: PRD 104 (2021) 034023]

High-energy physics seminar @ BCTP [Bonn, 09 October 2023]

Top pair production at the LHC

Copious top quark production at the LHC [σ (13 TeV) ~ 810 pb]

- Detailed analysis of the top properties possible (mass, width, etc.)
- Many differential distributions precisely measurable (and measured)

Potential issues at low invariant masses

Top pair production at the LHC

Copious top quark production at the LHC [$\sigma(13 \text{ TeV}) \sim 810 \text{ pb}$]

- Detailed analysis of the top properties possible (mass, width, etc.)
- Many differential distributions precisely measurable (and measured)

Potential issues at low invariant masses

Top-antitop bound-state effects

- Significant near threshold
- Spin-0 bound state $\rightarrow t\bar{t}$ @LHC: gg-dominated
- Considered negligible (< 1%)
- Could they be observed?

A top-antitop **bound state?**

Fermion-antifermion bound states

Positronium bound states predicted in 1934

- Experimental discovery in 1951 (Deutsch @ MIT)
- Two spin configurations
 - \rightarrow Para-positronium: $^{1}S_{0}$, decays into 2 photons, C-ever
 - \rightarrow Ortho-positronium: ${}^{3}S_{1}$, decays into 3 photons, C-o

[Mohorovičić (Astron.Nachtrichten`34)]

en

$$(e^+e^-)_0 \rightarrow \gamma\gamma$$

 $(e^+e^-)_1 \rightarrow \gamma\gamma\gamma$
odd

Effects impacting QED precision tests (α measurements)

Fermion-antifermion bound states

Positronium bound states predicted in 1934

- Experimental discovery in 1951 (Deutsch @ MIT)
- Two spin configurations
 - \rightarrow Para-positronium: $^{1}S_{0}$, decays into 2 photons, C-even
 - \rightarrow Ortho-positronium: ${}^{3}S_{1}$, decays into 3 photons, C-odd

Colour-singlet $q\bar{q}$ bound states (colour-octet contributions \Leftrightarrow higher-order effects)

- C-odd, spin singlets
- C-even, spin triplets

 $(c\overline{c})_0:\eta_c,\eta_c'(2S);$ $(b\overline{b})_0:\eta_b,\eta_b'(2S),\ldots$ $(c\overline{c})_1: J/\Psi, \Psi(2S); \quad (b\overline{b})_1: \Upsilon, \Upsilon(2S), \Upsilon(3S), \ldots$

[Mohorovičić (Astron.Nachtrichten`34)]

$$(e^+e^-)_0 \to \gamma\gamma$$

 $(e^+e^-)_1 \to \gamma\gamma\gamma$

Effects impacting QED precision tests (α measurements)

Fermion-antifermion bound states

Positronium bound states predicted in 1934

- Experimental discovery in 1951 (Deutsch @ MIT)
- Two spin configurations
 - \rightarrow Para-positronium: $^{1}S_{0}$, decays into 2 photons, C-even
 - \rightarrow Ortho-positronium: ³S₁, decays into 3 photons, C-odd

Colour-singlet $q\bar{q}$ bound states (colour-octet contributions \Leftrightarrow higher-order effects)

- C-odd, spin singlets
- C-even, spin triplets

 $(c\overline{c})_0:\eta_c,\eta_c'(2S);$ $(b\overline{b})_0:\eta_b,\eta_b'(2S),\ldots$ $(c\overline{c})_1: J/\Psi, \Psi(2S); \quad (b\overline{b})_1: \Upsilon, \Upsilon(2S), \Upsilon(3S), \ldots$

Also for $t\bar{t}$ systems (virtual bound states)

- Gluon exchanges between top quarks before decay ($a_0 \sim 20$ GeV)
- Decay before hadronisation ($\Lambda_{\text{OCD}} \ll \Gamma_t$)
- Two classes of bound state $\rightarrow \eta_t$: C-odd, spin-0 (a case for the LHC through gg production) $\rightarrow \theta_t$: C-odd, spin-I

[Mohorovičić (Astron.Nachtrichten`34)]

$$(e^+e^-)_0 \to \gamma\gamma$$

 $(e^+e^-)_1 \to \gamma\gamma\gamma$

Effects impacting QED precision tests (α measurements)

Signatures of toponium formation in LHC run 2 data

Towards a simplified model for toponium production

Toponium bound state effects

Incorporating bound state effects in theory predictions

- Close to threshold: non-relativistic approximation valid ($\beta \ll 1$)
- Resummation of the Coulomb singularities $(\alpha_s/\beta)^n$ \rightarrow gluon exchanges between slowly-moving top quarks = bound-state effects
- Predictions in the pNRQCD framework (Potential Non-Relativistic QCD)
 - -> replacement of free NR Green's functions in the matrix elements

$$\frac{1}{E - \frac{\mathbf{p}^2}{M_t} + i\frac{\Gamma_{\theta}}{2}} \qquad \Rightarrow \qquad \langle \mathbf{p} | \frac{1}{E - \frac{P^2}{M_t} - V(r) + i\frac{\Gamma_{\theta}}{2}} | \mathbf{x} = 0 \rangle$$

Toponium bound state effects

Incorporating bound state effects in theory predictions

- Close to threshold: non-relativistic approximation valid ($\beta \ll 1$)
- Resummation of the Coulomb singularities $(\alpha_s/\beta)^n$ \rightarrow gluon exchanges between slowly-moving top quarks = bound-state effects
- Predictions in the pNRQCD framework (Potential Non-Relativistic QCD)
 - \rightarrow replacement of free NR Green's functions in the matrix elements

$$\frac{1}{E - \frac{\mathbf{p}^2}{M_t} + i\frac{\Gamma_{\theta}}{2}} \qquad \Rightarrow \qquad \langle \mathbf{p} | \frac{1}{E - \frac{P^2}{M_t} - V(r) + i\frac{\Gamma_{\theta}}{2}} | \mathbf{x} = 0 \rangle$$

- Choice of the QCD potential inspired by charmonia/bottomonia
 - \rightarrow Richardson's at low energies \oplus Coulomb-like at high energies
 - \rightarrow Two-loop corrections included in the Coulomb potential
 - → Running top-width effects studied

$$V_R(q^2) = -\frac{4}{3} \frac{16\pi^2}{b_0} \frac{1}{q^2 \ln(1 + \frac{q^2}{\Lambda_R^2})},$$
[Richardson (PLB`79)]

Signatures of toponium formation in LHC run 2 data

Top-antitop production near threshold

Wb Wb production in the threshold regime

• 3 classes of contributions with 0, 1 or 2 (possibly off-shell) resonant tops

- Bound-state effects → first class of diagrams ★ Below or slightly above threshold \rightarrow * One off-shell top quark
 - **\star** Binding energy \Leftrightarrow Coulomb gluon exchanges
- \rightarrow

 \rightarrow To add to the perturbative treatment Better $t\bar{t}$ modelling

SM explanation to excesses?

Top-antitop production near threshold

Wb Wb production in the threshold regime

• 3 classes of contributions with 0, 1 or 2 (possibly off-shell) resonant tops

- Bound-state effects \rightarrow first class of diagrams ★ Below or slightly above threshold \rightarrow \star One off-shell top quark \rightarrow
 - \star Binding energy \Leftrightarrow Coulomb gluon exchanges

The (tree-level) amplitude is enhanced close to threshold

• Involving ratios of non-relativistic Green's functions

$$i\mathcal{M}^{(c)} \to i\mathcal{M}^{(c)} \times \frac{G(E;p^*)}{G_0(E;p^*)}$$

[Sumino, Fujii, Hagiwara, Murayama & Ng (PRD`93)] [Jezabek, Kuhn & Teubner (Z.Phys.C`92)]

- ***** Ratio of Green's functions of the Hamiltonians with/without V_{QCD}
- \star Different channels (gg/qq; I/8)

Signatures of toponium formation in LHC run 2 data

 \rightarrow To add to the perturbative treatment Better $t\bar{t}$ modelling SM explanation to excesses?

Top pair production with toponium effects

Amplitude re-weighting close to threshold

- Below and above threshold
- All contributions (singlet/octet, $gg/q\bar{q}$)
- Explanation for CMS/ATLAS excesses?

 $i\mathcal{M}^{(c)} \to i\mathcal{M}^{(c)} \times \frac{G(E;p^*)}{G_0(E;p^*)}$

[Sumino, Fujii, Hagiwara, Murayama & Ng (PRD`93)] [Jezabek, Kuhn & Teubner (Z.Phys.C`92)]

Top pair production with toponium effects

Amplitude re-weighting close to threshold

- Below and above threshold
- All contributions (singlet/octet, $gg/q\bar{q}$)
- Explanation for CMS/ATLAS excesses?

 $i\mathcal{M}^{(c)} \to i\mathcal{M}^{(c)} \times \frac{G(E;p^*)}{G_0(E;p^*)}$

[Sumino, Fujii, Hagiwara, Murayama & Ng (PRD`93)] [Jezabek, Kuhn & Teubner (Z.Phys.C`92)]

Impact on $t\bar{t}$ modelling

- Full WbWb differential distribution (green)
 - \rightarrow with bound-state effects
 - → finite top-width effects
 - → with NLO effects (ISR, differential K-factors)
- WbWb production at NLO (red)
 - \rightarrow NLO + top offshell effects (from MG5_aMC)
- Toponium = "green red"

Top pair production with toponium effects

Amplitude re-weighting close to threshold

- Below and above threshold
- All contributions (singlet/octet, $gg/q\bar{q}$)
- Explanation for CMS/ATLAS excesses?

 $i\mathcal{M}^{(c)} \to i\mathcal{M}^{(c)} \times \frac{G(E;p^*)}{G_0(E;p^*)}$

[Sumino, Fujii, Hagiwara, Murayama & Ng (PRD`93)] [Jezabek, Kuhn & Teubner (Z.Phys.C`92)]

Impact on $t\bar{t}$ modelling

- Full WbWb differential distribution (green)
 - \rightarrow with bound-state effects
 - → finite top-width effects
 - → with NLO effects (ISR, differential K-factors)
- WbWb production at NLO (red)
 - \rightarrow NLO + top offshell effects (from MG5_aMC)
- Toponium = "green red"

Toponium modelling with a resonance

Could toponium effects explain ATLAS/CMS observations in the low $m_{t\bar{t}}$ regime?

• Toy scenario: simplified modelling at tree-level \rightarrow Breit Wigner resonance

Toponium signal:

$$m_{\eta_t} = 344 \text{ GeV}$$

Signatures of toponium formation in LHC run 2 data

$$pp \to \eta_t \to t^{(*)} \bar{t}^{(*)} \to W^+ b W^- \bar{b}$$

 $\Gamma_{\eta_t} \approx 7 \text{ GeV} \qquad \sigma(13 \text{ TeV}) \sim 6.5 \text{ pt}$

Quantum numbers

Different contributions to top-antitop production close and far from threshold

- Colour-singlet domination close to threshold
 - → domination of the gg-singlet channel
 - \rightarrow toponium coupling to gluon pairs and $t\bar{t}$ pairs
- Colour-octet significant far from threshold

Signatures of toponium formation in LHC run 2 data

Octet effects ignored

Quantum numbers

Different contributions to top-antitop production close and far from threshold

- Colour-singlet domination close to threshold
 - \rightarrow domination of the gg-singlet channel
 - \rightarrow toponium coupling to gluon pairs and $t\bar{t}$ pairs
- Colour-octet significant far from threshold

Signatures of toponium formation in LHC run 2 data

Octet effects ignored

Connecting ideas to simulations...

Signatures of toponium formation in LHC run 2 data

[Christensen, de Aquino, Degrande, Duhr, BF, Herquet, Maltoni & Schumann (EPJC`II)]

FEYNRULES / UFO Model building

[Alloul, Christensen, Degrande, Duhr & BF (CPC'14)] [Degrande, Duhr, BF, Mattelaer & Reither (CPC'I2)]

 $\mathcal{L}_{\eta_t} = \frac{1}{2} \partial_\mu \eta_t \partial^\mu \eta_t - \frac{1}{2} m_{\eta_t} \eta_t^2 - \frac{1}{4} g_{gg} \eta_t G^a_{\mu\nu} \tilde{G}^{a\mu\nu} - i g_{tt} \eta_t \bar{t} \gamma_5 t$

No free parameters $[m/\Gamma/\sigma \text{ known}]$

Connecting ideas to simulations...

Signatures of toponium formation in LHC run 2 data

Signal modelling in action

MG5_aMC: event generation for all *m*(WbWb) values

- The signal lies in [338, 350] GeV
 - → extra cut to be implemented after event generation
 - → 63% events lost (room for improvement)
- Spectrum of the top momentum in the η rest frame
 - → The distribution is off at a given binding energy
 - → Re-weighting

$$|M|^2 \to |M|^2 \left| \frac{G(E;p^*)}{G_0(E;p^*)} \right|^2$$

Benjamin Fuks - 09.10.2023 - 11

22

Signal modelling in action

MG5_aMC: event generation for all m(WbWb) values

- The signal lies in [338, 350] GeV
 - \rightarrow extra cut to be implemented after event generation
 - → 63% events lost (room for improvement)
- Spectrum of the top momentum in the η rest frame
 - → The distribution is off at a given binding energy
 - \rightarrow Re-weighting

$$|M|^2 \to |M|^2 \left| \frac{G(E;p^*)}{G_0(E;p^*)} \right|^2$$

Signal modelling close to threshold

- $(t\bar{t})_1$ + toponium (pink)
- Comparison with usual $(t\bar{t})_1$ (green)
- Parton shower effects negligible

Checks and main toponium characteristics

Verification: in the case of a di-leptonic toponium decay

- Check of a few observables
- Expectation from spin density matrices

Checks and main toponium characteristics

Verification: in the case of a di-leptonic toponium decay

- Check of a few observables
- Expectation from spin density matrices

$$\sum_{\sigma,\bar{\sigma},\sigma',\bar{\sigma}'} \rho^{\eta_t}_{\sigma\bar{\sigma};\sigma'\bar{\sigma}'} \ \rho^{t\to b\bar{\ell}\nu_\ell}_{\sigma,\sigma'} \ \rho^{\bar{t}\to\bar{b}\ell'\bar{\nu}_{\ell'}}_{\bar{\sigma},\bar{\sigma}'}$$

• Angular separation between the two leptons in the top/antitop rest frames

 $(1 + \cos\bar{\theta})(1 + \cos\theta) + (1 - \cos\bar{\theta})(1 - \cos\theta) + 2\sin\bar{\theta}\sin\theta\cos(\bar{\varphi} - \varphi)$ [Hagiwara, Yokoya & Zheng (JHEP'18)]

 \rightarrow small azimuthal angle separation (survives the lab frame boost) \rightarrow small di-lepton invariant mass (ignoring the binding energy):

$$m_{\bar{\ell}\ell'}^2 = 2E_{\bar{\ell}}E_{\ell'} \left(1 - \sin\bar{\theta}\sin\theta\cos(\bar{\varphi} - \varphi) - \cos\bar{\theta}\cos\theta\right)$$

• Toponium characteristic: small m_{ℓ} and small $\Delta \varphi_{\ell}$

Checks and main toponium characteristics

Verification: in the case of a di-leptonic toponium decay

- Check of a few observables
- Expectation from spin density matrices

$$\sum_{\sigma,\bar{\sigma},\sigma',\bar{\sigma}'} \rho^{\eta_t}_{\sigma\bar{\sigma};\sigma'\bar{\sigma}'} \ \rho^{t\to b\bar{\ell}\nu_\ell}_{\sigma,\sigma'} \ \rho^{\bar{t}\to\bar{b}\ell'\bar{\nu}_{\ell'}}_{\bar{\sigma},\bar{\sigma}'}$$

• Angular separation between the two leptons in the top/antitop rest frames

 $(1 + \cos \bar{\theta})(1 + \cos \theta) + (1 - \cos \bar{\theta})(1 - \cos \theta) + 2\sin \bar{\theta}\sin\theta\cos(\bar{\varphi} - \varphi)$ [Hagiwara, Yokoya & Zheng (JHEP'18)]

 \rightarrow small azimuthal angle separation (survives the lab frame boost) \rightarrow small di-lepton invariant mass (ignoring the binding energy):

$$m_{\bar{\ell}\ell'}^2 = 2E_{\bar{\ell}}E_{\ell'} \left(1 - \sin\bar{\theta}\sin\theta\cos(\bar{\varphi} - \varphi) - \cos\bar{\theta}\cos\theta\right)$$

• Toponium characteristic: small m_{ℓ} and small $\Delta \phi_{\ell}$

Correlations (in principle) reproduced in the pseudoscalar model

Toponium decays in two leptons

Signatures of toponium formation in LHC run 2 data

Modelling good enough

- The η -model yields correct toponium properties \rightarrow At large $m_{\ell\ell'}$: widths and *b*-mass effects
- Toponium formation in ATLAS data ?
 - \rightarrow At small $m_{\ell\ell'}$ and small $\Delta \varphi_{\ell\ell'}$:

MC[no toponium] < 1data

Toponium decays in two leptons

Signatures of toponium formation in LHC run 2 data

Modelling good enough

- The η -model yields correct toponium properties \rightarrow At large $m_{\ell\ell'}$: widths and *b*-mass effects
- Toponium formation in ATLAS data ?
 - \rightarrow At small $m_{\ell\ell'}$ and small $\Delta \varphi_{\ell\ell'}$:

MC[no toponium] < 1data

How to confirm it?				
$\sigma(\eta_t) \; [\mathrm{pb}]$	$\sigma(t\bar{t})$ [pb]	Ratio		
6.43	810	0.0079		
→ Proper analysis				

Towards toponium observation with di-leptons

Basic cuts: final-state composition

• Two isolated leptons + two isolated *b*-jets $(p_T > 25 \text{ GeV}; |\eta| < 2.5; \Delta R < 0.4)$

Targeting LHC excesses / bulk of toponium events

• Small $\Delta \boldsymbol{\varphi}_{\boldsymbol{\ell}}$ (< $\pi/5$), small $m_{\boldsymbol{\ell}}$ (< 40 GeV)

 10^{4}

10²

Towards toponium observation with di-leptons

Basic cuts: final-state composition

• Two isolated leptons + two isolated *b*-jets $(p_T > 25 \text{ GeV}; |\eta| < 2.5; \Delta R < 0.4)$

Targeting LHC excesses / bulk of toponium events

• Small $\Delta \boldsymbol{\varphi}_{\boldsymbol{\ell}}$ (< $\pi/5$), small $m_{\boldsymbol{\ell}}$ (< 40 GeV)

I3 TeV, I40/fb					
Cut	$t\overline{t}$	Toponium	Ratio		
Initial	113,000,000	900,000	0.0079		
Di-lepton	1,370,000	$10,\!300$	0.0076		
$\Delta arphi_{ar{\ell}\ell'}$	178,000	$4,\!060$	0.023		
$m_{ar{\ell}\ell'}$	77,900	2,760	0.035		
Further background rejection needed					

 10^{4}

bin

10²

Insights from the entire toponium system

• The $\ell^+ \ell^- b \bar{b} + E_T^{\text{miss}}$ system produced at low transverse mass (m_T < 320 GeV)

Insights from the entire toponium system

• The $\ell^+ \ell^- b \bar{b} + E_T^{\text{miss}}$ system produced at low transverse mass (m_T < 320 GeV)

Kinematical reconstruction of the toponium system

- Toponium decaying into a light and a heavy (off-shell) top $(\eta \rightarrow t_L t_H)$ \rightarrow Assumption: equal p_T sharing $\mathbf{p}_T(t_H) = \mathbf{p}_T(t_I)$
- Identification of all final-state objects $\rightarrow \ell_1$ is the leading lepton, ℓ_2 the sub-leading one → *b*-jet pairing: enforcing $m(\ell_1, b_1) > m(\ell_2, b_2)$
- Determination of the neutrino momenta
 - \rightarrow W mass \oplus top mass $\oplus \nu$ mass $\oplus \mathbf{p}_T$ assumptions
- 'top' reconstruction (t_L/t_H)

Insights from the entire toponium system

• The $\ell^+ \ell^- b \bar{b} + E_T^{\text{miss}}$ system produced at low transverse mass (m_T < 320 GeV)

Kinematical reconstruction of the toponium system

- Toponium decaying into a light and a heavy (off-shell) top $(\eta \rightarrow t_L t_H)$ \rightarrow Assumption: equal p_T sharing $\mathbf{p}_T(t_H) = \mathbf{p}_T(t_L)$
- Identification of all final-state objects $\rightarrow \ell_1$ is the leading lepton, ℓ_2 the sub-leading one → *b*-jet pairing: enforcing $m(\ell_1, b_1) > m(\ell_2, b_2)$
- Determination of the neutrino momenta
 - \rightarrow W mass \oplus top mass $\oplus \nu$ mass $\oplus \mathbf{p}_T$ assumptions
- 'top' reconstruction (t_L/t_H)

Insights from the entire toponium system

• The $\ell^+ \ell^- b \bar{b} + E_T^{\text{miss}}$ system produced at low transverse mass (m_T < 320 GeV)

Kinematical reconstruction of the toponium system

- Toponium decaying into a light and a heavy (off-shell) top $(\eta \rightarrow t_L t_H)$ \rightarrow Assumption: equal p_T sharing $\mathbf{p}_T(t_H) = \mathbf{p}_T(t_L)$
- Identification of all final-state objects $\rightarrow \ell_1$ is the leading lepton, ℓ_2 the sub-leading one → *b*-jet pairing: enforcing $m(\ell_1, b_1) > m(\ell_2, b_2)$
- Determination of the neutrino momenta
 - \rightarrow W mass \oplus top mass $\oplus \nu$ mass $\oplus \mathbf{p}_T$ assumptions
- 'top' reconstruction (t_L/t_H)

13 TeV, 140/fb						
	$t\overline{t}$	Toponium	Ratio			
	$113,\!000,\!000$	900,000	0.0079			
	$1,\!370,\!000$	$10,\!300$	0.0076			
	$178,\!000$	$4,\!060$	0.023			
	77,900	2,760	0.035			
)	40,800	$2,\!460$	0.060			
it	$20,\!400$	$1,\!420$	0.070			

Key observable for toponium discovery

Signatures of toponium formation in LHC run 2 data

The rapidity difference distribution

- Peak at the origin
 - \rightarrow small and similar t_L/t_H momentum in the η rest frame
- Toponium effects = 10% enhancement near $\Delta y = 0$

Impossible to miss?

Key observable for toponium discovery

Signatures of toponium formation in LHC run 2 data

The rapidity difference distribution

- Peak at the origin
 - \rightarrow small and similar t_L/t_H momentum in the η rest frame
- Toponium effects = 10% enhancement near $\Delta y = 0$

Impossible to miss?

Remark

- Results obtained on the basis of a toy-model
- Strong motivation for a better calculation \rightarrow all effects included in the modelling

 - \rightarrow on-going efforts...

Close to threshold, bound state effects impact top pair-production

- Resummation of Coulomb singularities $(\alpha_s/\beta)^n$ in the pNRQCD framework
- Replacement of top-propagators in $gg \rightarrow WbWb$ matrix elements → Free Green's functions by counterparts including bound state effects

- Toponium formation \rightarrow events at small $\Delta \varphi_{\ell}$ and small m_{ℓ}
- Explanation for excesses in ATLAS/CMS data? \rightarrow fake excesses due to SM background mis-modelling

Path towards a toponium discovery our work: Hagiwara, BF, Ma & Zhang (PRD 104 (2021) 034023)]

- A simple description for spin-0 toponium modelling
- Proof toponium systems can be reconstructed (t_L/t_H)
- The rapidity difference between the tops = killer observable

Summary

$$\frac{1}{E - \frac{\mathbf{p}^2}{M_t} + i\frac{\Gamma_{\theta}}{2}} \qquad \Rightarrow \qquad \langle \mathbf{p} | \frac{1}{E - \frac{P^2}{M_t} - V(r) + i\frac{\Gamma_{\theta}}{2}}$$

Impact at the LHC: investigation of the di-leptonic mode ($pp \rightarrow t_L t_H \rightarrow \ell^+ \ell^- bb + E_T^{\text{miss}}$)

Close to threshold, bound state effects impact top pair-production

- Resummation of Coulomb singularities $(\alpha_s/\beta)^n$ in the pNRQCD framework
- Replacement of top-propagators in $gg \rightarrow WbWb$ matrix elements → Free Green's functions by counterparts including bound state effects

- Impact at the LHC: investigation of the di-leptonic mode ($pp \rightarrow t_L t_H \rightarrow \ell^+ \ell^- bb + E_T^{\text{miss}}$) • Toponium formation \rightarrow events at small $\Delta \varphi_{\ell}$ and small m_{ℓ}
 - Explanation for excesses in ATLAS/CMS data? \rightarrow fake excesses due to SM background mis-modelling

Path towards a toponium discovery our work: Hagiwara, BF, Ma & Zhang (PRD 104 (2021) 034023)]

- A simple description for spin-0 toponium modelling
- Proof toponium systems can be reconstructed (t_L/t_H)
- The rapidity difference between the tops = killer observable

Summary

$$\frac{1}{E - \frac{\mathbf{p}^2}{M_t} + i\frac{\Gamma_\theta}{2}} \qquad \Rightarrow \qquad \langle \mathbf{p} | \frac{1}{E - \frac{P^2}{M_t} - V(r) + i\frac{\Gamma_\theta}{2}}$$

Outlook:

- Beyond the toy model
- Higher-spin contributions
- Tests again data
 - (also: $t\bar{t}$ spin correlations)

