

Gauge Ensembles from PACS Collaboration

Yoshinobu Kuramashi
Center for Computational Sciences (CCS), University of Tsukuba

Aug 9, 2022 @ Lattice 2022

Plan of Talk

- PACS Collaboration Members
- PACS Project w/ OFP and Fugaku
- Generation of "PACS10" Configs
 - Simulation Details
 - Physics w/ "PACS10" Configs
- Data Management and Publication Plan

PACS Collaboration Members

N.Ishizuka, (J.Kakazu), Y.Kuramashi, Tsukuba

E.Shintani, (Y.Taniguchi), N.Ukita, T. Yamazaki, T.Yoshié

Y. Aoki, Y.Nakamura RIKEN-CCS

K.-I.Ishikawa Hiroshima

R. Tsuji, (N.Tsukamoto), S.Sasaki Tohoku

Y. Namekawa YITP

PACS Project w/ OFP and Fugaku

Advantages of larger volume:

- Statistical fluctuation becomes smaller $\propto 1/\sqrt{V}$
- Accessible to small Q² region in investigating hadron form factors
- ⇒ Enlarge the volume > (10 fm)⁴ at the physical point PACS project started in 2016 at the same time of installation of OFP

OFP (Tsukuba-Tokyo): 25 PFlops

Shutdown in 2022.3

OFP-II (Tsukuba-Tokyo): Publically available in FY2023?

Fugaku (Riken): 540 PFlops

Public use started in 2021.3

Generation of "PACS10" Configs

PACS10 configs: 2+1 flavor QCD configs with physical vol. > (10 fm)⁴

β	1.82	2.00	2.20
Lattice size	128 ⁴	160 ⁴	256 ⁴
Lattice spacing	0.085 fm	0.064 fm	~0.043 fm
Physical vol.	$(10.9 \text{ fm})^4$	$(10.2 \text{ fm})^4$	~(11 fm)⁴
Status	finished	finished	on going

- Carefully tuned to the physical point
- #Configs=20~40 depending on β
- Additional 64⁴ lattice at β =1.82 to check finite size effects
 L≈5.5 fm, m_πL≈3.7 (typical physical vol. used in the world)

Simulation Details

PACS,PRD99(2019)014504,PRD100(2019)034517

- Wilson-clover quark action + Iwasaki gauge action
 - Stout smearing with α =0.1 and N_{smear} =6
 - Nonperturbative C_{SW} determined by SF
- Physical volume > (10 fm)⁴
- Carefully tuned to the physical point $(m_{\pi}, m_{K}, m_{\Xi})$
- Simulation algorithm
 - Hasenbush-preconditioned DDHMC w/ active link for ud quarks,
 - RHMC for s quark
 - Multi-time scale integrator: (N₀,N₁,N₂,N₃,N₄)
 - trajectory length: $\tau \ge 1.0$
 - Chronological inverter guess
 - Solver: mixed precision nested BiCGStab

Physics w/ "PACS10" Configs

Major target is precision measurement and physics beyond the standard model

- Hadron spectrum, PS meson decay constants PRD100(2019)094502, PRD100(2019)094502
- Nucleon form factors (charge radius, g_A, tensor and scalar charges etc.)
 PRD99(2019)014510, PRD102(2020)019902(E)
 arXiv:2207.11914
- K_{l3} form factors (determination of $|V_{us}|$) PRD101(2020)094504, arXiv:2206.08654
- HVP contribution to muon g-2 PRD100(2019)034517
- Proton decay matrix elements
 PoS LATTICE2019(2020)141

Data Management and Publication Plan

Configs. are planned to be uploaded to ILDG in future

- When?
 Under discussion within the collaboration
- Plan of DOI registration?
 Yes
- Any conditions to use configs?
 Should properly quote the specified references